
User Manual for the DREAM Toolbox

Version 2.1.3

An ultrasound simulation software for use with Matlab and

GNU Octave

Fredrik Lingvall∗

November 13, 2009

∗E-mail:Fredrik.Lingvall@ifi.uio.no

1

http://www.mathworks.com
http://www.octave.org

Contents

1 Introduction 5

2 Copyright 5

2.1 Disclaimer . 5

3 System Requirements 5

4 Installation 6

4.1 Binary Installation (Matlab only) . 6

4.2 Windows Specific Installation Notes . 6

4.3 MacOS X Specific Installation Notes . 7

4.4 Octave Specific Installation Notes . 7

4.5 Installation from Source . 7

4.5.1 Build DREAM for Linux/Unix . 7

4.5.2 Build the DREAM mex-files for MacOS X (Intel Macs) 8

4.5.3 Build the DREAM Matlab 32-bit mex-files for Windows 9

4.5.4 Build the DREAM Octave 32-bit oct-files for Windows using the MinGW Compiler 10

4.5.5 Build the DREAM 32-bit Octave oct-files for Windows using the MSVC compiler (depreciated) 11

4.5.6 Build the DREAM matlab mex-files for 64-bit Windows 11

4.5.7 Build the DREAM Octave oct-files for 64-bit Windows 12

4.5.8 Compile with FFTW support for the Attenuation Code 12

5 An Introduction to The Impulse Response Method 12

5.1 The Baffled Piston Model and the Rayleigh integral . 13

5.2 Discrete-time Spatial Impulse Responses . 15

5.3 The Discrete Representation (DR) Computational Concept 16

5.4 Lossy Media . 17

6 A Quick Start to DREAM Simulations 18

7 Transducer Function Reference 19

7.1 Input Parameters Common to all Transducer Functions 19

7.1.1 Observation Point(s) Parameter . 19

7.1.2 Sampling Parameters . 20

7.1.3 The Delay Parameter . 20

7.1.4 Material Parameters . 20

7.1.5 Focusing parameters . 21

7.1.6 Error Handling . 21

7.2 Output Parameters Common to all Transducer Functions 21

7.2.1 The SIR Output Argument . 21

2

7.2.2 The Error Output Argument . 22

7.3 Single Element Transducers . 22

7.3.1 Line (strip) Transducer . 22

7.3.2 Rectangular Transducer . 22

7.3.3 Rectangular Focused Transducer . 22

7.3.4 Circular Transducer . 23

7.3.5 Focused Circular Transducer . 23

7.3.6 Spherical Concave Transducer . 23

7.3.7 Spherical Convex Transducer . 23

7.3.8 Cylindrical Concave Transducer . 24

7.3.9 Cylindrical Convex Transducer . 24

7.4 Input Parameters Common to the Array Functions . 24

7.4.1 The Array Grid Matrix . 24

7.4.2 Array Focusing . 24

7.4.3 Beam Steering Parameters . 25

7.4.4 Apodization Parameters . 25

7.5 Array Transducers . 26

7.5.1 Array with Rectangular Elements . 26

7.5.2 Array with Circular Elements . 26

7.5.3 Array with Cylindrical Concave Elements . 26

7.5.4 Array with Cylindrical Convex Elements . 27

7.5.5 Annular Array . 27

8 Parallel Processing Support 27

9 Analytic Transducer Functions 29

10 Misc Functions 29

10.1 Apodization Windows . 29

10.2 Attenuation Response . 29

10.3 One Dimensional Matrix Convolution Functions . 30

10.3.1 Using Pre-computed FFTW Plans . 30

10.3.2 Using the In-place Mode . 30

10.3.3 Computing Array Responses for Arbitrary Input Signals 31

10.4 Parallel Matrix Copy . 32

10.5 The Speed of Sound in Water . 32

11 Signal Processing Examples 33

11.1 Double-path Modeling . 33

11.2 Synthetic Aperture Imaging — The Synthetic Aperture Focusing Technique 33

11.3 Delay-and-sum Imaging . 34

3

11.4 Model Based Ultrasonic Array Imaging . 35

11.4.1 The Matched Filter . 36

11.4.2 The Optimal Linear Estimator . 36

12 The Graphical User Interface (Matlab only) 37

13 Known Issues 37

Bibliography 39

A Building the Pthreads Library for 32 and 64 bit Windows 40

B Building the FFTW Library for 32 and 64 bit Windows 40

4

DREAM
The

Toolbox

3 SYSTEM REQUIREMENTS

1 Introduction

THE DREAM (Discrete REpresentation Array Modeling) toolbox is an open source software, released
under the GNU General Public License (GPL), for both Matlab and Octave for simulating acoustic

fields radiated from common ultrasonic transducer types and arbitrarily complicated ultrasonic transduc-
ers arrays. The DREAM toolbox enables analysis of beam steering, beam focusing, and apodization for
wide band (pulse) excitation both in near and far fields. The toolbox is also provided with a user friendly
graphical user interface (GUI).

The toolbox consists of a set of routines for computing (discrete) spatial impulse response (SIRs)
for various single-element transducer geometries as well as multi-element transducer arrays. Based on
linear systems theory, these SIR functions can then be convolved with the transducer’s electrical impulse
response to obtain the acoustic field at an observation point. Using the DREAM toolbox one can simulate
ultrasonic measurement systems for many configurations including phased arrays and measurements
performed in lossy media.

The DREAM toolbox uses a numerical procedure based on based on the discrete representation (DR)
computational concept [1, 2] which is a method based on the general approach of the spatial impulse
responses [3, 4].

2 Copyright

THE DREAM toolbox is an open source software and the source code for the toolbox is freely re-
distributable under the terms of the GNU General Public License (GPL) as published by the Free

Software Foundation (http://www.gnu.org). See also the file COPYING which is distributed with the
DREAM Toolbox.

The DREAM Toolbox can be downloaded at: http://www.signal.uu.se/Toolbox/dream/. At this
website you can also find information how to contact the authors and report bugs etc.

2.1 Disclaimer

The DREAM toolbox is distributed in the hope that it will be useful but WITHOUT ANY WARRANTY.
More specifically:

THE PROGRAM IS PROVIDED “AS-IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OR CONDITIONS
OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL ANY
OF THE AUTHORS OF THE DREAM TOOLBOX AND/OR THE DEPARTMENT OF ENGINEERING
SCIENCES AT UPPSALA UNIVERSITY, SWEDEN, OR THE INSTITUT D’ELECTRONIQUE ET DE
MICRU-ELECTRONIQUE DU NORD (IEMN-DOAE-UMR CNRS 9929), ECOLE CENTRALE DE LILLE,
FRANCE, BE LIABLE FOR ANY SPECIAL, INCIDENTAL, INDIRECT, OR CONSEQUENTIAL DAM-
AGES OF ANY KIND, OR DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA, OR
PROFITS, WHETHER OR NOT THE AUTHORS OF THE DREAM TOOLBOX HAVE BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES, AND/OR ON ANY THEORY OF LIABILITY ARISING
OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

3 System Requirements

1. Matlab ≥ 7.1 or,

2. Octave ≥ 2.9.12 (≥ 3.0.0 recommended).1

1The graphics routines have been in under heavy development in recent versions of Octave. The plotting and image
routines in Octave 3.0.0 and above are, therefore, much more compatible with Matlab now then it used to be. The example

5

http://www.gnu.org
http://www.signal.uu.se/Toolbox/dream/
http://www.octave.org

DREAM
The

Toolbox

4 INSTALLATION

3. FFTW ≥ 3.0.1 (optional).2

4. Pthread.3

4 Installation

THE DREAM Toolbox can be installed both using pre-compiled binaries and from source code. Bi-
naries are currently available for Linux (x86/x86 64), Windows (x86), and for Intel Macs (Mac OS

X). The binaries are compiled using generic compiler flags and without support for the fftw library (for
the transducer functions) and should, therefore, run on most setups.

If you want higher performance then it is recommended that you compile DREAM from source.
There is a bash script and m-files included in the source distribution to facilitate building the toolbox
and, furthermore, the Makefiles used in build process can easily be edited for further fine tuning of the
performance.

4.1 Binary Installation (Matlab only)

1. Download the dream-xxx-2.x.x.tgz file, or dream-xxx-2.x.x.zip file, using your favorite browser
(where xxx replaced by the hardware architecture (unix [32/64], win, or maci) and the 2.x.x is
replaced by the actual version number of the toolbox).

2. Copy the file to a suitable directory on your disk and uncompress the file:

Windows: Use Winzip or Winrar.

Linux: Type tar xvzf dream-xxx-2.x.x.tgz (or gunzip dream-xxx-2.x.x.zip).

3. Add the new directory into the Matlabpath. This can be performed by choosing the Set Path
command from the File menu (Matlab only) or using the addpath command. On Linux you can
add the line addpath(’/your installation dir/)’ to your startup.m file.

Note: since the oct-API often changes between releases of Octave the binaries will probably only work
for the version of Octave that they were compiled for. For this reason binaries for Octave are no longer
available and you need to install the toolbox from source which easily can be done with the Octave pkg

command (see Section 4.4).

4.2 Windows Specific Installation Notes

If you want to use the parallel (threaded) DREAM functions you need to install the Pthreads-Win32
library. Download the library from: http://sourceware.org/pthreads-win32/ and put the
pthreadGC2.dll file in a suitable directory, such as, C:\WINDOWS\System32; this file is now also available
on the DREAM web page. If you want to build the Pthreads library for Windows from source then you
can find instructions in Appendix A.

The fftconv p and sum fftconv p use the FFTW3 library (see Section 10.3). A Windows version of
this library can be found at: http://www.fftw.org/install/windows.html but it is now also available

scripts in the DREAM toolbox now uses these new features in Octave and it is therefore recommended to install a recent
version of Octave. However, the transducer functions in DREAM will probably also work with older versions of Octave.

2The attenuation code in DREAM makes heavily use of FFTs. If the optimized FFTW is installed then DREAM can
be configured to use this lib.

3If you want to use the parallel (threaded) DREAM functions in Windows you need to install the Pthreads-Win32
library.

6

http://www.fftw.org
http://sourceware.org/pthreads-win32/
ftp://sourceware.org/pub/pthreads-win32/dll-latest/lib/pthreadGC2.dll
http://www.fftw.org/install/windows.html
http://www.fftw.org

DREAM
The

Toolbox

4 INSTALLATION

on the DREAM web page. Copy the libfftw3-3.dll file to C:\WINDOWS\System32. If you want to build
the FFTW library for Windows from source then you can find instructions in Appendix B.

To install DREAM for Octave on Windows see Sections 4.5.4 and 4.5.5.

4.3 MacOS X Specific Installation Notes

The fftconv p and sum fftconv p functions use the FFTW3 library (see Section 10.3). Instructions for
installing fftw on MacOS X can be found at:

http://www.fftw.org/install/mac.html

4.4 Octave Specific Installation Notes

As mentioned above, the DREAM Toolbox must be installed from sources for Octave. Recent versions of
Octave have a package manager tool (pkg) for that purpose. Given that you have the developer tools for
your system installed (for Windows see Sections 4.5.4 and 4.5.5) you should be able to install DREAM
by,

1. Download the special DREAM source code file for the Octave package manager,

2. type: pkg install dream-2.x.x.tar.gz at the Octave command line.4

You should now be able to see the DREAM packege by typing:

pkg list

at the Octave command line.

4.5 Installation from Source

To build the DREAM Toolbox from sources you need to have developer tools installed for your system
(compiler, linker, etc.). Start with downloading (and uncompressing) the (full) source DREAM-2.x.x.tgz

file. This file contains the source code, the documentation (the user manual), and the html code for
the web pages. The build process is based on Makefiles both for C/C++ code and for building the
(LATEX) user manual and html documentation. Therefore, to build the documentation you need to have
TEX/LATEX installed and, furthermore, to build the html documentation you also need the tex4ht and
highlight tools.5

4.5.1 Build DREAM for Linux/Unix

There are three methods that can be used to build the DREAM Toolbox on unix from sources. The
first, and simplest, is to use the m-script build mexfiles unix.m, the second is to use the bash script
build dream.sh and the third is to manually edit the build configuration file Make.inc and then compile
the sources.

Method 1: Using the build mexfiles unix.m script.

This is the simplest method but there is no optimization for the used architecture and the attenuation
code is build without fftw support (see Section 4.5.8). This will also only build the mex-files (not the
oct-files).

4Note: this will not build the documentation.
5The build of the documentation has only been tested on Linux based systems.

7

http://www.fftw.org/install/mac.html
http://www.cse.ohio-state.edu/~gurari/TeX4ht/mn.html
http://www.andre-simon.de/

DREAM
The

Toolbox

4 INSTALLATION

1. Install fftw (if it is not already installed).

2. Start Matlab and select compiler (gcc is recommended) with mex -setup (if you have not already
done so).

3. Remove the -ansi flag from your

~/.matlab/R200Xx/mexopts.sh

file (the DREAM sources contain C++ style comments and they will not compile with -ansi).

4. Run the m-script: build mexfiles unix

5. Copy the files in the gui and help m files directories to your DREAM install directory.

6. Add your DREAM install directory to the Matlab path. That is, add
addpath(’/your installation dir/’)to your matlab/startup.m file.

Method 2: Using the build dream.sh bash script.

The bash script build dream.sh will probe the machine for cpu, architecture (32 or 64 bits) and then
use a pre-defined set of compiler flags for the machine (currently only x86 is supported). This script will
both build the mex-/oct-interfaces and the documentation for DREAM. It is assumed that Matlab is
installed in /usr/local/matlab. If you have installed Matlab somewhere else then you can create a
symbolic link to the /usr/local/matlab dir. Usage:

./build_dream.sh

Then add your DREAM install directory to the Matlab/Octave path(s). That is, add
addpath(’/your installation dir/’) to your matlab/startup.m file and/or .octaverc file.

Method 3: Manual configuration.

1. Copy Make.default to Make.inc, and open the Make.inc file with a text-editor.

2. Change the paths for Matlab and/or Octave in Make.inc to fit your installation.

3. Change INSTALL DIR, MEX EXT (if you use Matlab), CFLAGS, and OCTVER (if you use Octave) in
Make.inc to fit your architecture.

4. If you don’t have both Matlab and Octave then open the Makefile and remove the corresponding
software on the line “all: matlab octave doc” that you don’t use.

5. Type make

6. Add your DREAM install dir to the Matlab/Octave path(s). That is, add
addpath(’/your installation dir/’) to your matlab/startup.m file and/or .octaverc file.

4.5.2 Build the DREAM mex-files for MacOS X (Intel Macs)

There is currently only one method to build the DREAM mex-files for MacOS X and that is to use the
build mexfiles unix.m script (the Makefiles do not currently work under Mac OS X).

1. Install fftw (if it is not already installed).

2. Start Matlab and select compiler (gcc is recommended) with mex -setup (if you have not already
done so).

8

http://www.fftw.org
http://www.fftw.org/install/mac.html

DREAM
The

Toolbox

4 INSTALLATION

3. Remove the -ansi flag from your

~/.matlab/R200Xx/mexopts.sh

file (the DREAM sources contain C++ style comments which will not compile with -ansi).

4. Run the m-script: build mexfiles unix

5. Copy the files in the gui and help m files directories to your DREAM install directory.

6. Add your DREAM install directory to your Matlab path. That is, add
addpath(’/your installation dir to your matlab/startup.m file (or use the menu in the Matlab

GUI).

4.5.3 Build the DREAM Matlab 32-bit mex-files for Windows

Method 1: Using the MinGW/Gnumex Tools.

1. Download the DREAM Toolbox full source package and uncompress it.

2. Install MinGW and the Gnumex tools (see http://www.mingw.org/ and
http://gnumex.sourceforge.net/).

3. Gnumex is normally setup by running the gnumex.m script, which is located in the main Gnumex
directory, from the Matlab promt which generates a mexopts.bat file for the Matlab mex command.
The windows/mexopts/ directory contains three pre-build bat-files (for MinGW 3.4.5 and Gnumex
2.1.0) which is used to build the toolbox and link with the fftw and Pthread-Win32 libs. You need
to edit the mexopts mingw.bat, mexopts pthread mingw.bat, and
mexopts pthread fftw mingw.bat files for your installation, that is, set paths to your DREAM
source directory, MinGW directories, and Gnumex directories, respectively. The lines you need to
make changes in are indicated with numbers 1)–7) in the respective bat-file.

4. Start Matlab and run the m-script build mexfiles mingw.m (in the main DREAM source direc-
tory).6

5. Copy the files in the gui and help m files directory to your DREAM install directory.

6. Add your DREAM install directory to your Matlab path. That is, add
addpath(’/your installation dir ’) to your matlab/startup.m file (or use the menu in the Matlab

GUI).

7. Copy the files pthreadGC2.dll (for gcc) and libfftw3-3.dll to C:\WINDOWS\System32.

Method 2: Using the MSVC 2008 Express Edition

1. Download the DREAM Toolbox full source package and uncompress it.

6If you are using an older version of Gnumex you may get an error that libmex.def is missing (happens for Matlab
R2007a and above) then the files libmx.def, libmat.def, and libmex.def are missing in the MATLAB/extern/include/ di-
rectory. They can, however, be created from the corresponding dll files in MATLAB/bin/win32/ directory with the pexports

tool which can be found at:
http://www.emmestech.com/software/pexports-0.43/download_pexports.html. Type pexports.exe libmx.dll >

libmx.def etc. in a cmd shell and copy the files to the MATLAB/extern/include/ directory. This is not needed in newer
versions of Gnumex which automatically build the def-files if they are missing.

9

http://www.signal.uu.se/Toolbox/dream/download.shtml
http://www.mingw.org/
http://gnumex.sourceforge.net/
http://www.signal.uu.se/Toolbox/dream/download.shtml
http://www.emmestech.com/software/pexports-0.43/download_pexports.html

DREAM
The

Toolbox

4 INSTALLATION

2. Start Matlab and select compiler with mex -setup (if you have not already done so). If Matlab
cannot find the MSVC 2008 compiler then read this page:
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=18508. Then,
after you have installed the bat-files in their corresponding directories, you need to set the env vari-
able MSSdk for the Windows SDK to, for example, C:\Program Files\Microsoft SDKs\Windows\v6.1.
On Windows XP, this is done by first “right-clicking” on
My Computer and then selecting Properties→Advanced→Environment Variables→New and, sec-
ond, add the MSSdk variable and the path to the Windows SDK that you use (you may need to
reboot to make the new variable visible). On Windows Vista, go to the start meny, “right-click” on
Computer and then select Properties→Advanced system settings→Environment Variables...→New...
and add MSSdk and the path to the Windows SDK.

3. Run the m-script: build mexfiles msvc.m

4. Copy the files in the gui and help m files directories to your DREAM install directory.

5. Add your DREAM install directory to your Matlab path. That is, add
addpath(’/your installation dir ’) to your matlab/startup.m file (or use the menu in the Matlab

GUI).

6. Copy the files pthreadGC2.dll and libfftw3-3.dll to C:\WINDOWS\System32.

Method 3: Matlab’s build-in LCC compiler (depreciated).

1. Download the DREAM Toolbox full source package and uncompress it.

2. Start Matlab and select compiler with mex -setup (if you have not already done so).

3. Run the m-script: build mexfiles windows.m

4. Copy the files in the gui and help m files directories to your DREAM install directory.

5. Add your DREAM install directory to your Matlab path. That is, add
addpath(’/your installation dir’) to your matlab/startup.m file (or use the menu in the Matlab

GUI).

Note the LCC compiler, at least LCC for Matlab R2007b, cannot build the parallel mex-functions
since the compiler cannot parse the Pthread-Win32 header files. All parallel functions will, therefore, be
unavailable if you are using the LCC compiler.

4.5.4 Build the DREAM Octave 32-bit oct-files for Windows using the MinGW Compiler

The pkg source can be build also on Windows with resent versions of Octave (tested with Octave 3.2.3
[MinGW 4.4.0]). To do this, using the native Windows Octave from octave-forge, you only need to install
Octave since fftw, the MinGW compiler, and the pthread libs are included in the Octave package).

1. Download the DREAM Toolbox pkg source package (i.e., the file dream-2.x.x.tar.gz).

2. Download the Windows Octave installer.

3. Install Octave in C:\Octave; do not install in C:\Program Files\Octave since the mkoctfile

script that is used to compile the C++ code in the DREAM toolbox do work well with white
spaces in the path (the default install location should be OK).

4. Build and install the DREAM Toolbox with: pkg install dream-2.x.x.tar.gz.

10

http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=18508
http://www.signal.uu.se/Toolbox/dream/download.shtml
http://octave.sourceforge.net
http://www.signal.uu.se/Toolbox/dream/download.shtml
http://octave.sourceforge.net

DREAM
The

Toolbox

4 INSTALLATION

4.5.5 Build the DREAM 32-bit Octave oct-files for Windows using the MSVC compiler
(depreciated)

This section describes how to build the DREAM oct-files for Windows using the MSVC compiler. But
note that, as of spring 2009, Octave binaries build with the MSVC compiler are no longer available at
octave-forge due to license issues. It is therefore recomended that the MinGW compiler is used instead
as described in Section 4.5.4! To use MSVC one therefore needs an older MSVC build binary of Octave
or one has to build Octave (and all its dependencies) using the MSVC compiler and then follow the
procedure below:

1. Download the DREAM Toolbox pkg source package and uncompress it.

2. Download the MSVC version of Octave (build with the Microsoft Visual C++ 2008 Express Edition
compiler).

3. Install Octave in C:\Octave; do not install in C:\Program Files\Octave since the mkoctfile

script that is used to compile the C++ code in the DREAM toolbox do work well with white
spaces in the path.

4. Install Microsoft Visual C++ 2008 Express Edition

5. Get the fftw3.h file (for version 3.2.2) from http://www.fftw.org, or from DREAM web page,
and copy it to C:\Octave\include\; you don’t need to install the fftw3 dll file since it is already
included in the MSVC version of Octave.

6. Get the phread.h, shed.h, and semaphore.h files from http://sourceware.org/pthreads-win32/

(version 2.8.0), or from the DREAM web page, and copy them to C:\Octave\include\

7. Get the phreadGC2.lib file from http://sourceware.org/pthreads-win32/, or from the
DREAM web page, copy it to C:\Octave\lib\, and rename it to phread.lib; the Unix style
Makefile which is used to build the toolbox expects this name of the lib file.

8. Create a new bat file and add the lines:

@echo off

call "C:\Program Files\Microsoft Visual Studio 9.0\VC\vcvarsall.bat"

"C:\Octave\bin\octave-3.0.1.exe"

to the file (change the path to the actual version of Octave that you use).

9. Start Octave by running the bat file created above.

10. Build and install the DREAM Toolbox with: pkg -verbose install dream-2.x.x.tar.gz.

11. Get the pthreadGC2.dll file from http://sourceware.org/pthreads-win32/ (version 2.8.0), or
from the DREAM web page, and copy it to C:\WINDOWS\System32.

4.5.6 Build the DREAM matlab mex-files for 64-bit Windows

If you have an older 64-bit Matlab installation (eg. 2007x) then follow these steps:

1. Install MSVC 2008 Express Edition SP1.

2. Install the Windows SDK; The current version is Windows SDK for Windows Server 2008 and
.NET Framework 3.5. Remember to select the “X64 Compilers and Tools” when installing the
SDK.

11

http://octave.sourceforge.net
http://www.signal.uu.se/Toolbox/dream/download.shtml
http://octave.sourceforge.net
http://msdn.microsoft.com/vstudio/express/visualc/
http://www.fftw.org
http://www.signal.uu.se/Toolbox/dream/download.shtml
http://sourceware.org/pthreads-win32/
http://www.signal.uu.se/Toolbox/dream/download.shtml
http://sourceware.org/pthreads-win32/
http://www.signal.uu.se/Toolbox/dream/download.shtml
http://sourceware.org/pthreads-win32/
http://www.signal.uu.se/Toolbox/dream/download.shtml

DREAM
The

Toolbox

5 AN INTRODUCTION TO THE IMPULSE RESPONSE METHOD

3. If you are using a different Windows SDK version than 6.1 then you need to set the correct path
in the bat-file windows/mexopts/mexopts msvc 64.bat.

4. Get the 64-bit versions of fftw and Pthread-win32 from http://sourceforge.net/projects/mingw-w64/

and http://www.fftw.org, respectively, or from the DREAM web page, and copy them to
C:\WINDOWS\System32.7

If you have Matlab 2008b, or above,8 then read and follow the instructions in Mathworks FAQ:
http://www.mathworks.fr/support/solutions/en/data/1-6IJJ3L/index.html?solution=1-6IJJ3L.
Then run the build mexfiles windows.m script.

4.5.7 Build the DREAM Octave oct-files for 64-bit Windows

Currently there is no support for building 64-bit oct-files since there is no 64-bit version of Octave for
Windows available (yet).

4.5.8 Compile with FFTW support for the Attenuation Code

The attenuation code in the DREAM Toolbox uses FFTs extensively. To speed up the FFT computations
(by 10% to 50%) one can compile The DREAM Toolbox with FFTW support for the attenuation code.
To do this you need to compile all functions with the flag -DUSE FFTW and link with -lfftw3. This can
be accomplished by changing:

ATT_FFTW =

FFW_LIB =

to

ATT_FFTW = -DUSE_FFTW

FFW_LIB = -lfftw3

in the file Make.default before compiling the toolbox if you are using Method 3 described in Section 4.5.1
(the build dream.sh uses fftw by default).

5 An Introduction to The Impulse Response Method

THE impulse response method is an approach based on linear systems theory to model acoustic fields
from ultrasonic transducers; the method was introduced by Tupholme and Stepanishen in the late

60’s, early 70’s [3, 4]. The impulse response method is based on linear acoustics and can be used to model
acoustic fields and (double-path) responses for both single transducer setups and for array imaging. The
idea is to divide the imaging system in two parts: the first one accounts for acoustical wave propagation
effects (i.e., the diffraction effects) from the transducer surface to the observation point, and the second
one accounts for the electro-acoustical effects. These two parts are then convolved to obtain a model for
the total imaging system.

The impulse response method is very flexible since, (i) by linearity the response from multi-element
transducers (such as array transducers) can be obtained be means of super-position and (ii) arbitrary
input signals can be treated by simply convolving the electro-acoustical impulse response with the input

7The sources for Pthread-win32 and fftw is now also included in the DREAM source package. There are also scripts
and patches for genrerating 64-bit versions of these libs using the MinGW-w64 cross compiler tool chain on Linux (see
Appendix A and B.

8The method described above (for Matlab 2007x) may work for Matlab 2008b, or above too.

12

http://sourceforge.net/projects/mingw-w64/
http://www.fftw.org
http://www.signal.uu.se/Toolbox/dream/download.shtml
http://www.mathworks.fr/support/solutions/en/data/1-6IJJ3L/index.html?solution=1-6IJJ3L

DREAM
The

Toolbox

5 AN INTRODUCTION TO THE IMPULSE RESPONSE METHOD

Figure 1: Illustration of a baffled transducer.

signal. In this section we will present a short introduction to the impulse response method and, in
particular, discuss how to use the method for discrete-time modeling.

5.1 The Baffled Piston Model and the Rayleigh integral

The impulse response method is based on the assumption that the transducer can be treated as a baffled
piston. This assumption implies that we only need to consider the active area of the transducer when
modeling the wave propagation. That is, if the source (the transducer) is located in the rigid plane, often
referred to as the rigid baffle as illustrated in Figure 1, then the baffle (Sb) will not contribute to the
field. The pressure at an observation point r is then described by the Rayleigh integral

p(r, t) =ρ0
∂

∂t

∫ ∞

−∞

(∫

Sr

vn(r0, t0)
δ (t − t0 − |r − r0|/cp)

2π|r − r0|
dSr

)

dt0,

=ρ0
∂

∂t

∫ ∞

−∞

vn(t0)

∫

Sr

δ (t − t0 − |r − r0|/cp)

2π|r − r0|
dSrdt0,

=ρ0
∂

∂t

∫ ∞

−∞

vn(t0)h
f-sir(r, t − t0)dt0,

=ρ0
∂

∂t
vn(t) ∗ hf-sir(r, t − t0).

(1)

where it is where we for simplicity have assumed that the normal velocity vn(r0, t) ≡ vn(t) is uniform on
the transducer’s surface Sr. The Rayleigh integral formula (1) simply states that the acoustic field at an
observation point is the sum of the contributions from all points of the active area of the transducer. The
impulse response hf-sir(r, t) in Eq. (1) is usually referred to as the (forward) spatial impulse response
(SIR).

The normal velocity, vn(t), depends on both the input signal, u(t), and the electro-acoustical
properties of the transducer, which can be described with the (forward) electrical impulse response
hef(t). Thus, the pressure at r can be expressed by the convolutions of the input signal and the two
(forward) impulse responses according to,

p(r, t) = hf-sir(r, t) ∗ hef(t) ∗ u(t). (2)

Double-path (pulse-echo) responses can be treated in a similar way by convolving the forward response (2)
with the backward electrical (acousto-electrical) response and the backward SIR for a point source at r.

Analytical solutions to SIRs exist for a few geometries, but one must in general resort to numerical
methods. Also, these time continuous solutions are normally not practical since all acquired signals (the
data) are normally sampled and time discrete models are, therefore, needed; sampling of time continous
SIRs is discussed in Section 5.2.

Before we discuss sampled SIRs, and the particular method use by the DREAM Toolbox, let us
consider a case where there exist an analytical solution.

Example 1 (The SIR for a Circular Disc). The SIR of a circular disc (see illustration in Figure 2)
has an analytical solution [4] which can be divided in two cases: (i) when the observation point is inside

13

DREAM
The

Toolbox

5 AN INTRODUCTION TO THE IMPULSE RESPONSE METHOD

Figure 2: Geometry of a a circular disc source.

the aperture of the disc
√

x2 + y2 ≤ a, where a is the transducer radius, and (ii) when the observation
point is outside the aperture. The disc is assumed to be located in the x–y plane centered at x = y = 0.
If we let r denote the distance in the x–y plane from the center axis of the disc to the observation point,
r =

√

x2 + y2, then the circular disc SIR is given by

for r ≤ a

h(r, t) =

0, t ≤ tz

cp, tz ≤ t ≤ t1
cp

π cos−1

(

c2
p

t2−t2
z
+t2

r
−a/c2

p

2tr

√
t2−t2

z

)

, t1 < t ≤ t2

0, t > t2

for r > a

h(r, t) =

0, t ≤ t1
cp

π cos−1

(

c2
p

t2−t2
z
+t2

r
−a/c2

p

2tr

√
t2−t2

z

)

, t1 < t ≤ t2

0, t > t2

(3)

where tz = z/cp is the earliest time that the wave reaches the observation point r when r ≤ a, tr = r/cp,

and t1,2 = tz

√

1 + (a∓r
z)2 are the propagation times corresponding to the edges of the disc that are

closest and furthermost away from r, respectively.

Noticeable is that the pulse amplitude of the on-axis SIR is constant regardless of the distance to the
observation point.9 The duration of the on-axis SIR is given by t1 = a/cp at z = 0. As the distance
increases the duration, t1 − tz, of the SIR becomes shorter, and for large z it approaches to the delta
function. The transducer size effects are therefore most pronounced in the near-field. This is illustrated
in Figure 3 where the on-axis SIRs at z = 20 and z = 80 mm, respectively are shown. The duration at
z = 20 is longer than that of z = 80 and if the distance, z, increases then the on-axis SIR will approach
to a delta function, cf. Figures 3(a) and (b). �

As mentioned above, there exist no analytical analytical solutions for many transducer geometries, and
in such situations numerical methods must be used. The DREAM Toolbox uses a method based on the
discrete representation (DR) computational concept [1, 2]. The DR method is very flexible in the sense
that complex transducer shapes as well as arbitrary focusing methods easily can be modeled. Another
benefit of the DR method is that the SIRs are directly computed in a discrete form which is convenient
since this directly allows for digital signal processing. The DR method is described in Section 5.3 below,
but first we will discuss sampling of spatial impulse responses.

9The on-axis SIR has duration t1 − tz with the constant amplitude cp in the time interval tz ≤ t ≤ t1.

14

DREAM
The

Toolbox

5 AN INTRODUCTION TO THE IMPULSE RESPONSE METHOD

0 5 10 15 20 25 30
0

200

400

600

800

1000

1200

1400

1600

1800

t [µs]

S
IR

 A
m

pl
itu

de
 [m

/s
]

(a) Spatial impulse response at z = 20 mm.

40 45 50 55 60 65 70
0

200

400

600

800

1000

1200

1400

1600

1800

t [µs]
S

IR
 A

m
pl

itu
de

 [m
/s

]

(b) Spatial impulse response at z = 80 mm.

Figure 3: On-axis spatial impulse responses for a 10 mm disc where the sound speed, cp, was 1500 m/s.

5.2 Discrete-time Spatial Impulse Responses

Before we introduce the discrete representation (DR) method, which the DREAM toolbox transducer
functions are based on, let us discuss sampling of spatial impulse responses. This is of interest since
our ultimate goal normally is to model the total sampled imaging system which includes both acoustic
propagation effects (the SIRs) as well as input signals and electro-acoustical effects.

To obtain a discrete model we need a discrete representation of the SIRs. That is, the analytical
expressions for the SIRs discussed in Section 5.1 must be converted to a discrete form in order to be
useful for digital signal processing; a proper discrete representation of the SIRs is necessary so that when
the sampled SIR is convolved with the normal velocity the resulting waveform can faithfully represent
the sampled measured waveform.

The analytical SIRs have an infinite bandwidth due to the abrupt amplitude changes that, for example,
could be seen in the line and disc solutions above. In some situations the duration of a SIR may even be
shorter than the sampling interval, Ts, and it is therefore not sufficient to simply sample the analytical
SIRs by simply taking the amplitude at the sampling instants since the SIR may actually be zero those
time instants. The SIRs are however convolved with a band-limited normal velocity signal, hence the
resulting pressure waveform must also be band-limited, cf. (2). Consequently, we only need to sample
the SIR in such way that the band-limited received A-scans are properly modeled.

In a sampled system the impulse responses are given at discrete time instants, tk (given by the
sampling period Ts) and to faithfully represent the SIRs we need to collect all contributions from the
continuous time SIRs in the corresponding sampling interval [tk − Ts/2, tk + Ts/2]. A discrete version
of the a time continuous SIR is then obtained by summing all contributions from the SIR in the actual
sampling interval. That is, the sampled SIR is defined as

h(r, tk) ,
1

Ts

∫ tk+Ts/2

tk−Ts/2

h(r, t)dt. (4)

The division by Ts retains the same unit (m/s) of the sampled SIR as the continuous one. The amplitude
of the sampled SIR, at time tk, is then the mean value of the continuous SIR in the corresponding sampling
interval, [tk − Ts/2, tk + Ts/2]. Also, as seen from the analytical solutions above, the SIRs always have a
finite length as the transducer has a finite size. The sampled SIRs are therefore naturally represented by
finite impulse response filters (FIRs).

15

DREAM
The

Toolbox

5 AN INTRODUCTION TO THE IMPULSE RESPONSE METHOD

The effect of the sampling scheme (4) is illustrated in Figure 4 for two discs with radii 1.2 and 3 mm,
respectively, where the sampling interval, Ts, was 0.04µs. In Figure 4(a) the analytic SIR is shorter than

33.25 33.3 33.35 33.4 33.45 33.5
0

200

400

600

800

1000

1200

1400

1600

t [µs]

S
IR

 A
m

pl
itu

de
 [m

/s
]

Sampled SIR
Analytic SIR

(a) Continuous and sampled spatial impulse responses of
a circular disc with radius r = 1.2 mm.

33.25 33.3 33.35 33.4 33.45 33.5
0

200

400

600

800

1000

1200

1400

1600

t [µs]

S
IR

 A
m

pl
itu

de
 [m

/s
]

Sampled SIR
Analytic SIR

(b) Continuous and sampled spatial impulse responses of
a circular disc with radius r = 3 mm.

Figure 4: Illustration of sampling spatial impulse responses. The continuous and sampled on-axis SIRs
for two discs with radii 1.2 and 3 mm, respectively are shown where the sampling interval, Ts, was 0.04
µs (cp= 1500 [m/s]).

the sampling interval, Ts. The max amplitude of the discrete SIR is therefore lower than then the max
amplitude of the continuous SIR. If the duration of the analytic SIR is longer than the sampling interval,
as for the 3 mm disc shown in Figure 4(b), then the max amplitudes of the on-axis sampled and analytic
disc SIRs will be the same.

5.3 The Discrete Representation (DR) Computational Concept

As mentioned in previous in Section 5.1 the analytical spatial impulse responses are only available for a
few simple transducer geometries. Therefore, for a transducer with an arbitrary geometry a numerical
method must be used. The numerical method used in this toolbox is based on the discrete representation
(DR) method, which is based on a discretization of the Rayleigh integral formula (1). In the DR method,
the radiating surface is divided into a set of small surface elements (see illustration in Figure 5), and
the surface integral in the Rayleigh formula is replaced by a summation. The DR method facilitates
computation of SIRs for non-uniform excitation, apodization of the aperture, and arbitrary focusing laws
since each surface element can be assigned a different normal velocity, apdodization or time-delay. The
DR computational concept can therefore be used for computing SIRs for an arbitrary transducer shape
or array layout [1, 2].

A discrete SIR, computed using the DR method, can be found by first dividing the total transducer
surface into a set of J surface elements {∆S0,∆S1, . . . ,∆SJ−1}. Second, let wj denote an aperture
weight, and Rj = |r − rj | the distance from the jth surface element to the observation point. The
discrete SIR can now be approximated by

h(r, tk) =
1

2π

J−1∑

j=0

wjδ(tk − Rj/cp − dj)

Rj
∆Sj

=
J−1∑

j=0

ajδ(tk − Rj/cp − dj),

(5)

16

DREAM
The

Toolbox

5 AN INTRODUCTION TO THE IMPULSE RESPONSE METHOD

Figure 5: Geometry and notations for the discrete representation method.

where dj is a user defined focusing delay and tk = kTs, for k = 0, 1, . . . K − 1. The scaling factor

aj =
wj∆Sj

2πRj
(6)

in (5) represents the amplitude of the impulse response for an elementary surface at rj excited by a Dirac
pulse. Hence, the total response, at time tk, is a sum of contributions from those elementary surface
elements, ∆Sj , whose response arrive in the time interval [tk − Ts/2, tk + Ts/2].

The accuracy of the method depends on the size of the discretization surfaces ∆Sj . It should, however,
be noted that high frequency numerical noise due to the surface discretization is in practice not critical
since the transducer’s electrical impulse response has a bandwidth in the low frequency range (for a
further discussion see [2]). Also, these errors are small if the elementary surfaces, ∆Sj , are small. The
DR-method is very flexible in the sense that beam steering, focusing, apodization, and non-uniform
surface velocity can easily be included in the simulation.

5.4 Lossy Media

The computational procedure for an attenuation free medium implies a Dirac-type Green’s function [1].
The discrete approach in the DREAM toolbox above is, however, also applicable to the problems char-
acterized by an arbitrarily shaped causal Green’s function. In such a case a Dirac function is simply
replaced by a sampled version of this function. This characteristic extends the field of applications and
allows, for example, the computations for lossy media. For such a case, the free space Green’s function
δ(t−|rs−ro|/c)

4π|rs−ro|
, where rsis a point in the transducer surface and rois the observation point, should be re-

placed by its causal counterpart gα(t, |rs − ro|) related to the medium with absorption. The solution for
lossy media used in the DREAM toolbox for gα has the following frequency-domain form [1, 5]:

Gα(jω, |rs − ro|) =
1

4π|rs − ro|
ej(k1|rs−ro|−ωt) (7)

where

k1 =
ω

c

[

1 +
cα0

π2
ln

(
1

α1ω

)]

+ α0f, (8)

α1 = π/0.95, and α0(α) = α
8.686×104 . The time-domain transfer function is then obtained by means of

the inverse Fourier transform

gα(t, |rs − ro|) = F−1{Gα(jω, |rs − ro|)}. (9)

17

DREAM
The

Toolbox

6 A QUICK START TO DREAM SIMULATIONS

In the DREAM toolbox this computation is performed by a discrete Fourier transform for each surface
element dx×dy. An illustration of the effects due to lossy media for an attenuation of coefficient, α of 1
[db/cm MHz] is shown in Figure 6 for 10 mm, 25 mm, and 40 mm respectively.

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

Time [µs]

Casual Greens Functions for Lossy Media (α = 1 [dB /cm MHz])

z = 10 [mm]
z = 25 [mm]
z = 40 [mm]

(a) Time domain response.

0 0.5 1 1.5 2 2.5 3
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

Frequency [MHz]

A
m

pl
itu

de
 [d

B
]

Attenuation coefficient α = 1 [dB /cm MHz]

z = 10 [mm]
z = 25 [mm]
z = 40 [mm]

(b) Frequency domain response.

Figure 6: Illustration of the attenuation response at three different depths. The attenuation coefficient,
α, was 1 [db/cm MHz] and the attenuation response at 10 mm is the solid line, 25 mm is the dashed line,
and 40 mm is dash-dotted line, respectively.

6 A Quick Start to DREAM Simulations

IN his section a quick start on how to perform simulations with DREAM is presented. Here only
a simple example is shown just to illustrate what is needed to simulate an ultrasonic measurement

system. We will use a circular transducers for this example but more advanced examples can be found on
the DREAM web page http://www.signal.uu.se/Toolbox/dream/ on the Examples page. Also more
details of the various functions in the DREAM Toolbox can be found in Sections 7, 8, and 10, respectively.

Let us study a the pressure response for a circular transducer using water as the propagation medium
(with a sound speed cp = 1500 [m/s]). We start by setting the sampling frequency and defining the points
of interest, the so-called observation points. The observation points are located on a line at z = 10 mm,
from 1–50 mm with 1 mm between them:

Fs = 10; % Sampling freq. in MHz.

Ts = 1/Fs;

%

% Observation point(s).

%

% Depth

z = 10; % [mm]

% Points along x-axis.

d = 1; % [mm]

xo = (0:d:50); % 0-50 mm.

yo = zeros(length(xo),1);

zo = z*ones(length(xo),1);

Ro = [xo(:) yo(:) zo(:)];

Then we need to define the discretization parameters for both the transducer surface and the temporal
sampling:

18

http://www.signal.uu.se/Toolbox/dream/

DREAM
The

Toolbox

7 TRANSDUCER FUNCTION REFERENCE

% Descretization parameters.

dx = 0.03; % [mm].

dy = 0.03; % [mm]

dt = Ts; % [us].

nt = 400; % Length of spatial impulse response vector.

s_par = [dx dy dt nt];

We must also define the sound speed of the medium, normal velocity, and attenuation. Here we choose
an attenuation free medium (α = 0) and a unit normal velocity:

% Material parameters.

v = 1.0; % Normal velocity.

cp = 1500; % Sound speed.

alfa = 0; % Absorbtion [dB/(cm MHz)].

m_par = [v cp alfa];

The size of the transducer must also be defined, here we use a circular transducer with a 5 mm radius:

% Geometrical parameters.

r = 5; % Radius [mm].

geom_par = [r];

Finally we set the start point of the SIR and call the DREAM function dreamcirc to compute the
discrete SIRs:

% Delay.

t_z = z*1e3/cp;

%delay = 0; % Start at 0 [us].

delay = t_z; % Start at t_z [us].

H = dreamcirc(Ro,geom_par,s_par,delay,m_par,’stop’);

7 Transducer Function Reference

THE transducer functions are implemented as Matlab mex -functions and Octave oct-functions; a
mex/oct-function is pre-compiled code that is dynamically linked to Matlab/Octave at run time.

This greatly increases the computation speed compared to using ordinary m-files since the DR-concept
(see [2]) uses for and while loops extensively. An overview of the transducer functions can be found in
Table 1.

By convention, a transducer function name ending with “ f” is a focused transducer (or has focused
transducer elements) and a transducer function name ending with “ d” is defocused (convex) transducer.

The transducer functions can be divided in two groups, single transducer functions and array func-
tions. The names of both groups starts with “dream” and the array functions are distinguished from single
transducer functions by “ arr ”. Note that arbitrary arrays (with mixed forms of transducer elements)
can be modeled using the single transducer functions and then adding their corresponding responses.

7.1 Input Parameters Common to all Transducer Functions

7.1.1 Observation Point(s) Parameter

The transducer functions can compute SIRs for multiple observation points. The observation points are
given by a N×3 matrix Ro were the first column contains the x-coordinates, the second the y-coordinates,
and the third the z-coordinates, respectively (N is the number of observation points).

The single element transducers are, by convention, all centered at r = (0, 0, 0) and the SIRs are
computed relative to this center point. The array functions uses a grid matrix G to define the positions

19

DREAM
The

Toolbox

7 TRANSDUCER FUNCTION REFERENCE

Transducer type DREAM function

Strip transducer dreamline

Rectangular transducer dreamrect

Focused rectangular transducer dreamrect f

Circular transducer dreamcirc

Focused circular transducer dreamcirc f

Spherical concave transducer (focused) dreamsphere f

Spherical convex transducer (defocused) dreamsphere d

Cylindrical concave transducer (focused) dreamcylind f

Cylindrical convex transducer (defocused) dreamcylind d

Array with rectangular elements dream arr rect

Array with circular elements dream arr circ

Array with cylindrical concave elements (focused) dream arr cylind f

Array with cylindrical convex elements (defocused) dream arr cylind d

Annular array dream arr annu

Table 1: Overview of the DREAM toolbox transducer functions.

of the array elements (see Section 7.4). The SIRs are therefore computed relative the positions given by
the grid matrix for the arrays.

7.1.2 Sampling Parameters

The four-element vector s par = [dx dy dt nt] determines the spatial discretization and the temporal
sampling properties. The spatial discretization of the transducer surface is given by dx×dy; small values
of dx and dy results in a finer mesh, and a higher numerical accuracy, compared to larger ones. The
temporal sampling interval ∆t (or Ts) is given by dt and the length of the SIR-vector is determined by nt.
If nt is chosen too low so that any non-zero component of the SIR is not within the time-window defined
by [delay dt*(nt-1)+delay] an error message will be printed (See Section 7.1.3 for a description of
the delay parameter and Section 7.1.6 for a description of the error handling in the DREAM toolbox).

dx Spatial discretization size in x-direction [mm].

dy Spatial discretization size in y-direction [mm].

dt Temporal discretization size [µs] (Ts = ∆t = 1/sampling freq).

nt Length of spatial impulse response vector.

7.1.3 The Delay Parameter

The starting point of the SIR-vector(s) is given by the delay parameter delay ([µs]). The delay parameter
can either be a scalar, then all SIRs will have the same starting point, or it can be a vector with a length
that must be equal to the number of observation points. In the latter case each observation point has a
SIR with a different starting point.

7.1.4 Material Parameters

The material parameters are given by the three-element vector m par = [v cp alfa]:

v Normal velocity of the transducer surface[m/s].

20

DREAM
The

Toolbox

7 TRANSDUCER FUNCTION REFERENCE

cp Sound velocity of the medium [m/s].

alfa Attenuation coefficient [dB/(cm MHz)].

Note: if alfa 6= 0 then the SIRs are compensated for attenuation. Note that the attenuation calculation
involves a computation of an inverse discrete Fourier transform of length nt for every surface element
dx×dy [2] This results in a longer computation time compared to when alfa = 0. See also Section 10.2.

7.1.5 Focusing parameters

The focusing in the DREAM toolbox is controlled with the two parameters foc met and focal. The
foc met parameters is a text string that selects the focusing method, options are:

’off’ : focusing not used.

’x’ : focus in x only,
(√

x2 + z2
f

)

/cp.

’y’ : focus in y only,
(√

y2 + z2
f

)

/cp.

’xy’ : focus in both x and y,
(√

x2 + y2 + z2
f

)

/cp.

’x+y’ : focus in x + y,
(√

x2 + z2
f +

√

y2 + z2
f

)

/cp.

This type of focusing is used for the two single transducer functions (dreamrect f and dreamcirc f

see Section 7.3) and for the array functions (Section 7.5). The spherical and cylindrical transducer
functions also use focusing but there focusing is controlled by a single parameter R (see Sections 7.3.6,
7.3.7, 7.3.8, and 7.3.9).

7.1.6 Error Handling

There are three levels of error reporting for the transducer functions. An error typically occur when the
SIR do not fit within the time window, defined by the delay, sampling period, and length parameters.
The levels are controlled by the optional err level parameter which is a text string with the following
alternatives:

1. ’ignore’: Here an error is silently ignored,

2. ’warn’: An error message is printed but computation is not stopped,

3. ’stop’: An error message is printed and the computation is stopped.

The error message contains a number that tells how many samples outside the time window the SIR is.
The default error level is ’stop’ (if the err level is omitted).

7.2 Output Parameters Common to all Transducer Functions

7.2.1 The SIR Output Argument

The first output argument of transducer functions, H, is a matrix or vector, containing the spatial impulse
response(s).

H = dream***(...);

Each column H contain the SIR for the corresponding entry in the observation point input matrix Ro (see
Section 7.1.1).

21

DREAM
The

Toolbox

7 TRANSDUCER FUNCTION REFERENCE

7.2.2 The Error Output Argument

The second (optional) output argument, err, is negative if an error has occurred and 0 otherwise.

[H,err] = dream***(...);

If, for example, err level = ’ignore’ then no error message will be printed but err will be negative if
an error occurred so the error can be detected. This is useful for displaying error dialog boxes in GUIs,
for example.

7.3 Single Element Transducers

As mentioned above all single element transducers are centered at r = (0, 0, 0). There is, however, no
loss in generality since the response at other transducer positions can simply be obtained by offsetting
the coordinate system after computation.

7.3.1 Line (strip) Transducer

The line, or strip, transducer has a length a and a (small) thickness equal to dy (in s par).

Syntax:

H = dreamline(Ro,geom_par,s_par,delay,m_par,err_level);

Geometrical parameters:

geom_par = [a];

a [mm] - length of the strip (in x-direction).

7.3.2 Rectangular Transducer

The size of the rectangular transducer is determined by a and b.

Syntax:

H = dreamrect(Ro,geom_par,s_par,delay,m_par,err_level);

Geometrical parameters:

geom_par = [a b];

a [mm] - x-size.

b [mm] - y-size.

7.3.3 Rectangular Focused Transducer

The size of the rectangular focused transducer is determined by a and b and the focusing is described in
Section 7.1.5.

Syntax:

H = dreamrect_f(Ro,geom_par,s_par,delay,m_par,foc_met,focal,err_level);

Geometrical parameters:

geom_par = [a b];

a [mm] - x-size.

b [mm] - y-size.

22

DREAM
The

Toolbox

7 TRANSDUCER FUNCTION REFERENCE

7.3.4 Circular Transducer

The size of the circular transducer is determined by the single parameter r.

Syntax:

h = dreamcirc(Ro,geom_par,s_par,delay,m_par,err_level);

Geometrical parameters:

geom_par = [r];

r - Radius of the transducer.

7.3.5 Focused Circular Transducer

The size of the focused circular transducer is determined by the parameter r and the focusing is described
in Section 7.1.5.

Syntax:

h = dreamcirc_f(Ro,geom_par,s_par,delay,m_par,foc_met,focal,err_level);

Geometrical parameters:

geom_par = [r];

r - Radius of the transducer.

7.3.6 Spherical Concave Transducer

Syntax:

H = dreamsphere_f(Ro,geom_par,s_par,delay,m_par,err_level);

Geometrical parameters:

geom_par = [r R];

r [mm] - Radius of the transducer.

R [mm] - Curvature radius of the transducer.

7.3.7 Spherical Convex Transducer

Syntax:

H = dreamsphere_d(Ro,geom_par,s_par,delay,m_par)

Geometrical parameters:

geom_par = [r R];

r [mm] - Radius of the transducer.

R [mm] - Curvature radius of the transducer.

23

DREAM
The

Toolbox

7 TRANSDUCER FUNCTION REFERENCE

7.3.8 Cylindrical Concave Transducer

Syntax:

H = dreamcylind_f(Ro,geom_par,s_par,delay,m_par,err_level);

Geometrical parameters:

geom_par = [a b R];

a - x-size of the transducer.

b - y-size of the transducer.

R - Radius of the curvature.

7.3.9 Cylindrical Convex Transducer

Syntax:

H = dreamcylind_d(Ro,geom_par,s_par,delay,m_par)

Geometrical parameters:

geom_par = [a b R];

a - x-size of the transducer.

b - y-size of the transducer.

R - Radius of the curvature.

7.4 Input Parameters Common to the Array Functions

7.4.1 The Array Grid Matrix

The positions of the array transducer elements are determined by the L × 3 grid matrix G. The first
column contain the (center) x-positions of the elements, the second the y-positions, and the third the
z-positions (L is the number of elements), respectively. This approach is very flexible and allows for
arbitrary array geometries that not is restricted to equally spaced linear or 2D arrays.

7.4.2 Array Focusing

The array focusing has an extra option, ’ud’, compared to the focusing methods described in Sec-
tion 7.1.5:

’off : focusing not used,

’x’ : see Section 7.1.5,

’y’ : see Section 7.1.5,

’xy’ : see Section 7.1.5,

’x+y’ : see Section 7.1.5.

’ud’ : user defined focusing.

When user defined focusing is used the ’focal’ parameter is a vector of focusing delays (in µs). Each
element in ’focal’ then delays the signal to the corresponding element in the array (given by the grid
matrix).

24

DREAM
The

Toolbox

7 TRANSDUCER FUNCTION REFERENCE

7.4.3 Beam Steering Parameters

The beam steering in the DREAM toolbox is controlled by the two parameters steer met and steer par.
The steer met is a text string with four alternatives: ’off’, ’x’, ’y’, and ’xy’. The steer par is a
two-element vector steer par = [theta phi] where theta [deg] is the x-direction steer angle and phi

[deg] the y-direction steer angle.

7.4.4 Apodization Parameters

The DREAM toolbox has five pre-defined apodization windows that can be used for the array functions:

wtriangle(r) = 1 − |r|
rmax

(10)

wgauss(r; p) = exp(−pr2)/r2
max (11)

wraised(r; p) = p + cos(rπ/rmax) (12)

wsimply(r) = 1 − r2/r2
max (13)

wclamped(r) = (1 − r2/r2
max)

2. (14)

Additionally to the pre-defined apodizations one can have a user defined apodization weights. Figure 7
show some examples of these function.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized width

(a) Triangle

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p=0.1

p=1

p=10

p=100

Normalized width

(b) Gaussian

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−1

−0.5

0

0.5

1

1.5

2

p=0

p=0.5

p=1

Normalized width

(c) Raised cosine

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized width

(d) Simply supported

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized width

(e) Clamped

Figure 7: The pre-defined apodization window functions in the DREAM toolbox.

There are three parameters that controls the apodization in the DREAM toolbox, apod met, apod,
and win par. The apod met parameter is string variable for selecting apodization method, options are:

’off’ - No apodization

25

DREAM
The

Toolbox

7 TRANSDUCER FUNCTION REFERENCE

’ud’ - User defined apodization

’triangle’ - Triangular window

’gauss’ - Gaussian (bell-shaped) window

’raised’ - Raised cosine window

’simply’ - Simply supported

’clamped’ - Clamped.

The second parameter, apod, is a vector of apodization weights that is used for the ’ud’ option. Pass an
empty matrix ([]) if one of the other options are used. The last parameter, win par (scalar), is used for
raised cosine and Gaussian apodization functions. See also Section 10.1.

7.5 Array Transducers

7.5.1 Array with Rectangular Elements

Syntax:

H = dream_arr_rect(Ro,geom_par,G,s_par,delay,m_par,foc_met,

focal,steer_met,steer_par,apod_met,apod,win_par,err_level);

Geometrical parameters:

geom_par = [a b]:

a - Element size in x-direction.

b - Element size in y-direction.

7.5.2 Array with Circular Elements

Syntax:

H = dream_arr_circ(Ro,a,G,s_par,delay,m_par,foc_met,

focal,steer_met,steer_par,apod_met,apod,win_par,err_level);

Geometrical parameters: r - Radius of the transducer elements.

7.5.3 Array with Cylindrical Concave Elements

Syntax:

H = dream_arr_cylind_f(Ro,geom_par,G,s_par,delay,m_par,foc_met,

focal,steer_met,steer_par,apod_met,apod,win_par,err_level);

Geometrical parameters:

geom_par = [a b r]:

a - Element size in x-direction.

b - Element size in y-direction.

r - Radius (y-direction).

26

DREAM
The

Toolbox

8 PARALLEL PROCESSING SUPPORT

Example (linear array):

gx = -10:1:10;

gy = zeros(length(gx),1);

gz = zeros(length(gx),1);

gx=gx(:); gy=gy(:); gz=gz(:);

G = [gx gy gz];

7.5.4 Array with Cylindrical Convex Elements

Syntax:

H = dream_arr_cylind_d(Ro,geom_par,G,s_par,delay,m_par,foc_met,

focal,steer_met,steer_par,apod_met,apod,win_par,err_level);

Geometrical parameters:

geom_par = [a b r]:

a - Element size in x-direction.

b - Element size in y-direction.

r - Radius (y-direction).

7.5.5 Annular Array

Syntax:

H = dream_arr_annu(Ro,G,s_par,delay,m_par,foc_met,focal,apod_met,apod,

win_par,err_level);

Geometrical parameters:

G - Vector of annulus radies.

The first element in G is the radius of the center element; then G has two entries for each annulus (the
inner and outer radius). Hence, the length of G must be odd for the annular array.

The apod met parameter has the following entries for the annular array function:

’on’ - Focusing on (xy), see Section 7.1.5,

’off’ - No focusing,

’ud’ - User defined focusing.

8 Parallel Processing Support

Since the SIR computation for two different observation points is independent one can easily divide the
observation points in sets and let a different process handle each set. On a multiprocessor machine, where
each process (or thread) can run on a separate CPU simultaneously, this will speed up the computations.
In the DREAM toolbox this is performed using (POSIX) threads; the SIRs for each set is computed in
its own thread.The DREAM functions with thread support has an extra parameter n cpus and a “ p” in
its function name. For example, to compute SIRs for a rectangular transducer on 2 CPUs use:

27

DREAM
The

Toolbox

8 PARALLEL PROCESSING SUPPORT

n_cpus = 2;

H = dreamrect_p(Ro,geom_par,s_par,delay,m_par,n_cpus,’stop’);

where n cpus is an integer ≥ 1. To see if the two threads are running using Linux, open new terminal
window and use the command top. You should see something like:

17:10:15 up 62 days, 21:18, 4 users, load average: 0.77, 0.26, 0.16

80 processes: 77 sleeping, 3 running, 0 zombie, 0 stopped

CPU0 states: 100.0% user 0.0% system 0.0% nice 0.0% iowait 0.0% idle

CPU1 states: 100.0% user 0.0% system 0.0% nice 0.0% iowait 0.0% idle

Mem: 6211732k av, 5835092k used, 376640k free, 0k shrd, 284960k buff

1280556k active, 4156076k inactive

Swap: 4096496k av, 420k used, 4096076k free 5000568k cached

PID USER PRI NI SIZE RSS SHARE STAT LC %CPU %MEM TIME COMMAND

29403 fl 25 0 75916 74M 11820 R 0 99.9 1.2 0:11 matlab

29404 fl 25 0 75916 74M 11820 R 1 99.9 1.2 0:11 matlab

29395 fl 15 0 1304 1304 968 R 2 0.3 0.0 0:00 top

1 root 15 0 472 460 424 S 2 0.0 0.0 0:49 init

2 root RT 0 0 0 0 SW 0 0.0 0.0 0:00 migration_CPU0

3 root RT 0 0 0 0 SW 1 0.0 0.0 0:00 migration_CPU1

As one can see there are two Matlab processes running on 99.9% instead on just one. Note that there is
an overhead when creating (and running) new threads. If the distributed computations are very short the
computations may not be faster for the parallel algorithm than the serial. On uni-processor computers
the thread enabled functions may be slower than the non-threaded functions due to this overhead (if the
hardware and software do not support hyper threading).

The functions currently available with parallel (thread) support is shown in Table 2.

Transducer type/operation DREAM function Linux Mac Windows

Strip transducer dreamline p Yes Yes Yes (see Sec. 4.2)
Rectangular transducer dreamrect p Yes Yes Yes (see Sec. 4.2)
Focused rectangular transducer dreamrect f p Yes Yes Yes (see Sec. 4.2)
Circular transducer dreamcirc p Yes Yes Yes (see Sec. 4.2)
Focused circular transducer dreamcirc f p Yes Yes Yes (see Sec. 4.2)
Spherical concave transducer dreamsphere f p Yes Yes Yes (see Sec. 4.2)
Spherical convex transducer dreamsphere d p Yes Yes Yes (see Sec. 4.2)
Cylindrical concave transducer dreamcylind f p Yes Yes Yes (see Sec. 4.2)
Cylindrical convex transducer dreamcylind d p Yes Yes Yes (see Sec. 4.2)
Array with rectangular elements dream arr rect p Yes Yes Yes (see Sec. 4.2)
Array with circular elements dream arr circ p Yes Yes Yes (see Sec. 4.2)
Array with cylindrical concave el. dream arr cylind f p Yes Yes Yes (see Sec. 4.2)
Array with cylindrical convex el. dream arr cylind d p Yes Yes Yes (see Sec. 4.2)
Annular array dream arr annu p Yes Yes Yes (see Sec. 4.2)
Time-domain convolution conv p Yes Yes Yes (see Sec. 4.2)
Frequency-domain convolution fftconv p Yes Yes Yes (see Sec. 4.2)
Frequency-domain convolution sum fftconv p Yes Yes Yes (see Sec. 4.2)
Parallel copy of data copy p Yes Yes Yes (see Sec. 4.2)
Synthetic aperture focusing technique saft p Yes Yes Yes (see Sec. 4.2)

Table 2: Functions in the DREAM Toolbox with parallel (thread) support.

28

DREAM
The

Toolbox

10 MISC FUNCTIONS

9 Analytic Transducer Functions

The DREAM Toolbox has two new time-continous analytic functions, and one sampled analytic function,
for circular and a rectangular transducers, respectively [4, 6]. The parameters for the functions,

[Y] = circ_sir(Ro,geom_par,delay,s_par,m_par);

[Y] = rect_sir(Ro,geom_par,delay,s_par,m_par);

[Y] = scirc_sir(Ro,geom_par,delay,s_par,m_par,n_int);

are similar to the other DR-based transducer functions, except for the sampled analytic circular function,
scirc sir, which has a parameter n int that determines the number of points to use in the (numerical)
temporal integration for each sampling interval [cf. Eq. (4)].

10 Misc Functions

10.1 Apodization Windows

The DREAM toolbox includes function,

[w] = dream_apodwin(apod_met,a,win_par)

that can be used to compute apodization weights using the methods described is Section 7.4.4. The input
parameters are:

apod met - Text string for selecting apodization method. options are: ’off’, ’ud’, ’triangle’,
’gauss’, ’raised’, ’simply’, and ’clamped’.

a - Is the number of points of the apodization window.

win par - Scalar parameter for raised cosine and Gaussian apodization functions.

10.2 Attenuation Response

The function,

[H] = dream_att(Ro,s_par,delay,m_par);

can be used to compute only the impulse response(s) that is due to attenuation. The input parameters
for dream att are:

Ro - See Section 7.1.1.

s par = [dt,nt]; - See Section 7.1.2.

delay - See Section 7.1.3.

m par= [cp,alfa]; - See Section 7.1.4.

29

DREAM
The

Toolbox

10 MISC FUNCTIONS

10.3 One Dimensional Matrix Convolution Functions

The conv p and fftconv p functions computes the one dimensional convolution of the columns in a
matrix A and matrix (or vector) B using one or more threads. These functions are typically used to
compute single-path or double-path (pulse-echo) responses for a large number of observation points and
thus avoiding a slow for-loop using the conv function (that only takes vector arguments).

Syntax:

[Y] = conv_p(A,B,n_cpus)

conv_p(A,B,n_cpus,Y)

conv_p(A,B,n_cpus,Y,mode_string)

and

[Y] = fftconv_p(A,B,n_cpus)

[Y,wisdom_string] = fftconv_p(A,B,n_cpus)

[Y] = fftconv_p(A,B,n_cpus,wisdom_string)

fftconv_p(A,B,n_cpus,Y,wisdom_string)

fftconv_p(A,B,n_cpus,Y,mode_string)

fftconv_p(A,B,n_cpus,Y,wisdom_string,mode_string)

where A is an M ×N matrix, B is a K ×N matrix or a K-length vector. If B is a vector then each column
in A is convolved with B. The parameter n cpus is the number of threads to use, which must be greater
or equal to 1, and Y is the (M + K − 1) × N output matrix.

The fftconv p performs the convolutions in the frequency domain using the FFTW library [7] which
is significantly faster than the time-domain implementation conv p for long vectors. To use the fftconv p

the FFTW3 lib must be available. The windows version of fftconv p is linked to the FFTW lib which,
as previously described, can be found at ftp://ftp.fftw.org/pub/fftw/fftw3win32mingw.zip.

10.3.1 Using Pre-computed FFTW Plans

To speed up computation of repeated fftconv p operations (of the same size) one can use pre-computed
fftw plans. First compute the plan for the corresponding vector length,

[tmp,wisdom_string] = fftconv_p(A(:,1),B(:,1),n_cpus);

then use the plan in consecutive computations of the same size,

for n=1:N

% Compute new A and B here.

[Y] = fftconv_p(A,B,n_cpus,wisdom_string);

end

The time-consuming call to fftw plan functions is then avoided at each call to fftconv p inside the loop.

10.3.2 Using the In-place Mode

If the involved matrices are large then memory allocation can be time consuming. To alleviate this
problem both conv p, fftconv p and sum fftconv p (see Section 10.3.3) have an in-place mode that

30

DREAM
The

Toolbox

10 MISC FUNCTIONS

uses a pre-allocated output matrix, hence memory allocation for the (large) output matrix Y is avoided.
For the conv p and fftconv p functions, the in-place operation has three modes, ’=’, ’+=’, and ’-=’,
respectively.

The default ’=’ mode

[Y] = fftconv_p(H,u,n_cpus);

for n=2:N

% Compute new H and u here.

fftconv_p(H,u,n_cpus,Y,’+=’);

end

Note the in-place mode have the side effect that, in the code

X = Y;

fftconv_p(H,u,n_cpus,Y,’+=’);

both X and Y will be altered, since Malab/Octave do not make a copy of a matrix unless it is changed
after X = Y assignment.

10.3.3 Computing Array Responses for Arbitrary Input Signals

The pressure response at an observation point r can be computed by super-imposing the responses from
the individual array elements. Assume that we have an array with K transmit elements. The pressure
response p(r, t) is then given by,

p(r, t) =
K−1∑

k=0

hf-sir
k (r, t) ∗ hef

k (t) ∗ uk(t), (15)

where hf-sir
k (r, t) is the forward SIR for the kth transmit element, hef

k (t) is the forward electro-acoustical
impulse response, and uk(t) is the kth input signal. The DREAM Toolbox has a function, sum fftconv p,
to facilitate computation of discrete array responses with arbitrary input signals. Similar to the fftconv p

function, the sum fftconv p function uses a FFT based algorithm to compute the convolutions. The
sum fftconv p function performs an operation similar to the code:

YF = zeros(M+K-1,N);

for l=1:L

for n=1:N

YF(:,n) = YF(:,n) + fft(A(:,n,l),M+K-1).* fft(B(:,l),M+K-1);

end

end

Y = real(ifft(Y));

where A is a 3D matrix.

[Y] = sum_fftconv_p(A,B,n_cpus);

[Y] = sum_fftconv_p(A,B,n_cpus,wisdom_str);

sum_fftconv_p(A,B,n_cpus,Y);

sum_fftconv_p(A,B,n_cpus,Y,wisdom_str);

31

DREAM
The

Toolbox

10 MISC FUNCTIONS

Input parameters:

A An M × N × L three-dimensional matrix.

B A K × L matrix.

n cpus Number of threads to use where n cpus must be greater or equal to 1.

wisdom str Optional parameter (see Section 10.3).

and the output parameter, Y , is an (M + K − 1) × N matrix. A typical usage is:

% Compute a new fftw wisdom string.

[tmp,wisdom_str] = fftconv_p(A(:,1,1),B(:,1),n_cpus);

for i=1:N

% Do some stuff here.

Y = sum_fftconv_p (A,B,n_cpus,wisdom_str);

end

where the overhead of calling fftw plan functions is now avoided inside the for loop.

10.4 Parallel Matrix Copy

The impulse response matrices can often become rather large and the time taken to copy data between
matrices can therefore be considerable. The DREAM Toolbox comes with a threaded function copy p to
speed up data copy.

In-place, threaded copy of data into a matrix:

copy_p(B,row_idx,col_idx,A,n_cpus);

Input parameters:

B - Pre-allocated Output matrix of size >= (r2-r1)x(c2-c1).

row_idx = [r1 r2] - Two element vector defining rows in B where

the data is copied.

col_idx = [c1 c2] - Two element vector defining columns in B where

the data is copied.

B - Input matrix of size (r2-r1)x(c2-c1);

n_cpus - Number of threads to use, n_cpus must be greater or equal to 1.

10.5 The Speed of Sound in Water

The SIRs are a function of the sound speed in the propagation medium which often is water. The DREAM
toolbox comes with a function h2o soundspeed, based on a method by V.A. Del Grosso [8], to facilitate
computation of the water sound speed (as function of temperature, pressure, and salinity).

[cp] = h2o_soundspeed(T,P,unit,S)

Input parameters:

32

DREAM
The

Toolbox

11 SIGNAL PROCESSING EXAMPLES

T - Temperture [in degrees Celsius].

P - Pressure (optional).

unit - Text string defining the pressure unit of arg 2

[’Pa’,’bar’,’at’,’atm’,’mmHg’, or, ’psi’] (optional).

S - Salinity [in parts per thousand] (optional).

11 Signal Processing Examples

11.1 Double-path Modeling

Double-path responses can be modeled as convolutions between the forward and backward responses [9].
This operation can be time consuming when the number of observation points is large. The DREAM
toolbox has the threaded functions conv p and fftconv p that can be used to speed up this operation.
A typical example is:

H = fftconv_p(H_t,H_r,n_cpus); % Double-path.

P = fftconv_p(H,h_e,n_cpus); % Electrical impulse response.

where we first compute the double-path SIRs and then add (convolve) the double-path electrical impulse
response to get the (double-path) propagation response matrix P.

11.2 Synthetic Aperture Imaging — The Synthetic Aperture Focusing Tech-
nique

Synthetic aperture imaging (SAI) was developed to improve resolution in the along track direction for
side-looking radar. The idea was to record data from a sequence of pulses from a single moving real
aperture and then, with suitable computation, combine the signals so the output can be treated as a
much larger aperture. The first synthetic aperture radar (SAR) systems appeared in the beginning of the
1950’s [10, 11]. Later on the method has carried over to ultrasound imaging in areas such as synthetic
aperture sonar (SAS) [12], medical imaging, and nondestructive testing [13, 14], where the method is
often called the synthetic aperture focusing technique (SAFT).

The conventional time-domain SAFT algorithm performs synthetic focusing by means of coherent
summations, of responses from point scatterers, along hyperbolas.10 These hyperbolas simply express
the distances, or time-delays, from transducer positions in the synthetic aperture to the observation
points, see illustration in Figure 8. More specifically, to achieve focus at an observation point (xñ, zm),
the SAFT algorithm time shifts and performs a summation of the received signals y(xn, t) measured at
transducer positions xn for all n in the synthetic aperture. The time shifts which aim to compensate
for differences in pulse traveling time, are simply calculated using the Pythagorean theorem and the
operation is commonly expressed in the continuous time form [15]

o(xñ, zm) =
∑

n

wny(xn,
2

cp

√

(xñ − xn)2 + z2
m). (16)

where o(xñ, zm) is the beamformed image.

The DREAM Toolbox has two functions saft and saft p, respectively, that performs the SAFT
operation (with linear interpolation):

Y = saft(B,To,delay,s_par,m_par,Ro,a);

Y = saft_p(B,To,delay,s_par,m_par,Ro,a,n_cpus);

10Linear scanning of the transducer is assumed here.

33

DREAM
The

Toolbox

11 SIGNAL PROCESSING EXAMPLES

Target

Scanning

direction

Figure 8: Typical measurement setup for a SAFT experiment. The transducer is mechanically scanned
along the x-axis and at each sampling position, xn, n = 0, 1, . . . , L − 1, a data vector (A-scan) of length
K is recorded. The distance between the transducer, at (xn, z = 0), and the observation point, (xñ, zm),
is given by R.

Input parameters:

B - KxL Ultrasonic B-scan data matrix.

To - A matrix of the form [xo1 yo1 zo2; xo2 yo2 zo2; ... xoL yoL zoL];

where L is the number of transducer positions.

delay - A scalar (or vector) of starting point(s) of the A-scans in B.

n_cpus - Number of threads to use. n_cpus must be greater or equal to 1.

11.3 Delay-and-sum Imaging

The SAFT method described in Section 11.2 is a special case of methods based on so-called delay-and-sum
imaging (DAS). The simple idea is just to compensate for the double-path propagation delay from each
transmitter/receiver to each observation point and then perform a (coherent) summation. This operation
is essentially based on an geometrical optics approach and is analogous to the operation of an acoustical
lens [16].

The DREAM Toolbox has two functions to facilitate (matrix based) delay-and-sum processing. The
two DAS functions das and das arr is similar to the transducer functions in the sense that they return
a matrix with responses corresponding to each observation point. The difference from the transducer
functions is that only the time delay is computed which is represented with a “1” at the corresponding
index.

The das function is for single transducers and the das arr function is for arrays. The input parame-
ters,

[D,err] = das(Ro,s_par,delay,m_par,err_level)

[D,err] = das_arr(Ro,G,s_par,delay,m_par,foc_met,...

focal,steer_met,steer_par,apod_met,apod,win_par,err_level)

are similar to the ones used in the transducer functions previously described.

34

DREAM
The

Toolbox

11 SIGNAL PROCESSING EXAMPLES

11.4 Model Based Ultrasonic Array Imaging

In this section a short introduction to model based ultrasonic imaging is presented. Model based ultrasonic
array imaging [17–19] is different from delay-and-sum imaging in the sense that is based on optimal
information processing whereas delay-and-sum imaging is based on geometrical focusing. The idea is to
use a (linear) model, taking into account the diffraction effects associated with each transmitter/receiver,
the electrical characteristics for each transmitter/receiver, as well as the used input signal(s), and then
estimate the parameters (the scattering strengths) of the model based on both data and prior information.
The DREAM toolbox can be used in this process for computing the SIRs for the model which can then
be convolved with measured electrical impulse responses to obtain a model for a real measurement setup
or using only simulated impulse responses to evaluate different array designs, for example.

To obtain a linear mode we need to consider both the forward process and the backward process. As
discussed in Section 5.1 [Eq. (2)] the forward response can be divided in three parts: the input signal u(t),
the forward electro-acoustical response hef(t), and the forward SIR hf-sir(r, t). The backward response
can similarly be divided in two parts: the backward acousto-electrical impulse response heb(t) and the
backward SIR hb-sir(r, t). Now, consider an array with K transmit elements and L receive elements and

contributions from a single observation point, r =
[
x y z

]T
, where T denotes the transpose operator.

The received signal, yl(r, t), from the lth receive element can be expressed

yl(r, t) =

Forward impulse response (f)
︷ ︸︸ ︷
(

K−1∑

k=0

hf-sir
k (r, t) ∗ hef

k (t), ∗uk(t)

)

o(r)∗

Backward impulse response (b)
︷ ︸︸ ︷

hb-sir
l (r, t) ∗ heb

l (t) + el(t),

= hf(r, t) ∗ hb
l (r, t)o(r) + el(t),

= hl(r, t)o(r) + el(t),

(17)

where ∗ denotes temporal convolution and el(t) is the noise for the lth receive element. Note that the
total forward impulse response is a superposition of the forward impulse responses corresponding to all
transmit elements. The object function o(r) is the scattering strength at the observation point r, hef

k (t)
is the forward electrical impulse response for the kth transmit element, heb

l (t) the backward electrical
impulse response for the lth receive element, and uk(t) is the input signal for the kth transmit element.

A discrete-time version of (15) is obtained by sampling the impulse responses and by using discrete-
time convolutions. If we consider N observation points then the received discrete waveform from a target
at the nth observation point, rn = (xn, yn, zn), can be expressed as

y
(n)
l = h

(n)
l (o)n + el, (18)

where the column vector h
(n)
l is the discrete system impulse response for the lth receive element.11 The

vector o represents the N scattering amplitudes in the region-of-interest, and the notation (n)n denotes
the nth element in o.12

To obtain the received signal for all observation points we need to perform a summation over n, which
equivalently can be expressed as a matrix-vector multiplication, according to

yl =
∑

n

h
(n)
l (o)n + el,

=
[

h
(0)
l h

(1)
l · · · h

(N−1)
l

]

o + el,

=Plo + el,

(19)

11Here all vectors are by convention column vectors.
12The vector o can easily be rearrange to form an image when two-dimensional imaging is considered [20].

35

DREAM
The

Toolbox

11 SIGNAL PROCESSING EXAMPLES

which gives us a liner model for the data for one receive element.

To obtain a model for all elements we can append all L receive signals yl into a single vector y and
we finally have linear model for the total array setup

y =

y0

y1

...
yL−1

=

P0

P1

...
PL−1

o +

e0

e1

...
eL−1

=Po + e,

(20)

for the total array imaging system [20]. The propagation matrix, P, in (20) now describes both the
transmission and the reception process for an arbitrary focused array. Note that the position of the
observation points, and the corresponding scattering amplitudes represented by the vector o, is not
restricted to a regular two-dimensional grid, which is often used in ultrasonic imaging. Furthermore,
the array elements can in fact, similar to the observation points , be positioned at arbitrary locations in
tree-dimensional space space. Thus, the model (20) can also be used to model two-dimensional arrays as
well as to model array responses in tree-dimensional space. Also note that the “noise” vector e describes
the uncertainty of the model (20). The noise e does not only model the measurement noise but also all
other errors that we may have, such as: multiple scattering effects, cross talk between array elements,
non-uniform sound speed in the media, etc.

11.4.1 The Matched Filter

The matched filter has the property of maximizing the signal-to-noise ratio (at a single point). The
matched filter for each observation point is given by [18]

ô = PT y. (21)

Note that the structure of the matched filter is similar to delay-and-sum processing which also can be
expressed as a matrix-vector multiplication (see the model based example.m on the DREAM website),

ô = DT y (22)

where the delay matrix D has ones in the positions corresponding the the propagation delays and zeros
otherwise.

11.4.2 The Optimal Linear Estimator

The optimal linear estimator (or the Wiener filter) is given by [17, 19]

ô = CoP
T (PCoP

T + Ce)
−1y

= (PT C−1
e P + C−1

o)−1PT C−1
e y,

(23)

where Co is the covariance matrix for o and Ce is the covariance matrix for e, respectively. The estima-
tor (23) has the property, not found for the matched filter or for delay-and-sum methods, namely that
any beampattern can be compensated given that the signal-to-noise ratio is sufficient.

As a final not on model based imaging is that the matrices involved normally become rather large. It
is therefore highly recommended to used a tuned linear algebra library, such as K. Goto’s BLAS library
or the ATLAS library, for example. These libraries often have thread support so that all CPUs on the
computer can be utilized.

An example of model based (and matrix based delay-and-sum) imaging can be found on the DREAM
website (see the model base example.m file on the examples page).

36

http://www.tacc.utexas.edu/resources/software/
http://math-atlas.sourceforge.net/

DREAM
The

Toolbox

13 KNOWN ISSUES

12 The Graphical User Interface (Matlab only)

To launch the DREAM Toolbox GUI, type dream gui in the Matlab Command Window and a graphical
user interface will be raised as shown in Figure 9. After activating the user interface, users can set

Figure 9: The graphical user interface.

parameters, compute SIRs, and save and process the resulting SIR by using the graphical controls. For
setting of geometry parameters, please also refer to the schematic diagram of transducer displayed in the
center of the graphic interface. After setting all the parameters, clicking on the Compute button starts to
compute SIR. In addition, the DREAM GUI provides several post-processing operations to process the
SIRs, including computing pressure response, computing the spectrum of the SIR, and convolving the
SIR with an excitation signal. Notice that if users tick the checkbox of pressure response, the spectrum
and convolution operations will be performed on the pressure instead of on the SIR. The parameters and
resulting SIR can be stored in an *.mat file by clicking on the button of Save. The parameters settings
can then be restored by loading the file using the Load button.

13 Known Issues

• On Windows platforms the MEX-files can not be aborted by pressing CTRL-C since Windows lacks
real asynchronous signals, see: http://www.mathworks.com/support/solutions/data/1-188VX.html
Therefore, when CTRL-C is pressed, using Windows, the operation is interrupted after the MEX-file
has finished.

• On Linux x86 platforms the Matlab release 14 library matlab/sys/os/glnx86/libgcc s.so seems
to be buggy causing Matlab to abort when a mexErrMsg call is done within a MEX-file. The
threaded functions uses the mexErrMsg function when CTRL-C is pressed. A work-around is to set
the environment variable LD PRELOAD to point to a working library. If you, for example, are using

37

http://www.mathworks.com/support/solutions/data/1-188VX.html

DREAM
The

Toolbox

13 KNOWN ISSUES

gcc 3.4.4, then you can set

export LD_PRELOAD=/usr/lib/gcc/i686-pc-linux-gnu/3.4.4/libgcc_s.so

or rename matlab/sys/os/glnx86/libgcc s.so and copy (or link) a working libgcc s.so to the
matlab/sys/os/glnx86/ directory.

• Matlab’s memory manager is not thread safe (at least not R2007b and older). The functions that
use the fftw library may therefore crash if n cpus > 1. A workaround is to set the env. variable
MATLAB MEM MGR=system (i.e., export MATLAB MEM MGR=system).

• The file mex sum fftconv p.c do not compile unless Matlab ≥ R2006b is installed. The problem
is that mwSize must be defined in matlab/extern/include/matrix.h (sum fftconv p compiles
for Octave).

• The computation of responses for lossy media is rather time consuming; the computation time can
be as large as a factor of 1000 times longer than for loss-less media. This due to the fact that the
frequency domain attenuation response is computed, and an inverse FFT is performed, for every
surface element, dx×dy, of the transducer surface.

38

DREAM
The

Toolbox

REFERENCES

References

[1] B. Piwakowski and B. Delannoy, “Method for computing spatial pulse response: Time-domain ap-
proach”, J. Acoust. Soc. America 86, 2422–32 (1989).

[2] B. Piwakowski and K. Sbai, “A new approach to calculate the field radiated from arbitrarily struc-
tured transducer arrays”, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control
46, 422–40 (1999).

[3] G. E. Tupholme, “Generation of acoustic pulses by baffled plane pistons”, Mathematika 16, 209–224
(1969).

[4] P. Stepanishen, “Transient radiation fom pistons in an infinite planar baffle”, J. Acoust. Soc. America
49, 1629–38 (1971).

[5] K. Aki and P. Richards, Quantitative Seismology (W.H. Freeman, San Francisco) (1980).

[6] J. Lockwood and J. Willette, “High-speed method for computing the exact solution for the pressure
variations in the nearfield of a baffled piston”, J. Acoust. Soc. America 53, 735–741 (1973).

[7] http://www.fftw.org.

[8] V. A. Del Grosso, “New equation for the speed of sound in natural waters (with comparisons to
other equations)”, J. Acoust. Soc. America 56, 1084–109 (1974).

[9] P. Stepanishen, “Pulsed transmit/receive response of ultrasonic piezoelectric transducers”, J. Acoust.
Soc. America 69, 1815–1827 (1981).

[10] C. Wiley, “Synthetic aperture radars”, IEEE Trans. on Aerosp. Electron. Syst. 21, 440–443 (1985).

[11] C. Sherwin, J. Ruina, and R. Rawcliffe, “Some early developments in synthetic aperture radar
systems”, IRE Trans. Military Electron. 6, 111–115 (1962).

[12] P. Gough and D. Hawkins, “Imaging algorithms for strip-map synthetic aperture sonar: Minimizing
the effects of aperure errors and aperture undersampling”, IEEE Journal of Oceanic Engineering 22,
27–39 (1997).

[13] J. Seydel, “Ultrasonic synthetic-aperture focusing techniques in NDT”, Research Techniques for
Nondestructive Testing (Academic Press) (1982).

[14] S. Doctor, T. Hall, and L. Reid, “SAFT—the evolution of a signal processing technology for ultrasonic
testing”, NDT International 19, 163–172 (1986).

[15] C. Frazier and J. W.D. O’Brien, “Synthetic aperture techniques with a virtual source element”,
IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 45, 196–207 (1998).

[16] G. S. Kino, Acoustic Waves: Devices, Imaging and Analog Signal Processing, volume 6 of Prentice-
Hall Signal Processing Series (Prentice-Hall) (1987).

[17] R. Stoughton, “Source imaging with minimum mean-squared error”, jasa 94, 827–834 (1993).

[18] F. Lingvall, T. Olofsson, and T. Stepinski, “Synthetic aperture imaging using sources with finite
aperture: Deconvolution of the spatial impulse response”, J. Acoust. Soc. America 114, 225–234
(2003).

[19] F. Lingvall and T. Olofsson, “On time-domain model based ultrasonic array imaging”, 54, 1623–1633
(2007).

[20] F. Lingvall, “A method of improving overall resolution in ultrasonic array imaging using spatio-
temporal deconvolution”, Ultrasonics 42, 961–968 (2004).

39

http://www.fftw.org

DREAM
The

Toolbox

B BUILDING THE FFTW LIBRARY FOR 32 AND 64 BIT WINDOWS

A Building the Pthreads Library for 32 and 64 bit Windows

The DREAM toolbox uses pthreads (POSIX threads) to run computations in parallel on several cores/cpus.
To run the parallel functions on Windows the Pthreads-win32 library is used:
http://sourceware.org/pthreads-win32/. The most current version of the Pthreads-win32 library,
which is the one used by DREAM, is version 2.8.0 (2006-12-22). A 32-bit binary version of the library
can be found at: ftp://sourceware.org/pub/pthreads-win32/. The MinGW-w64 project has a patch
to build the Pthreads-win32 lib for 64-bit Windows, and there are some more 64-bit patches at:
http://www.cadforte.com/wiki/index.php/Pthreads.

To facilite building the lib we have included our own (experimental) patch, which is a combination
of the patches above (with some minor changes), and the source code for the Pthreads-win32 lib in the
source code packge of the DREAM toolbox. There are also two (bash) build scripts which can be used for
building the 32-bit and 64-bit libs, respectively. This is tested using the MinGW-w32 and MinGW-w64
cross compiler tool chains on Linux. After uncompressing the DREAM source code packge you can find
these files in the windows folder.

Given that you have installed the MinGW-w32 cross compiler you can build the 32-bit Pthreads-win32
with

./build_pthreads_win32.sh

This will build the pthreadGC2.dll file and copy it (the pthread.def file, and the header files pthread.h,
sched.h and, semaphore.h) to the windows/dll folder.

For 64-bit windows you first need to install the MinGW-w64 cross compiler and then the script

./build_pthreads_win64.sh

will copy the Pthreads-win32 sources, patch them for 64-bits support, and build the lib. The 64-bit lib
(the pthread.def file, and the header files pthread.h, sched.h and, semaphore.h) will be installed in
the windows/dll 64 folder.

Note: if you intend to use these libs with one of the MSVC compilers then you also need the corre-
sponding lib files. These lib files can be generated using the windows bat-files found in the windows/dll
and windows/dll 64 folders, respectively.

B Building the FFTW Library for 32 and 64 bit Windows

For conveniance we have also included the sources for the FFTW library and two scripts to build the
library for both 32 and 64 bit Windows. The (bash) scripts uses MinGW-w32 and MinGW-w64 cross
compiler tool chains, respectively. Change directory to the windows folder and run

./BUILD-MINGW-FFTW.sh

to build for 32-bit Windows or

./BUILD-MINGW_64-FFTW.sh

for 64-bit Windows. The two build scripts are based on the corresponding ones at the FFTW site
adapted for building DREAM on Windows. The scripts install the libraries in the windows/dll and
windows/dll 64 folders, respectively.

Similary to the Pthreads-win32 lib you need to build the lib files if you intend to use these libs with
one of the MSVC compilers. These lib files can be generated using the corresponding windows bat-files
found in the windows/dll and windows/dll 64 folders, respectively.

40

http://sourceware.org/pthreads-win32/
ftp://sourceware.org/pub/pthreads-win32/
http://sourceforge.net/projects/mingw-w64/
http://www.cadforte.com/wiki/index.php/Pthreads
http://www.fftw.org

	Introduction
	Copyright
	Disclaimer

	System Requirements
	Installation
	Binary Installation (Matlab only)
	Windows Specific Installation Notes
	MacOS X Specific Installation Notes
	Octave Specific Installation Notes
	Installation from Source
	Build DREAM for Linux/Unix
	Build the DREAM mex-files for MacOS X (Intel Macs)
	Build the DREAM Matlab 32-bit mex-files for Windows
	Build the DREAM Octave 32-bit oct-files for Windows using the MinGW Compiler
	Build the DREAM 32-bit Octave oct-files for Windows using the MSVC compiler (depreciated)
	Build the DREAM matlab mex-files for 64-bit Windows
	Build the DREAM Octave oct-files for 64-bit Windows
	Compile with FFTW support for the Attenuation Code

	An Introduction to The Impulse Response Method
	The Baffled Piston Model and the Rayleigh integral
	Discrete-time Spatial Impulse Responses
	The Discrete Representation (DR) Computational Concept
	Lossy Media

	A Quick Start to DREAM Simulations
	Transducer Function Reference
	Input Parameters Common to all Transducer Functions
	Observation Point(s) Parameter
	Sampling Parameters
	The Delay Parameter
	Material Parameters
	Focusing parameters
	Error Handling

	Output Parameters Common to all Transducer Functions
	The SIR Output Argument
	The Error Output Argument

	Single Element Transducers
	Line (strip) Transducer
	Rectangular Transducer
	Rectangular Focused Transducer
	Circular Transducer
	Focused Circular Transducer
	Spherical Concave Transducer
	Spherical Convex Transducer
	Cylindrical Concave Transducer
	Cylindrical Convex Transducer

	Input Parameters Common to the Array Functions
	The Array Grid Matrix
	Array Focusing
	Beam Steering Parameters
	Apodization Parameters

	Array Transducers
	Array with Rectangular Elements
	Array with Circular Elements
	Array with Cylindrical Concave Elements
	Array with Cylindrical Convex Elements
	Annular Array

	Parallel Processing Support
	Analytic Transducer Functions
	Misc Functions
	Apodization Windows
	Attenuation Response
	One Dimensional Matrix Convolution Functions
	Using Pre-computed FFTW Plans
	Using the In-place Mode
	Computing Array Responses for Arbitrary Input Signals

	Parallel Matrix Copy
	The Speed of Sound in Water

	Signal Processing Examples
	Double-path Modeling
	Synthetic Aperture Imaging --- The Synthetic Aperture Focusing Technique
	Delay-and-sum Imaging
	Model Based Ultrasonic Array Imaging
	The Matched Filter
	The Optimal Linear Estimator

	The Graphical User Interface (Matlab only)
	Known Issues
	Bibliography
	Building the Pthreads Library for 32 and 64 bit Windows
	Building the FFTW Library for 32 and 64 bit Windows

