
Policy Gradient-based Model Free Optimal LQG Control with a
Probabilistic Risk Constraint

Arunava Naha and Subhrakanti Dey

Abstract— In this paper, we investigate a model-free optimal
control design that minimizes an infinite horizon average expected
quadratic cost of states and control actions subject to a probabilistic
risk or chance constraint using input-output data. In particular,
we consider linear time-invariant systems and design an optimal
controller within the class of linear state feedback control. Three
different policy gradient (PG) based algorithms, natural policy
gradient (NPG), Gauss-Newton policy gradient (GNPG), and deep
deterministic policy gradient (DDPG), are developed, and compared
with the optimal risk-neutral linear-quadratic regulator (LQR) and
a scenario-based model predictive control (MPC) technique via
numerical simulations. The convergence properties and the accuracy
of all the algorithms are compared numerically. We also establish
analytical convergence properties of the NPG and GNPG algorithms
under the known model scenario, while the proof of convergence
for the unknown model scenario is part of our ongoing work.

I. INTRODUCTION

The linear quadratic regulator (LQR) problem has been ex-
tensively studied in the literature, and the optimal controller is
known to be a linear function of states [1]. However, the LQR
formulation is risk neutral, i.e., it does not consider the risk
or chance of occurrence of undesirable events. Such risky or
undesirable events may occur due to the long tail of the process
noise or disturbance. For a lot of practical control problems, it
is desirable to avoid such risky events. For example, sometimes
it is important for an unmanned aerial vehicle (UAV) to avoid
flying over a certain area to hide from adversaries. Therefore, it
is crucial to design a controller that minimizes the risk of such
events along with minimizing the average expected control cost
[2]. Consider the wind turbine control problem, where wind speed
introduces uncertainty, and the control aim is to optimize power
output while mitigating structural damage risk [3]. Similarly, in
climate-controlled buildings, the objective is to minimize energy
usage while ensuring occupant comfort and mitigating the risk
of temperature exceeding set thresholds [4]. As studied in [4],
controllers designed with hard constraints are pessimistic com-
pared to the ones designed with softer probabilistic constraints.
In other words, the designed controller will lower the control
cost if we constrain the probability of risky or undesirable events
instead of imposing hard constraints. For example, in the case of
the wind turbine control problem, the system will produce more
power if we constrain the probability of the stress level on the
blades increasing a prespecified limit instead of imposing a hard
constraint on the stress level.

A. Related Work

In the model predictive control (MPC) literature, a probabilistic
risk is generally modeled as a chance constraint. A popular

*This work is supported by The Swedish Research Council under grants 2017-
04053.

Arunava Naha and Subhrakanti Dey are with the Department
of Electrical Engineering, Uppsala University, 75103 Uppsala,
Sweden. e-mail: arunava.naha@angstrom.uu.se and
subhrakanti.dey@angstrom.uu.se

approach is to draw samples or scenarios from the distribution
of the disturbance and convert the probabilistic chance constraint
into an algebraic one [4], [3]. The probabilistic chance constraint
is also handled by replacing it with an expected value using the
Hamiltonian Monte Carlo (HMC) method or employing Cheby-
shev’s inequality. In a different approach, the chance constraints
are formulated as the probability that the state and input values
remain within certain sets, also called tubes [5]. Such tube-
based chance constraint control is also studied under the model-
free scenario in [6]. Other than the MPC-based approaches, the
occurrence of risky or undesirable events is also limited by
constraining the average variance over an infinite time horizon of
a quadratic function of states in [7], [8]. The optimal controller
under such risk formulation is proved to be an affine function of
the states [9], [2].

Reinforcement learning (RL) based techniques have performed
remarkably for optimal decision-making problems, where the
underlying system is partially or entirely unknown [10], [11],
[12]. Policy gradient (PG) based actor-critic (AC) methods,
a class of RL algorithms, are suitable for stochastic optimal
control problems with continuous state and action spaces [13].
PG-based algorithms are also applied for the standard LQR
problem, and their performance in terms of closed-loop stability
and convergence are studied in the literature [14], [15], [16]. It
has been shown that although the optimization landscape is not
convex with respect to the linear control gain in these problems,
global convergence can be guaranteed when the PG algorithm is
initialized with a stabilizing controller. The closed-loop stability
and convergence analysis of PG-based algorithms for the LQR
problem with additional constraints is challenging and has only
been studied for a few specific cases. For example, in [17], the
constraint is H∞ robustness constraint. The global convergence
of a PG algorithm is studied for the risk-constrained LQR in [18],
where the risk is modeled as an average variance of a quadratic
function of states over an infinite time horizon. On the other hand,
in [19], the safety constraint is modeled as the expected value of
a continuous non-negative function of the states being within a
specified threshold, and the optimal controller is derived using an
AC algorithm for a Markov decision process (MDP). In [20], a
deep deterministic policy gradient (DDPG) based AC method is
studied for the probabilistic risk-constrained LQR problem, where
the risk is modeled as the probability that a quadratic function
of the states crosses a user-defined limit. However, analyzing the
performance of PG-based AC algorithms for probabilistic risk-
constrained LQR problems in general remains an open research
area.

B. Our Approach and Contributions

We have studied the performance of three PG-based AC
algorithms, natural policy gradient (NPG) [21], [22], Gauss-
Newton policy gradient (GNPG) [14], and deep deterministic



policy gradient (DDPG) [23], for the probabilistic risk- or chance-
constraint LQR problem under the unknown model scenario. We
have investigated the optimal policy within the class of linear state
feedback controls. Our approach to handling the probabilistic risk
constraint differs from the existing methods. We have modeled
the risk as the probability that a function of the one step ahead
future state crosses a user-defined limit, and the risk is constrained
by keeping the average expected violation probability over an
infinite time horizon within a user-defined limit. We have used
the indicator function in the reward structure to replace the
probability when the system model is unknown. Our probabilistic
constraint model is more intuitive and direct compared to some
of the existing studies.

We have used a Lagrangian based primal dual formulation
to handle the constraint and proved that there is no duality
gap. Furthermore, we have proved that the optimization problem
under study enjoys coercivity and gradient dominance properties,
and the NPG and GNPG algorithms converge to the global
optimum under the known model assumption. To the best of
our knowledge, such a convergence property is studied for the
first time for the probabilistic risk or chance constrained LQR
problem, even for the known model scenario. The coercivity and
L-smoothness properties also ensure that intermediate policies
will maintain closed-loop stability while training, provided we
start from an arbitrary stabilizing controller. The theoretical study
on the convergence of the DDPG algorithm and the convergence
properties of the NPG and GNPG algorithms under the unknown
model scenario (where sample based estimates of relevant quan-
tities are used in the PG update) is left for our future publication.

We evaluate PG-based AC policies against risk-neutral LQR
and scenario-based MPC through simulations. As anticipated,
PG-based AC policies effectively reduce risky events, albeit
with a slight increase in quadratic cost compared to standard
LQR. While MPC performs comparably to PG-based methods, its
effectiveness depends heavily on the time horizon length chosen,
increasing computational complexity. Unlike MPC, model-free
PG-based methods do not require real-time optimization at each
step, relying solely on a feedforward actor-network post-training,
significantly reducing computational overhead compared to MPC-
based methods.

C. Organization

The rest of the paper is organized as follows. In Section II, we
present the problem formulation and the reward structure for the
probabilistic risk or chance constrained LQR problem. In Section
III, we present the NPG, GNPG, and DDPG algorithms, while
the convergence properties of NPG and GNPG are studied in
Section IV. In Section V, we present the numerical results and
compare the performance of the PG-based AC algorithms with
the risk-neutral LQR and the scenario-based MPC. Finally, we
conclude the paper in Section VI.

D. Notations

Some special notations are given in Table I.

II. PROBLEM FORMULATION

We consider the following linear time-invariant (LTI) system:

xk+1 = Axk +Buk +wk. (1)

Here xk ∈ IRn and uk ∈ IRp are the state and input vectors

TABLE I: Notations

Symbol Description
IRn The set of n× 1 real vectors
IRm×n The set of m× n real matrices
XT Transpose of matrix or vector X
N (µ,Σ) Gaussian distribution with mean µ and variance Σ
Σ ≥ 0 or > 0 Σ is positive semi-definite or definite matrix, respectively
[·]ij i-th row and j-th column element of a matrix
|| · || Frobenius norm of a matrix of Euclidean norm of a vector
tr(·) Trace of a matrix
E [·] and P {·} Expectation operator and Probability measure respectively
{̂·} Estimated or approximated value
1{condition} Indicator function, 1 if condition is true, 0 otherwise
σ(·) and ρ(·) Singular value and eigenvalue of a matrix, respectively

at the k-th time instant respectively, whereas wk ∈ IRn is an
independent and identically distributed (iid) process noise with
distribution fw(w). A ∈ IRn×n, B ∈ IRn×p.

We assume that all the states are measured and the system
(A,B) is stabilizable. In the standard LQR problem, the follow-
ing cost function is minimized.

J = lim
T→∞

1

T

T∑
k=1

E
[
xT
kQxk + uT

kRuk

]
, (2)

where Q ∈ IRn×n and R ∈ IRp×p are positive definite weight
matrices. We also assume that (A,Q1/2) is detectable. If the
noise is zero mean and the second-order moment of the noise is
bounded, then the optimum input appears as a fixed gain linear
control signal [1], see (3).

u∗
k = Kxk, and K = −

(
BTSB+R

)−1
BTSA, (3)

where S is the solution to the following algebraic Riccati
equation, S = ATSA + Q − ATSB

(
BTSB+R

)−1
BTSA.

However, as discussed before, the cost formulation (2) does not
take into account the less frequent but risky events. Therefore,
we use an additional constraint on the probability of risky
or undesirable events, and the optimization problem takes the
following form.

minimize
u∈U

J

subject to Jc ≤ δ,
(4)

where J is same as given in (2), and Jc is given as follows.

Jc = lim
T→∞

1

T

T∑
k=1

E [P {fc (xk+1) ≥ ϵ | Ψk}] . (5)

Here, ϵ > 0 and δ > 0 are user selected parameters. Ψk ≜
{xl,ul | k ≥ l ≥ 0} denotes the set of all information up to the
instant k.

Remark 1: The risky or undesirable event is modeled as the
function fc(·) of the state at the next time step crossing a
threshold ϵ, and we are interested in limiting the probability of
these events. Since such probability itself is a function of the
random information set Ψk, we have taken the expectation with
respect to this set in the above formulation. Furthermore, we are
interested in keeping the long-term average probability bounded
over an infinite time horizon.

A. Reward Structure

The constrained optimization of (4) can be converted into an
unconstrained stochastic control problem using the Lagrangian
multiplier λ as follows,



min
u∈U
L = J − λ (Jc − δ) = lim

T→∞

1

T

T∑
k=1

E [g (xk,uk)] , (6)

where the per stage cost g(·) takes the following form,

g (xk,uk) = f (xk,uk) + λ (hp (xk,uk)− δ) , where (7)

f (xk,uk) = xT
kQxk + uT

kRuk, (8)
hp (xk,uk) = P {fc (xk+1) ≥ ϵ | Ψk} . (9)

Note that the per-stage cost function may generally contain an
intractable probabilistic constraint. Therefore, for the RL-based
algorithms, where we have access to the future states (xk+1) in
the form of stored data, the reward is defined as

rk = −f (xk,uk)− λ (hr (xk+1)− δ) , where (10)
hr (xk+1) = 1{fc(xk+1)≥ϵ}. (11)

Here, 1{·} is the indicator function, which takes the value 1 if
the condition inside the bracket is true, and 0, otherwise. In the
following section, we will briefly introduce the PG-based AC
algorithms used in our study.

III. PG-BASED AC ALGORITHMS UNDER STUDY

In this section, we will present NPG, GNPG, and DDPG
algorithms, the three PG-based AC algorithms used in our study.
For the NPG and GNPG algorithms, we assume the policy to
be stochastic but stationary, denoted by uk ∼ πθ(·|xk), where
θ is the policy parameter. The policy is deterministic for the
DDPG algorithm, denoted by uk = µθ(xk), where θ is the policy
parameter. We will use the general notation p(xk) to denote the
stochastic or deterministic policy. In general, the policy parameter
is updated using the gradient of the expected return, i.e., R, see
(12), with respect to the policy parameter.

R = lim
T→∞

1

T
E

[
T∑

k=1

rk

]
. (12)

Furthermore, the value function (13), the Q function (14) and
the advantage function (15) under a policy p(·) are defined as
follows. We have used (̂·) notation to indicate an estimated or
approximated quantity. Note that even though the reward in (10)
is a function of the future state xk+1, for the known model case,
we can write the reward as a function of the current state xk and
the control input uk using (1).

V p(xk) = lim
T→∞

T∑
i=k

{E [ri | xk]−R} , (13)

Qp(xk,uk) = E [rk + V p(xk+1) | xk,uk] . (14)
Ap(xk,uk) = Qp(xk,uk)− V p(xk). (15)

A. Natural Policy Gradient (NPG) based AC algorithm

We have adopted the NPG-based AC algorithm from [21]; see
Algorithm 1. NPG methods utilize the Fisher information matrix,
F , to obtain the steepest ascent direction as F−1G, where G is
the gradient of the expected return, R with respect to the policy
parameter θ. In practice, G is estimated using the policy gradient
theorem [21] from the data as follows,

Ĝ =
1

N

N∑
k=1

Â(xk,uk)∇θ log πθ(uk|xk). (16)

Here, Â(·) is the estimated advantage function. Similarly, F is
estimated as follows [21],

F̂ =
1

N

N∑
k=1

∇θ log πθ(uk|xk)∇θ log πθ(uk|xk)
T . (17)

The step size for the policy parameter update is evaluated in the
same way as [21], ensuring the policy parameter update is not
too large, see Algorithm 1. Furthermore, the advantage value is
estimated using the method provided in [24] as follows,

Â(xk,uk) =

T−1∑
l=0

(γη)ldk+l, where

dk+l = −V̂ϕ(xk+l) + rk+l + ηV̂ϕ(xk+l+1).

(18)

Here, 0 < η < 1 and 0 < γ < 1. V̂ϕ(·) denotes the value obtained
from the critic network parameterized by ϕ. The value function
parameter ϕ is updated using the steepest descent direction as
Ĥ−1s, where s and Ĥ are evaluated as

s = ∇ϕ

(
1

N

N∑
k=1

|| V̂ϕ(xk)− V̂k ||2
)
, and (19)

Ĥ =
1

N

N∑
k=1

JkJ T
k , where Jk = ∇ϕV̂ϕ(xk). (20)

The target value V̂k is evaluated as V̂k =

T−1∑
l=0

(γ)lrk+l. (21)

Similar to the policy parameter update, the step size for the critic
parameter update is also obtained in such a way that the update
is not too large, see Algorithm 1.

Algorithm 1 NPG-based AC Algorithm

1: Initialize policy parameter θ0 and the value function param-
eter ϕ0.

2: Set γ, η, αa, and αc.
3: for i = 1, 2, ... do
4: for j = 1 to M do
5: Generate a trajectory {xk,uk, rk}Tk=1 using the pol-

icy πθi(·|xk).
6: Compute dk using (18)
7: for k = 1 to N do
8: Compute Â(xk,uk) (18) and ∇θ log πθi(uk|xk).
9: Compute V̂k (21) and Jk (20).

10: end for
11: Compute Ĝj and F̂ using (16) and (17), respectively.
12: Compute Ĥj and sj using (20) and (19), respectively.
13: end for
14: Compute Ĝ = 1

M

∑M
j=1 Ĝj and F̂ = 1

M

∑M
j=1 F̂j .

15: Update the policy parameter θi+1 ← θi +√
αa

ĜT F̂−1Ĝ
F̂−1Ĝ.

16: Compute Ĥ = 1
M

∑M
j=1 Ĥj and ŝ = 1

M

∑M
j=1 sj .

17: Update the value function parameter ϕi+1 ← ϕi +√
αc

ŝT Ĥ−1ŝ
Ĥ−1ŝ.

18: end for



B. Gauss-Newton Policy Gradient (GNPG)

GNPG algorithm is a variant of the NPG algorithm, where
the estimated Fisher information matrix F̂ is replaced by the
estimated Gauss-Newton matrix Ĥa, see (22), otherwise all the
other steps are the same as Algorithm 1, [21], [24].

Ĥa,j =
1

N

N∑
k=1

ga,jg
T
a,j , where

ga,j = Â(xk,uk)∇ log πθi(uk|xk).

(22)

C. Deep Deterministic Policy Gradient (DDPG)

The DDPG-based AC method is based on the Algorithm 2
[23], [20]. The actor and critic networks are parameterized by θ
and ϕ, respectively. The actor takes states as input and outputs
control inputs, while the critic takes states and control inputs,
providing a Q value for that state-action pair. In DDPG, there
are two separate target networks, Qt and µt, for the critic and
actor, respectively. These target networks facilitate stable learning
by offering consistent targets and are updated gradually to track
the main networks, as described in Algorithm 2.

Algorithm 2 DDPG-based AC Algorithm

1: Set τ , learning rates αd, initial and final variances of zero
mean Gaussian noise for exploration (Nt), i.e., ΣD,0 and
ΣD,F .

2: Initialize θ0 and ϕ0 and θt0 ← θ0 and ϕt
0 ← ϕ0.

3: Initialise the replay buffer D.
4: for episode = 1, M do
5: Receive initial observation state x1.
6: for k = 1, T do
7: Select action uk = µθ(xk) + Nk [Nk is zero mean

Gaussian noise].
8: Execute action uk and observe reward rk and observe

new state xk+1.
9: Store transition (xk,uk, rk,xk+1) in D.

10: Sample a random minibatch of N transitions
(xi,ui, ri,xi+1) from D.

11: Set yi = ri + γQ̂t
ϕt (xi+1, µ

t
θt (xi+1)).

12: Update critic by minimizing the loss: L =
1
N

∑
i

(
yi − Q̂ϕ (xi,ui)

)2
.

13: Update the actor policy using the sampled policy
gradient as
∇θR ≈ 1

N

∑
i∇uQ̂θ (x,u) |x=xi,u=µθ(xi) ∇θµθ (x) |x=xi

14: Update the target networks as
θt ← τθ + (1− τ)θt and ϕt ← τϕ+ (1− τ)ϕt

15: end for
16: Reduce the variance of Gaussian noise for exploration

until it reaches its final value
17: end for

In the following section, we present some analytical results on
the convergence properties of the NPG and GNPG algorithms.

IV. ANALYTICAL RESULTS

We investigate the two fundamental properties for the theoret-
ical analysis of PG-based AC methods for the optimal controller
design problem given by (4). The first property is the convergence
of the AC algorithm to a local or global optimum policy and the

corresponding convergence rate, while the second property con-
cerns the closed-loop stability of the system during the training
process. We investigate the convergence properties and stability
aspects of the NPG and GNPG algorithms under the known
model scenario and for the linear state feedback control. The
study for more general cases, such as unknown model scenarios
(where only sampled based estimates of the relevant quantities are
available) and the convergence analysis of the DDPG algorithm
for the probabilistic risk constrained control problem, is part of
ongoing work.

We assume the policy to have the following form,
πK(·|x) = N (−Kx,Σσ) , (23)

where N (·, ·) denotes the Gaussian distribution. Furthermore,
K is a trainable parameter, and Σσ is a fixed covariance ma-
trix. Additionally, for theoretical analysis, we assume zero-mean
Gaussian process noise, i.e., wk ∼ N (0,Σw). We anticipate
that analogous theoretical outcomes can be derived for Gaussian
mixture process noise, although that is a part of our ongoing
research. Finally, the control input at k-th time instant can be
written as, uk = −Kxk + σk, σk ∼ N (0,Σσ) . (24)

We also define the set of all stabilizing linear state feedback
controllers as K ≜ {K | ρ (A−BK) < 1}, where ρ(·) denotes
the spectral radius. Under the policy (24), the closed-loop system
dynamics can be written as,

xk+1 = (A−BK)xk + w̄k,where (25)
w̄k = wk +Bσk. (26)

Here, w̄k ∼ N (0,Σw̄), where Σw̄ = Σw +BΣσB
T , which can

be derived directly using (1) and (24). Additionally, we assume
the following function for the constraint,

fc (xk+1) = qTxk+1, (27)

where q ∈ IRn is a user defined vector.
Before discussing our theoretical results, we rewrite the La-

grangian function from (6) using the control input given by (24)
as follows.

L(K, λ) = J(K)− λ (Jc(K)− δ) , where (28)

J(K) = tr
((
Q+KTRK

)
ΣK +RΣσ

)
(29)

= tr (PKΣw̄ +RΣσ) , and (30)
Jc(K) = E [Q (a(xk,K))] , where (31)

Q(a) =
1√
2π

∫ ∞

a

e−
z2

2 dz, and (32)

a(xk,K) =
ϵ− qT (A−BK)xk√

qTΣw̄q
(33)

If K ∈ K, then ΣK and PK are the unique solutions to the
Lyapunov equations given in (34) and (35), respectively.

ΣK = Σw̄ + (A−BK)ΣK(A−BK)T , and (34)

PK = Q+KTRK+ (A−BK)TPK(A−BK) (35)

Remark 2: The derivations of (29), (30), (34) and (35) are
available in [16]. It is straightforward to derive (31), (32) and
(33) using (25)-(27) in (5) and considering the states, {xk} to be
ergodic.

Our first result is the following lemma, which states the
coercivity property of the Lagrangian function L(K, λ) given by
(28).



Lemma 1: For a fixed λ > 0, the Lagrangian function L(K, λ)
given by (28) is coercive on K in the sense that L(K, λ) → ∞
as K→ δK, where δK denotes the boundary of K.

Proof: The proof follows from the fact that the cost function
J(·) is coercive on K, see [15], and the constraint function 0 ≤
Jc(·) ≤ 1 is bounded.

Remark 3: The coercivity property of L(K, λ) is crucial to
ensure the stability of the closed-loop system during the training
process. In other words, the coercive function L(K, λ) serves as
a barrier function over the stable policy set K, and no additional
measure is required to ensure the stability of the closed-loop
system during the training process.
To demonstrate the convergence of the NPG and GNPG al-
gorithms to a local or global optimum, it is imperative to
establish the gradient dominance property of the Lagrangian
function L(K, λ) (28). Furthermore, the following two lemmas
are required to support this property.

Lemma 2: For a given λ > 0, the Lagrangian function
L(K, λ) given by (28) is twice continuously differentiable over
K.

Proof: The cost function J(·) is twice continuously differen-
tiable over K, see [15]. Since the exponential function is analytic,
Q(a) is also analytic in a. Finally, a(xk,K) is an affine function
of K, so we can say Jc(K) is an analytic function of K ∈ K,
and hence L(K, λ) is at least twice continuously differentiable
with respect to K over K.

Lemma 3: For a given λ > 0, the Lagrangian function
L(K, λ) given by (28) is L-smooth on Kζ , where L > 0 is a
constant and depends on the problem parameters and ζ. Here,
Kζ ≜ {K ∈ K | L(K, λ) ≤ ζ} is a compact subset.

Proof: Using Lemma 1 and Lemma 2 in Theorem 1 from
[15], we can directly state Lemma 3.

Remark 4: The L-smoothness of L(K, λ) as stated in
Lemma 3 also means

|| ∇KL(K, λ) ||2≤ L ∀K ∈ Kζ . (36)

|| · || denotes the Frobenius norm for a matrix or the Euclidean
norm for a vector.
To establish a linear convergence rate for the NPG and GNPG
algorithms, we need the L-smoothness and gradient dominance
properties of the Lagrangian function L(K, λ). The following
lemma states the gradient dominance property of L(K, λ).

Lemma 4: (Gradient dominance) For a given λ > 0, the
Lagrangian function L(K, λ) given by (28) satisfies the following
inequality,

L(K, λ)− L(K∗, λ) ≤ µ || ∇KL(K, λ) ||2 , ∀K ∈ K, (37)

where µ > 0 is a constant, and K∗ ∈ K is the optimal policy
parameter for a fixed λ, i.e., K∗ = argminK∈K L(K, λ).

Proof: The proof of Lemma 4 is provided in Appendix II.

Finally, we state the convergence rate result for the NPG algo-
rithm as follows, which is a direct consequence of Lemma 3 and
Lemma 4. The convergence of the GNPG algorithm can be shown
following similar steps and a detailed proof will be provided in
our ongoing work.

Lemma 5: (Convergence rate) For a given λ > 0, the NPG
algorithm converge to a global optimal policy parameter K∗ with

a linear convergence rate, i.e.,

L(K
′
λ)− L(K∗, λ) ≤ β(L(K, λ)− L(K∗, λ)) (38)

Here K
′

is the NPG update from K in a single iteration. The
constant 0 < β < 1 depends on the problem parameters and
learning rate α.

Proof: The proof of Lemma 5 is provided in Appendix III.

Remark 5: The convergence rate lemma (38) means if we start
from an arbitrary stabilizing controller K0 ∈ K, and update the
policy parameter Ki using the NPG algorithm, then Ki → K∗

as i→∞ at an exponential rate.
In summary, so far, we have proved that the NPG algorithm

converges linearly to a global optimal policy parameter K∗ that
minimizes L(K, λ) for a given λ > 0 when the relevant quantities
in the algorithms are computed assuming true model knowledge.

A. Finding the optimal value of the Lagrange multiplier λ

We follow a primal-dual approach to find an optimal value of
the Lagrange multiplier λ. We first define the dual problem as
follows,

max
λ≥0

D(λ) = max
λ≥0

min
K∈K

L(K, λ) (39)

The primal-dual step is given as follows,

Step 1: Ki+1 = One step update from Ki and λi

using NPG or GNPG, see Algorithm 1, and (40)
Step 2: λi+1 = max (0, λi + αλ,i (Jc(Ki)− δ)) . (41)

Here, αλ,i > 0 is the learning rate for the Lagrange multiplier
λ. To prove that the pair (K∗, λ∗) is also the optimal solution to
the primal constrained problem (4), we need Assumption 1 and
Lemma 6.

Assumption 1: (Slater’s condition) There exists a K̄ ∈ K such
that Jc(K̄) < δ.

Lemma 6: (Strong duality) Under Assumption 1, the optimal
value of the primal problem (4) is equal to the optimal value of
the dual problem (39), i.e., J∗ = D∗.

Proof: The proof of Lemma 6 is provided in Appendix IV.

Remark 6: The update rule of λ in (41) is guaranteed to
converge to an optimal value as long as the step size αλ,i is square
summable but not absolutely summable; see [25]. A common
choice for αλ,i is αλ,i =

κ
i , where κ > 0 is some finite constant.

Remark 7: The proof for the unknown model case is challeng-
ing since we approximate the value function and estimate the
advantage and the required gradients from the input-output data.
For the model-free scenario, in general, it is first proved that the
value function approximator will converge and provide a close
approximation of the true value of the state after a sufficiently
large number of iterations, say i ≥ IT [16]. Then it can be
shown that |L(Ki+1, λ) − L(K̃i+1, λ)| is small for i ≥ IT ,
where L(Ki+1, λ) and L(K̃i+1, λ) are the Lagrangian functions
evaluated using the true and approximated value functions, re-
spectively. Combining this with the convergence rate Lemma 5,
we can show that the NPG and GNPG algorithms converge to
a global optimal policy parameter K∗ with a linear convergence
rate for the unknown model case. However, detailed proofs for
the unknown model case are part of our ongoing work.



V. NUMERICAL RESULTS

In this section, we compare the performance of the NPG,
GNPG, and DDPG algorithms with the risk-neutral LQR and the
scenario-based MPC by numerical simulations. As our case study,
we have considered an unmanned aerial vehicle (UAV) model
[18], a fourth-order LTI system. The UAV model parameters and
the parameter values used for the simulation study are provided in
Appendix I. All three PG-based algorithms use the same network
structures for actor and critic networks. The actor is just a linear
function of the state, and the critic is a fully connected neural
network with two hidden layers of size (10,50). We have used
the tanh activation function for the hidden nodes, and the outer
layer has no activation function.

The scenario-based MPC algorithm used for the comparison
is given in Algorithm 3 [3]. First, we compare the training

Algorithm 3 Scenario-based chance constraint MPC

Perform the following steps at each time step t:
Measure the current state xt.
Generate S noise samples w

(1)
t , · · · ,w(S)

t ∼ fw(w).
Solve the following optimization problem:

min
u1|t,··· ,uT |t

S∑
s=1

T∑
i=1

(
f
(
x
(s)
i|t ,ui|t

)
+ λ1{

fc
(
x
(s)

i+1|t

)
≥ϵ

})
s.t. (1) is satisfied.

Apply the first control input u1|t to the system.

performance of the PG-based algorithms by plotting average
returnR with respect to the training timestep data from a trial run
in Fig. 1. The average return is evaluated from the separate test
data using the trained models after each 5E5 timestep training
data sample. When starting from the same stable controller, we
observe that NPG and GNPG algorithms maintain closed-loop
stability while training. On the other hand, DDPG does not
necessarily maintain closed-loop stability while training under
similar conditions. However, in some instances DDPG is seen to
reach the optimal policy faster. Figure 2 compares the constraint

Fig. 1: Average return R. λ = 100, Jc = 8.7% (NPG).

violation probability Jc and the control cost J for different λ
values for all five algorithms. All the PG-based algorithms are
trained over 5E7 timestep samples. Because of their stochastic
nature, we have taken the average of the actor-network parameter
of the best ten training iterations to generate the test results in
Fig. 2.

As expected, the constraint violation percentage gets reduced
for the PG-based methods at the expense of a small increase
in the quadratic cost when compared with the standard LQR.
Moreover, the performance of the MPC method has a similar

Fig. 2: Constraint violation probability Jc and control cost J for different
λ values.

trend to that of PG-based algorithms. However, it is crucial
to note that MPC’s performance is heavily dependent on the
chosen parameters S = 20 and T = 5 in Algorithm 3. While
increasing these parameters can enhance MPC’s performance, it
comes with the trade-off of increased computational complexity,
which is of the order of ST 2 [26]. In addition, MPC necessitates
solving an optimization problem at every time step, in contrast
to the PG-based methods, which only require evaluating the
feed-forward actor-network. This distinction renders PG-based
methods significantly less computationally complex than MPC.
It is also important to acknowledge that MPC is a model-
based method, which further differentiates it from the PG-based
techniques. We also observed that the results from the DDPG
algorithm do not show a clear trend as the other algorithms with
the increase in λ. Because of this reason, we have excluded
DDPG from the comparative plot in Fig. 3, where the constraint
violation probability Jc is plotted with respect to the control cost
J for different λ. We observe that NPG and GNPG algorithms
perform almost similarly, outperforming the MPC for the given
S = 20 and T = 5.

Fig. 3: Constraint violation probability Jc vs. control cost J . λ =
[1, 5, 10, 15, 20, 50, 100].

Figure 4 and Fig. 5 compare the norm of the policy gradient,
i.e., ||Ĝ||, and critic loss with respect to the number of training
iterations for the NPG and GNPG algorithms. The plot shows the
mean and 95% confidence interval of the quantity. We observe
that NPG has a marginally better convergence rate compared to
GNPG.

Fig. 4: Norm of the policy gradient. λ = 10, Jc = 16.5% (NPG).



Fig. 5: Critic loss. λ = 10, Jc = 16.5% (NPG).

VI. CONCLUSION

We have considered PG-based AC algorithms for a probabilis-
tic risk- or chance-constrained LQR problem under the unknown
model scenario. The numerical simulations show that the NPG
and GNPG-based AC methods exhibit good convergence proper-
ties and maintain closed-loop stability while training. On the other
hand, DDPG has a larger variance, and the closed-loop system
may not remain stable during training. Finally, we observe that
all the PG-based algorithms perform similarly to the scenario-
based MPC technique, which is a model-based approach and has
certain computational disadvantages compared to the PG-based
model-free approaches. Furthermore, we have proved analytical
convergence properties of the NPG and GNPG algorithms under
the known model scenario. The proof of convergence for the
unknown model scenario is part of our ongoing work.

APPENDIX I
PARAMETERS

A =


1 0.5 0 0
0 1 0 0
0 0 1 0.5
0 0 0 1

 ,B =


0.125 0
0.5 0
0 0.125
0 0.5

 ,

W = diag (1, 0.1, 2, 0.2) ,U = I, ϵ = 5,Σw = diag(80, 0.01)

q = [1, 0.1, 2, 0.2]
T
, αc = 0.005, αa = 0.005, αd = 0.001,

ΣD,0 = 5I,ΣD,F = 0.01I,Σu = I.

APPENDIX II
PROOF OF LEMMA 4

From Lemma C.6 in [16], we can write

J(K)− J(K̄∗) ≤ ||ΣK̄∗ ||
σmin(R)

tr(ET
KEK), (42)

where K̄∗ is the optimal policy parameter that miminizes only
the cost function J(K) and

EK = (R+BTPKB)K−BTPKA. (43)

K∗ is the optimal policy parameter that minimizes the Lagrangian
function L(K, λ) for a given λ > 0. From (42), we can write

J(K)− J(K∗) ≤ J(K)− J(K̄∗) ≤ ||ΣK̄∗ ||
σmin(R)

tr(ET
KEK).

≤ ||ΣK̄∗ ||
4σmin(R)

tr(4ΣK
−1ΣKET

KEKΣK
−1ΣK).

≤ n||ΣK̄∗ ||
4σ2

min(ΣK)σmin(R)
|| ∇KJ(K) ||2≤ µ1 || ∇KJ(K) ||2,

where µ1 =
n||ΣK̄∗ ||

4σ2
min(ΣK)σmin(R)

. (44)

In (44), we have used the following results from [16],

∇KJ(K) = 2EKΣK . (45)

Taking derivative of (31) with respect to K we can write,

∇KJc(K) = −E

[
exp

(
−a(xk,K)2/2

) BTqxT
k√

2πqTΣw̄q

]
. (46)

Norm of the gradient of the Lagrangian function L(K, λ) can be
written as,

tr
(
∇KL(K, λ)T∇KL(K, λ)

)
= tr

(
∇KJ(K)T∇KJ(K)

)
+ tr

(
λ2∇KJc(K)T∇KJc(K) + 2λ∇KJ(K)T∇KJc(K)

)
.

≥ tr
(
∇KJ(K)T∇KJ(K)

)
+ tr

(
2λ∇KJ(K)T∇KJc(K)

)
≥ tr

(
∇KJ(K)T∇KJ(K)− 4λEKΣKE

[
BTqxT

k√
2πqTΣw̄q

])
[using (45) and (46), and 0 ≤ exp

(
−a2(xk,K)/2

)
≤ 1.]

≥ tr
(
∇KJ(K)T∇KJ(K)

)
[since E[xk] = 0]. (47)

Combining (44) and (47), we can write

J(K)− J(K∗) ≤ µ1tr
(
∇KL(K, λ)T∇KL(K, λ)

)
. (48)

Additionally, from Lemma C.6 [16], we can say
∇KL(K, λ)T∇KL(K, λ) is lower bounded away
from 0 by σ(Σw)||R + BTPKB||−1tr(ET

KEK). Since
| Jc(K) − Jc(K

∗) |≤ 1, there will exist a sufficiently large
µ ≥ µ1, such that (we note that µ is dependent on λ)

L(K, λ)− L(K∗, λ) = J(K)− J(K∗) + λ(Jc(K)− Jc(K
∗))

≤ µtr
(
∇KL(K, λ)T∇KL(K, λ)

)
. (49)

This completes the proof of Lemma 4.

APPENDIX III
PROOF OF LEMMA 5

Here, we will prove Lemma 5 for the NPG algorithm. The
update rule for the policy parameter K under the NPG algorithm
is given by [16],

K
′
= K−α[F]−1∇KL(K, λ) = K−α∇KL(K, λ)Σ−1

K , (50)

where α > 0 is the learning rate, and F is
the Fisher information matrix. [F](i,j)(i′ ,j′ ) =

E[∇Kij
log(πK(u|x))∇K

i
′
j
′ log(πK(u|x))T ]. Note that

the variant of NPG algorithm as given in Algorithm 1 is
α =

√
αa

∇KL(K,λ)T [F ]−1∇KL(K,λ)
, where αa > 0 is a user

selected parameter [21]. The minor difference in the stepsize
expression from Algorithm 1 is due to the fact that the unknown
parameter θ in Algorithm 1 is a vector, but in the proof, K is a
matrix.

From the L-smoothness property of L(K, λ) as given in
Lemma 3, we can write the following inequality [15],

L(K
′
, λ)− L(K, λ) ≤

tr(∇KL(K, λ)T (K
′
−K)) +

L

2
|| K

′
−K ||2, (51)

Using (50) in (51), we can write

L(K
′
, λ)− L(K, λ) ≤ −tr

(
αΣK

−1

−Lα2

2
(ΣK

−1)(ΣK
−1)T

)
|| ∇KL(K, λ) ||2 .

(52)



We have used the matrix trace inequality as given in Theorem 1
from [27] to get (52). To ensure convergence, we need the trace
in (52)) to be strictly positive. In other words, the step size α
should be α < 2

Ltr(Σ−1
K )

. Since ΣK is the solution to the Lyapunov
equation (34), we can say tr(ΣK) is upper bounded by a finite
constant, so there exists a constant 0 < CΣ < tr(Σ−1

K ). Therefore,
we can write an upper limit for α < 2

LCΣ
, which is independent

of K.
Applying the gradient dominance property of L(K, λ) as given

in Lemma 4, we can write

L(K
′
, λ)− L(K∗, λ) ≤ β(L(K, λ)− L(K∗, λ)), where (53)

β = 1− 1

µ
tr
(
αΣK

−1 − Lα2

2
(ΣK

−1)(ΣK
−1)T

)
(54)

Since we need 0 < β < 1 for convergence, the step size α should
satisfy the following condition

0 <
1

µ
tr
(
αΣK

−1 − Lα2

2
(ΣK

−1)(ΣK
−1)T

)
< 1

=>
1

µ
tr
(
αΣK

−1 − Lα2

2
(ΣK

−1)(ΣK
−1)T

)
< 1 [if α <

2

LCΣ
]

=>
1

µ
tr
(

α

σmin(Σw̄)
− Lα2

2
C2

Σ

)
< 1, [(34) used] (55)

Here, σmin(·) denotes the lowest singular value. Note that if we
choose α sufficiently small, condition (55) can be satisfied. This
completes the proof of Lemma 5.

APPENDIX IV
PROOF OF LEMMA 6

We follow the proof of Theorem 2 from [18]. The proof
contains two steps.

First, it is proved that there exists a λ∗ ≜
inf {λ ≥ 0|Jc(K∗(λ)) ≤ δ} such that λ∗ < ∞. Although
the constraint function differs in our case, we can utilize the
same proof methodology as presented in [18], which relies on
a contradiction argument employing Slater’s condition. This
proof does not rely on any specific formulation of the constraint
function.

For the second step of the proof, we need to show that K∗(λ)
and Jc(K

∗(λ)) are continuous functions of λ. We will prove this
step in the following. We can directly say the gradient of the La-
grangian function L(K, λ) with respect to K is a linear function
of λ for a fixed K. Additionally, ∇KL(K, λ) is continuous in
K ∈ K, see Lemma 2. Therefore, the policy gradient steps, see
Algorithm 1, will produce Ki that are continuous functions of
λ. Finally, we have already proved that Ki → K∗ as i→∞ in
Lemma 4. Therefore, we can say the optimal policy parameter
K∗(λ) and the constraint function Jc(K

∗(λ)) are continuous
functions of λ. This completes the proof of Lemma 6.

REFERENCES

[1] D. P. Bertsekas, Dynamic Programming and Optimal Control 3rd Edition,
Volume II. Athena Scientific, 2011.

[2] A. Tsiamis, D. S. Kalogerias, L. F. O. Chamon, A. Ribeiro, and G. J.
Pappas, “Risk-Constrained Linear-Quadratic Regulators,” in 2020 59th IEEE
Conference on Decision and Control (CDC), Dec. 2020, pp. 3040–3047.

[3] G. Schildbach, L. Fagiano, C. Frei, and M. Morari, “The scenario approach
for Stochastic Model Predictive Control with bounds on closed-loop con-
straint violations,” Automatica, vol. 50, no. 12, pp. 3009–3018, Dec. 2014.

[4] J. Fleming and M. Cannon, “Stochastic MPC for Additive and Multiplicative
Uncertainty Using Sample Approximations,” IEEE Trans. Automat. Contr.,
vol. 64, no. 9, pp. 3883–3888, Sep. 2019.

[5] E. Arcari, A. Iannelli, A. Carron, and M. N. Zeilinger, “Stochastic MPC
with robustness to bounded parametric uncertainty,” IEEE Transactions on
Automatic Control, pp. 1–14, 2023.

[6] S. Kerz, J. Teutsch, T. Brüdigam, M. Leibold, and D. Wollherr, “Data-Driven
Tube-Based Stochastic Predictive Control,” IEEE Open Journal of Control
Systems, vol. 2, pp. 185–199, 2023.

[7] F. Zhao, X. Fu, and K. You, “Global Convergence of Policy Gradient
Methods for Output Feedback Linear Quadratic Control,” arXiv preprint
arXiv:2211.04051, 2022.

[8] F. Zhao and K. You, “Primal-dual learning for the model-free risk-
constrained linear quadratic regulator,” in Learning for Dynamics and
Control. PMLR, 2021, pp. 702–714.

[9] F. Zhao, K. You, and T. Basar, “Infinite-horizon Risk-constrained Linear
Quadratic Regulator with Average Cost,” in 2021 60th IEEE Conference on
Decision and Control (CDC). Austin, TX, USA: IEEE, Dec. 2021, pp.
390–395.

[10] D. Bertsekas, Reinforcement Learning and Optimal Control. Athena
Scientific, Jul. 2019.

[11] L. Buşoniu, T. de Bruin, D. Tolić, J. Kober, and I. Palunko, “Reinforce-
ment learning for control: Performance, stability, and deep approximators,”
Annual Reviews in Control, vol. 46, pp. 8–28, Jan. 2018.

[12] V. G. Lopez, M. Alsalti, and M. A. Müller, “Efficient Off-Policy Q-
Learning for Data-Based Discrete-Time LQR Problems,” IEEE Transactions
on Automatic Control, pp. 1–12, 2023.

[13] R. S. Sutton and A. G. Barto, Reinforcement Learning, Second Edition: An
Introduction. MIT Press, Nov. 2018.

[14] M. Fazel, R. Ge, S. Kakade, and M. Mesbahi, “Global convergence of
policy gradient methods for the linear quadratic regulator,” in International
Conference on Machine Learning. PMLR, 2018, pp. 1467–1476.

[15] B. Hu, K. Zhang, N. Li, M. Mesbahi, M. Fazel, and T. Başar, “Toward
a Theoretical Foundation of Policy Optimization for Learning Control
Policies,” Annual Review of Control, Robotics, and Autonomous Systems,
vol. 6, no. 1, pp. 123–158, 2023.

[16] Z. Yang, Y. Chen, M. Hong, and Z. Wang, “Provably Global Convergence
of Actor-Critic: A Case for Linear Quadratic Regulator with Ergodic Cost,”
in Advances in Neural Information Processing Systems, vol. 32. Curran
Associates, Inc., 2019.

[17] K. Zhang, B. Hu, and T. Başar, “Policy optimization for H2 linear
control with H∞ robustness guarantee: Implicit regularization and global
convergence,” SIAM J. Control Optim., vol. 59, no. 6, pp. 4081–4109, Jan.
2021.

[18] F. Zhao, K. You, and T. Başar, “Global Convergence of Policy Gradient
Primal–Dual Methods for Risk-Constrained LQRs,” IEEE Trans. Automat.
Contr., vol. 68, no. 5, pp. 2934–2949, May 2023.

[19] M. Han, Y. Tian, L. Zhang, J. Wang, and W. Pan, “Reinforcement learning
control of constrained dynamic systems with uniformly ultimate bounded-
ness stability guarantee,” Automatica, vol. 129, p. 109689, Jul. 2021.

[20] A. Naha and S. Dey, “Reinforcement learning based optimal control with
a probabilistic risk constraint,” arXiv preprint arXiv:2305.15755, 2023.

[21] A. Rajeswaran, K. Lowrey, E. V. Todorov, and S. M. Kakade, “Towards
Generalization and Simplicity in Continuous Control,” in Advances in
Neural Information Processing Systems, vol. 30. Curran Associates, Inc.,
2017.

[22] S. M. Kakade, “A natural policy gradient,” Advances in neural information
processing systems, vol. 14, 2001.

[23] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, “Continuous control with deep reinforcement learning,
ICLR (2016),” arXiv preprint arXiv:1509.0297, 2016.

[24] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
Dimensional Continuous Control Using Generalized Advantage Estimation,”
Oct. 2018.

[25] W. Yu and R. Lui, “Dual methods for nonconvex spectrum optimization
of multicarrier systems,” IEEE Transactions on communications, vol. 54,
no. 7, pp. 1310–1322, 2006.

[26] J. Skaf and S. Boyd, “Nonlinear q-design for convex stochastic control,”
IEEE Transactions on Automatic Control, vol. 54, no. 10, pp. 2426–2430,
2009.

[27] I. Coope, “On matrix trace inequalities and related topics for products of
hermitian matrices,” Journal of mathematical analysis and applications, vol.
188, no. 3, pp. 999–1001, 1994.


