
22222

2 – 12 – 12 – 12 – 12 – 1

G21K C CompilerG21K C CompilerG21K C CompilerG21K C CompilerG21K C Compiler

2.12.12.12.12.1 INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION
G21K is Analog Devices’ port of GCC, the Free Software Foundation’s
C compiler, for the ADSP-21000 family of digital signal processors.
Separate versions of the compiler are available for MS-DOS and for
UNIX.

G21K is a driver program: it controls the operation of other programs
(software development tools) during compilation. The process of
compiling a source file involves several tools and files.

Other files involved with compilation are the runtime header and the
architecture file. The runtime header controls initialization of the C
runtime environment and interrupt handling. Aspects of the runtime
environment (such as code and data placement, stack and heap
placement, and target wait states and banks) are controlled by the
architecture file.

2.22.22.22.22.2 INVOKING G21KINVOKING G21KINVOKING G21KINVOKING G21KINVOKING G21K
G21K is invoked from the command line, and can be run under a DOS
box in Windows. Note that though this documentation refers to the
compiler as “G21K”, you can type g21k on the command line. For a
complete listing of all available switches, see the “G21K Compiler
Switches” chapter of this manual.

Below is the G21K command line syntax:

g21k [-switches] filename [. ext] [filename [.ext]]

Some commonly used switch options are shown on the next page.

22222 G21K C CompilerG21K C CompilerG21K C CompilerG21K C CompilerG21K C Compiler

2 – 22 – 22 – 22 – 22 – 2

The compiler can also accept multiple input files in the following way:

g21k [-switches] @file_all

The file_all file lists the files to be compiled; it must be a simple text
file with one path/filename per line. This feature provides a workaround
for the DOS command line length restriction.

Command line switches may also be placed inside file_all , but they
will apply to all input files listed (i.e. switches cannot be selectively
applied to individual files).

Switch Effect
-E Preprocess source files only
-S Generate assembly source files only
-c Generate object files only
-O Optimize code using some optimizations
-O2 Optimize code using more optimizations
-O3 Optimize code using all optimizations
-v Generate verbose output
-ansi Disable all non-ANSI language extensions
-g Produce debuggable code for use with CBUG
-h Display list of switches
-a filename Specify alternate architecture file
-Ipath Specify additional paths to search for include files
-Dmacro[=value] Define a macro for the C preprocessor
-Lpath Specify an additional path to search for library files
-lxxx Include library libxxx.a in link line
-map Generate map file (default is 21k.map)
-o filename Place output in filename
-nomem Do not execute runtime memory initializer
-runhdr filename Specify alternate runtime header file
-w Inhibit all warning messages
-Wall Combine all warnings in this list
-Wimplicit Warn when a function is implicitly declared
-Wreturn-type Warn when a function defaults to returning an int
-Wunused Warn when an automatic variable is unused
-Wswitch Warn when a switch does not use all enumeration types
-Wcomment Warn when a comment contains a /* sequence
-Wfloat-convert Warn when a float number is implicitly converted to a

double , or a double is implicitly converted to a float

22222G21K C CompilerG21K C CompilerG21K C CompilerG21K C CompilerG21K C Compiler

2 – 32 – 32 – 32 – 32 – 3

2.3.2.3.2.3.2.3.2.3. ENVIRONMENT VARIABLESENVIRONMENT VARIABLESENVIRONMENT VARIABLESENVIRONMENT VARIABLESENVIRONMENT VARIABLES
This section describes several environment variables that affect how G21K
operates. They work by specifying directories or prefixes to use when
searching for various kinds of files.

Note: You can also specify search paths using options such as -I and -L .
These take precedence over paths specified using environment variables,
which in turn take precedence over those specified by the configuration of
G21K. See the Options For Directory Search discussion in the “G21K Compiler
Switches” chapter of this manual for more information.

TMP

TMP specifies the directory to use for temporary files. G21K uses temporary
files to hold the output of one stage of compilation which is to be used as
input to the next stage: for example, the output of the preprocessor, which is
the input to the compiler proper.

ADI_DSP

The value of ADI_DSP specifies where to find the ADI tools directory.
From this variable the compiler computes the location of the libraries and
include files by augmenting the path with:

include files $ADI_DSP/21k/include
libraries $ADI_DSP/21k/lib

2.42.42.42.42.4 COMPILER STAGES & FILESCOMPILER STAGES & FILESCOMPILER STAGES & FILESCOMPILER STAGES & FILESCOMPILER STAGES & FILES
G21K compiles a file in stages. Each stage involves a different tool, has its
own set of input files, and produces an output file. Command line switches
allow compilation to begin or end at any stage. G21K is able to handle
multiple files with one invocation.

If a compilation involves more than one stage, the output of each stage is
saved in an intermediate file and used as input to the next stage. The
location of intermediate files is specified by the TMP environment variable.
See the Environment Variables Affecting G21K discussion in the “G21K
Compiler Switches” chapter in this manual for more information. G21K
removes intermediate files when finished.

G21K (and the programs it invokes) prints all error messages to stdout
when running under MS-DOS, and stderr when running under Unix.

22222 G21K C CompilerG21K C CompilerG21K C CompilerG21K C CompilerG21K C Compiler

2 – 42 – 42 – 42 – 42 – 4

2.4.12.4.12.4.12.4.12.4.1 StagesStagesStagesStagesStages
The process of compiling a file may involve any of the following stages,
always in this order:

1. C Preprocessing runs the C preprocessor on the source file. Comments
are removed, macros are expanded, conditional compilation and file
inclusion are handled. See Chapter 8, “C Preprocessor,” for further
information about the C preprocessor.

2. Compiling translates C language into assembly language. Command line
switches control compile-time options, such as the inclusion of
debugging information and degree of optimization. See Chapter 7,
“G21K Switches” for further information about the invocation options.

3. Assembly Preprocessing runs the C preprocessor on the assembly
source file. See item 1, above in this list.

4. Assembling translates assembly language into object code.

5. Linking combines individual source object files, the runtime header, and
object files from libraries into a single executable. Addresses for objects
are assigned and references are resolved to form a single executable file.

2.4.22.4.22.4.22.4.22.4.2 File TypesFile TypesFile TypesFile TypesFile Types
Each stage of compilation requires a specific type of input file (or source
file) and produces a specific type of output file.

The stage of compilation that G21K begins with is determined by the
filename extension of each source file.

Command line switches determine the stage at which compilation ends.
See Section 2.1, above, and Chapter 7, “G21K Switches” for information
about the invocation options.

22222G21K C CompilerG21K C CompilerG21K C CompilerG21K C CompilerG21K C Compiler

2 – 52 – 52 – 52 – 52 – 5

Tool Source Output
Stage Invoked Extension Extension1

C Preprocess cpp .c .i
Compile cc1 .i .s
Assembly Preprocess cpp .s, .asm .is
Assemble asm21k0 .is .o
Link2 ld21k .o, .obj, .a, .lnk, .exe

all other extensions3

1Note: All intermediate files (*.i, *.s, *.is, *.o, and *.lnk) are
removed unless the -save-temps switch is used. See Chapter 7 for details.
2Note: The linker normally creates a *.lnk file that becomes the input to the
initializer. If the -nomem switch is used to disable the initializer, the linker
outputs a .exe file instead.
3Note: Any file with an unrecognized extension is given to the link stage.

For example, to compile the assembly language file port.asm , the C
language file wire.c and the library libconv.a into the executable
wire.exe :

g21k port.asm wire.c -o wire.exe -lconv

G21K performs these actions:

1. a) G21K calls cpp on the file port.asm to produce port.is .
b) It then calls the assembler on port.is to produce port.o .

2. a) G21K calls cpp on the file wire.c producing wire.i .
b) G21K then calls cc1 to compile wire.i into wire.s .
c) G21K calls cpp again to preprocess wire.s into wire.is .
d) G21K then calls asm21k0 on wire.is to assemble it into wire.o .

3. G21K calls ld21k to link the two intermediate object files (wire.o and
port.o) together with libconv.a to create the file wire.lnk . The
-lname switch causes the linker to look in the directory $ADI_DSP/
21k/lib for libconv.a .

The default runtime header (020_hdr.obj or 060_hdr.obj) and
architecture file (21k.ach) are also used by the linker and are searched
for in the $ADI_DSP/21k/lib directory.

4. G21K calls mem21k on wire.lnk to produce wire.exe .

22222 G21K C CompilerG21K C CompilerG21K C CompilerG21K C CompilerG21K C Compiler

2 – 62 – 62 – 62 – 62 – 6

2.4.32.4.32.4.32.4.32.4.3 File FormatsFile FormatsFile FormatsFile FormatsFile Formats
Each source or output file must be in one of three file formats:

• ASCII files contain only printable characters. C and assembly language
files are in ASCII. They may be viewed and changed manually with any
text editor.

• COFF is the Common Object File Format. COFF allows information about
address resolution, debugging symbols, and runtime model to be stored
and retrieved efficiently. COFF is a binary format and should not be
edited manually. ADSP-21000 family object files and executable files are
in COFF.

Note: COFF is documented in Using and Understanding COFF
(ISBN 0-937175-31-5) from O’Reilly and Associates, 103A Morris Street,
Sebastopol, CA 95472.

• Archive format is used for libraries. The linker can efficiently search an
archive file to determine if it must extract a copy of an object file. Archive
is a binary format and should not be edited manually.

Filename
File Contents Format Origin Extension
C Code ASCII User, C Preprocessor .c

.i
Assembly Code ASCII User, C Compiler, or .asm

Assembler Preprocessor .s
.is

Object Code COFF Assembler .o or .obj

Executable COFF Linker .lnk or .exe

Library Archive Librarian .a

22222G21K C CompilerG21K C CompilerG21K C CompilerG21K C CompilerG21K C Compiler

2 – 72 – 72 – 72 – 72 – 7

2.4.42.4.42.4.42.4.42.4.4 COFF ToolsCOFF ToolsCOFF ToolsCOFF ToolsCOFF Tools
Two utilities are included in the release package to deal with the
different executable file formats created with UNIX tools and those
created with PC tools.

2.4.4.12.4.4.12.4.4.12.4.4.12.4.4.1 CSWAPCSWAPCSWAPCSWAPCSWAP
This utility converts executable files from the UNIX COFF format to
the DOS format, or vice versa. Use the following command (on a PC)
to convert from UNIX COFF format to DOS format:

cswap.exe sun.exe [-o] dos.exe

Use the following command (on a UNIX workstation) to convert from
DOS format to UNIX COFF format:

cswap dos.exe [-o] sun.exe

2.4.4.22.4.4.22.4.4.22.4.4.22.4.4.2 CDUMPCDUMPCDUMPCDUMPCDUMP
The CDUMP utility accepts an executable file as input, and outputs an
ASCII representation of the COFF file. This utility displays the contents
of a COFF object or executable file. Use the following syntax to display
COFF files:

cdump file.exe > output.fil

2.52.52.52.52.5 FILES INVOLVED IN COMPILATIONFILES INVOLVED IN COMPILATIONFILES INVOLVED IN COMPILATIONFILES INVOLVED IN COMPILATIONFILES INVOLVED IN COMPILATION
There are a number of files that are used in the compilation that you do
not need to specify when you invoke G21K the compiler searches for
them automatically. You can give command line switches to G21K to
specify where it should search for these files.

2.5.12.5.12.5.12.5.12.5.1 Runtime HeaderRuntime HeaderRuntime HeaderRuntime HeaderRuntime Header
The runtime header provides interrupt handling, including chip reset.
When the target processor is reset, the runtime header makes calls to
routines in the C runtime library to initialize the C runtime
environment and set the state of the hardware. The assembly language
source code for the runtime header is distributed with the release
software so that you may modify it if necessary.

22222 G21K C CompilerG21K C CompilerG21K C CompilerG21K C CompilerG21K C Compiler

2 – 82 – 82 – 82 – 82 – 8

Three different versions of the interrupt dispatcher are available. Each
version provides different levels of exception handling and,
consequently, different execution speeds. Each version also uses
different function calls to facilitate interrupt setup and handling. These
include:

Interrupt Dispatcher Exception Handling Relative Speed Function Calls
Regular Extensive 150 instructions interrupt() ,

signal()
Fast Moderate 75 instructions interruptf() ,

signalf()
Super Minimum 30 instructions interrupts() ,

signals()

Note: C runtime library functions are provided to facilitate interrupt
setup and handling For more information including limitations, see the
Library Reference entries for the interrupt() , signal() , and
raise() functions in the ADSP-21000 Family C Runtime Library
Manual. Also see the interrupts discussion in Appendix C of this
manual.

2.5.22.5.22.5.22.5.22.5.2 Architecture FileArchitecture FileArchitecture FileArchitecture FileArchitecture File
The architecture file describes the software and hardware
configuration of your system. Architecture file directives specify the
placement and naming of elements of the runtime memory
environment such as the locations of the C runtime stack, runtime
header, heap, and code and data spaces.

G21K also reads the architecture file to determine segment names for
code and data. The linker uses architecture file information to
determine placement of objects in memory. The linker also reads
information about the hardware from the architecture file (such as wait
states and external memory banks) and stores it in the executable file.
Read Chapter 3, “Writing the Architecture Description File” of the
ADSP-21000 Family Assembler Tools Manual for details about the
architecture file. See also Chapter 3 of this manual for specific
architecture file directives to use with a C program.

22222G21K C CompilerG21K C CompilerG21K C CompilerG21K C CompilerG21K C Compiler

2 – 92 – 92 – 92 – 92 – 9

2.5.32.5.32.5.32.5.32.5.3 Library FilesLibrary FilesLibrary FilesLibrary FilesLibrary Files
Library files contain sets of object files. The linker can access library
files and extract object files from them as needed. If a library contains
an object file which has a function the linker requires, a copy of that
object file is extracted from the library and incorporated into the
executable. Only object files which contain functions that remain
unresolved when the library is processed will be extracted from the
library.

G21K specifies the -lc switch to the linker so that the C Runtime
Library, libc.a , will be searched for functions.

• You can specify additional libraries for the linker to include by placing
them on the G21K command line or with the -l command-line
switch.

• The linker by default searches for libraries specified by the -l switch
in $ADI_DSP/21k/lib/ with the prefix lib and the extension .a
added to the library name.

• Use the -L switch to specify other directories for the linker to search
for libraries specified by the -l switch.

2.5.3.12.5.3.12.5.3.12.5.3.12.5.3.1 Custom Library FilesCustom Library FilesCustom Library FilesCustom Library FilesCustom Library Files
For information about how to build custom libraries, see Chapter 7 of
the ADSP-21000 Family Assembler Tools Manual for a discussion of the
librarian tool.

2.62.62.62.62.6 OPTIMIZATIONOPTIMIZATIONOPTIMIZATIONOPTIMIZATIONOPTIMIZATION
Four options for optimization are available for G21K:

• no optimization
• some optimizations, specified by the -O switch
• more optimizations, specified by the -O2 switch
• all optimizations, specified by the -O3 switch

Higher levels of optimization produce code that runs more quickly on
the target processor, but requires more time to compile.

The -g switch, which generates information for the debugger,
disables all optimizations, regardless of -O , -O2 , or -O3 switches.

22222 G21K C CompilerG21K C CompilerG21K C CompilerG21K C CompilerG21K C Compiler

2 – 102 – 102 – 102 – 102 – 10

A for loop with a null statement is eliminated by the compiler during
optimization unless the variable is global, static, or volatile. If you use
these loops for delays, the following example illustrates a possible
code change from:

int x;
for (x=0; x<10; x++);

to:

volatile int x;
for (x=0; x<10; x++);

2.72.72.72.72.7 TARGET SYSTEM SELECTIONTARGET SYSTEM SELECTIONTARGET SYSTEM SELECTIONTARGET SYSTEM SELECTIONTARGET SYSTEM SELECTION
G21K reads the architecture file to determine which ADSP-21000
Family processor to use (that is, ADSP-21020 or ADSP-2106x SHARC).
It uses this information to pass the necessary switches to all underlying
stages of the compilation (as discussed in Section 2.4). See section
3.2.1.5, “PROCESSOR= Directive” for further information.

2.82.82.82.82.8 EXAMPLEEXAMPLEEXAMPLEEXAMPLEEXAMPLE
A typical development scenario is to write or modify your code,
compile it, and examine its behavior with CBUG. The program used in
this example, primes.c , computes the first twenty prime numbers.
The source code for this example is in the directory

$ADI_DSP/21K/examples/primes

This example uses G21K to compile primes.c into primes.exe
and uses CBUG to examine the execution of primes.exe .

As you work through this example, refer to the following
documentation for detail:

CBUG debugger Chapter 9, CBUG C Source-Level Debugger

Installation information Release Note
for the ADSP-21000
Development Software

22222G21K C CompilerG21K C CompilerG21K C CompilerG21K C CompilerG21K C Compiler

2 – 112 – 112 – 112 – 112 – 11

2.8.12.8.12.8.12.8.12.8.1 The primes.c ProgramThe primes.c ProgramThe primes.c ProgramThe primes.c ProgramThe primes.c Program
The primes.c program stores computed prime numbers in primes[],
an array of integers.

/* primes.c - list the first twenty prime numbers */
/* Analog Devices, 1993 */
main()
{
 int index = 0;
 int n_primes = 1;

 int primes[20] = 2; /* Initialize to first prime number */
 int testnum = 3;
 while (n_primes < 20)
 {
 /* find a number that is indivisible by known primes. */
 while (index < n_primes)

 if (!(testnum % primes[index++]))
 {
/* if a number is divisible by a known prime, it cannot be
 prime. Start over with the next odd number */
 testnum += 2;
 index = 0;
 }

 /* this number is prime, add it to the list. */
 primes[n_primes++] = testnum;
 }
 /* start checking at the next odd number */
 testnum += 2;

 index = 0;
 exit(0);

}

22222 G21K C CompilerG21K C CompilerG21K C CompilerG21K C CompilerG21K C Compiler

2 – 122 – 122 – 122 – 122 – 12

2.8.22.8.22.8.22.8.22.8.2 primes.achprimes.achprimes.achprimes.achprimes.ach
The architecture file primes.ach defines a target architecture suitable
for the ADSP-21020 EZ-LAB Board. The linker places the runtime header in
seg_rth . Compiled code is placed in seg_pmco , data in seg_dmda .
The C runtime stack is placed in seg_stak .

Note: The stack begins at 0x1FF and grows downward in memory
(towards numerically smaller addresses). MEM21K uses seg_init to
hold initialization information and target state information.

.system primes_demo;

.processor ADSP21020

.segment /pm /ram /begin=0x0000 /end=0x00FF seg_rth;

.segment /pm /ram /begin=0x0100 /end=0x04FF seg_pmco;

.segment /pm /ram /begin=0x0500 /end=0x05FF seg_init;

.segment /dm /ram /begin=0x0000 /end=0x017F seg_dmda;

.segment /dm /ram /begin=0x0180 /end=0x01FF seg_stak;

.bank/pm0/wtstates=0/wtmode=internal/begin=0x000000;

.bank/pm1/wtstates=0/wtmode=internal/begin=0x008000;

.bank/dm0/wtstates=0/wtmode=internal/begin=0x00000000;

.bank/dm1/wtstates=0/wtmode=internal/begin=0x20000000;

.bank/dm2/wtstates=1/wtmode=internal/begin=0x40000000;

.bank/dm3/wtstates=0/wtmode=internal/begin=0x80000000;

.endsys;

2.8.32.8.32.8.32.8.32.8.3 Compiling primes.cCompiling primes.cCompiling primes.cCompiling primes.cCompiling primes.c
If you have not yet installed G21K, do so now. Instructions for installation
are in the Release Note.

Compile primes.c into primes.exe by typing:

g21k primes.c -a primes.ach -o primes.exe -g

G21K preprocesses, compiles, preprocesses, assembles, links and initializes
the primes program, producing an ADSP-21000 executable. The runtime
header and C runtime library are linked in automatically.

The -v command line switch causes G21K to display the invocation of
each tool during each stage. Information about tool paths, tool names,
intermediate files, and switches is produced.

22222G21K C CompilerG21K C CompilerG21K C CompilerG21K C CompilerG21K C Compiler

2 – 132 – 132 – 132 – 132 – 13

2.8.42.8.42.8.42.8.42.8.4 Running & Examining primes.exe With CBUGRunning & Examining primes.exe With CBUGRunning & Examining primes.exe With CBUGRunning & Examining primes.exe With CBUGRunning & Examining primes.exe With CBUG
CBUG is used to control and observe execution of a program, and to
examine and change the values of variables during runtime. The -g
command line switch causes G21K to generate debugging information
which describes variables, data types and control flow; CBUG uses this
information to allow you to step through code and examine and set
variables.

In this example, you invoke CBUG, step through the source code while
allowing the executable to run on the simulator, and examine variables.

2.8.4.12.8.4.12.8.4.12.8.4.12.8.4.1 Invoking CBUGInvoking CBUGInvoking CBUGInvoking CBUGInvoking CBUG
CBUG is a menu option in the ADSP-21000 Family simulators. The
simulator is designed to run from within Microsoft Windows. To invoke
the ADSP-2106x SHARC simulator, double-click on its icon with the
mouse. As the program begins to run, it will load default executable and
architecture files as specified in its .ini file. Select the
Execution|Simulator Reset menu function to prepare the simulator for
new files. Then use the File|Load menu function to call up a dialog box
where the file to be loaded is specified.

Note: The architecture file must be loaded first!

Select the primes.ach architecture file and click on the OK button.
Repeat this process for the primes.exe executable file. (Note: Detailed
information on using the simulator is available in the ADSP-21000 Family
Assembler Tools & Simulator Manual.)

The simulator displays a menu bar at the top of the screen and a Program
Memory window in the center of the screen.

To get CBUG started, follow these steps:

1. Open CBUG by selecting the Execution|CBUG menu function.
2. Begin running your program by choosing the Execution|Run/Halt menu

function or by using the F4 hotkey.
3. Accept CBUG’s confirmation query.
4. CBUG begins running your code.

CBUG automatically puts a breakpoint at main() in your program. The
code in the runtime header initializes any global data, the C runtime stack,
target wait states and banks, and interrupt handling before execution
stops at main() .

22222 G21K C CompilerG21K C CompilerG21K C CompilerG21K C CompilerG21K C Compiler

2 – 142 – 142 – 142 – 142 – 14

2.8.4.22.8.4.22.8.4.22.8.4.22.8.4.2 Displaying DataDisplaying DataDisplaying DataDisplaying DataDisplaying Data
The CBUG window contains two subwindows, one for source code
and one for status display, and command buttons at the top. If CBUG
does not show your source, check the CBUG Status window for an
error message.

Set up a display window to watch the array primes[] during
execution:

1. Open a memory window using the Memory|Memory menu function.

2. Use the Memory|GoTo menu function and type primes as the
expression to display.

3. The windows display changes to show the location where primes[] is
stored. Remember that you can move this window so that it does not
obscure your CBUG window.

Open another display window to watch the value of testnum . Execute
one line of source code by clicking Next, and then open a third display
window with the expression primes[index] .

CBUG is now set up to show what prime numbers have been found,
what number is being tested and what prime number testnum is being
checked against. You do not have to open a new display window to
examine a variable. You can show the value of a variable at any point
by choosing Print from the menu. The output of Print goes in the status
window and is not updated.

2.8.4.32.8.4.32.8.4.32.8.4.32.8.4.3 SteppingSteppingSteppingSteppingStepping
The source line where execution begins is highlighted.

1. Begin execution by clicking the Next button.

2. Click Next repeatedly until line 11 is highlighted.

3. Notice how primes[] and testnum change in their display windows as
they are initialized.

4. Use Next to execute individual lines of code. Step through the inner
loop a few times. You may want to display the inner loop control
expression, !(testnum % primes[index]), to predict loop execution.

22222G21K C CompilerG21K C CompilerG21K C CompilerG21K C CompilerG21K C Compiler

2 – 152 – 152 – 152 – 152 – 15

2.8.4.42.8.4.42.8.4.42.8.4.42.8.4.4 Using BreakpointsUsing BreakpointsUsing BreakpointsUsing BreakpointsUsing Breakpoints
Breakpoints let you stop execution when control reaches a certain location in
the code so you don’t have to step through each line of code.

1. Stop execution when a number is found to be prime, at line 26, by
a) double-clicking on line 26,
b) or by choosing Break from the Breaks menu and enter 26 to set a breakpoint.

2. Click Continue to run until a breakpoint is hit.

3. Let primes run to completion by removing the breakpoint at line 26 and setting
a breakpoint at line 32 where the program exits.

4. Click Continue. CBUG runs for a few seconds.

5. You may stop execution by pressing any key; be sure to note the CBUG Status
window if you don’t tells you how to reestablish your CBUG context.

6. When execution halts, primes[] is filled with twenty prime numbers.

2.92.92.92.92.9 COMPILER RESTRICTIONSCOMPILER RESTRICTIONSCOMPILER RESTRICTIONSCOMPILER RESTRICTIONSCOMPILER RESTRICTIONS
Some applications will experience problems because of compiler conflicts. The
following list of restrictions addresses some known conflicts to avoid.

• User libraries that expect or return double parameters need to be compiled
with the same size doubles as .c files. For example, a library created with
-fno-short-double (or created in release 3.0, which used 64-bit
doubles) cannot be used with .c files compiled in this release without
the switch. The functions that contain or return double parameters may fail.
Also, any assembly routines that expect or return 64-bit doubles need to
be changed or used with .c files compiled with -fno-short-double .

• The compiler uses the 21K.ach architecture file as the default if you do
not use the -a switch to specify another architecture file. The
21060.ach architecture file is used only as the default when you don’t
use the -a switch and you don’t have a 21K.ach architecture file
available in the /adi_dsp/21k/lib subdirectory.

• The compiler will not generate correct code if a global structure of exactly
two words (64 bits) is passed by value with the optimizer (-O , -O2 , or
-03) on.

22222 G21K C CompilerG21K C CompilerG21K C CompilerG21K C CompilerG21K C Compiler

2 – 162 – 162 – 162 – 162 – 16

• The error

asm operand requires impossible reload

will be generated if a block of code uses too many registers. If this
situation occurs, examine asm() statements and macros (such as
the circular buffer macros) which contain asm() statements.

• An include path that ends with a "\" , the directory will not be
seen by preprocessor. For example:

g21k x.c -Id:\ -Id:\mypath\

Neither include directory will be seen. Instead use

g21k x.c -Id:\mypath -Id:

• If a C symbol is also used by the library, the simulator/emulator
will only show the last symbol linked.

• Floating point emulation differences may cause slightly different
compiler output. Code compiled with 386 with 387 emulation may
be different than code compiled with 387 or 486.

• The fract type is not supported in this release. Users should
#define fract float or -Dfract=float if their code uses
fract .

• Floating constants that overflow during evaluation at compile time
result in zero. For example:

#include <float.h>
volatile float fltmax=FLT_MAX;
main() {
 float f1=fltmax*fltmax;

/* calculated by 21k at runtime, ok */
float f2=FLT_MAX*FLT_MAX;

/* overflows on pc during compilation and evaluates to 0

*/

The first number evaluates to INF , correctly. The second number
evaluates to 0.

22222G21K C CompilerG21K C CompilerG21K C CompilerG21K C CompilerG21K C Compiler

2 – 172 – 172 – 172 – 172 – 17

• The character sequence \E is “escape.”

• It is illegal to use the following:

register float x asm(“f3”);

Instead use the fixed-point register prefix, r:

register float x asm(“r3”);

• Interrupt handlers contain library functions that use DAG
registers. If you also use these registers for circular buffers, the
DAG value may change. Only use I0 and I1 for circular buffers
because the library routines do not use these registers.

• Circular buffers used in two or more *.c files to be linked
together cannot be used with the -g switch. The
CIRCULAR_BUFFER macro can only be in one file with -g ,
whereas for normal operation, the CIRCULAR_BUFFER macro
should be in every file to be linked so the compiler does not use
CIRCULAR_BUFFER registers for other purposes.

• CIRC_READ and CIRC_WRITE modify values cannot be more
than six bits wide. A workaround is to use CIRC_MODIFY (see the
circbuf.c and circbuf1.c examples).

• PM circular buffers do not work.

• Circular buffers of types that require more than one memory
location (such as complex numbers and doubles) do not work
with the CIRC_READ and CIRC_WRITE macros.

• Stopping compilation with Control-C is unreliable.

• Do not call C functions from inside an asm() function.

• All #include filenames must have the .h extension.

• Strict prototype checking is enforced. For example:

extern foo(char);
foo(int i) {...}

is legal in ANSI, but G21K complains about mismatch.

22222 G21K C CompilerG21K C CompilerG21K C CompilerG21K C CompilerG21K C Compiler

2 – 182 – 182 – 182 – 182 – 18

• Macro substitutions made with #define statement cannot begin
with a number. For example:

#define 2me i * j

does not work.

• Double precision constants have a limit of 1.E64. Double precision
variables are accurate to 54 bits. Double precision numbers are
truncated rather than rounded.

• Do not use G21K for assembly if you want to pass down assembly
defines. For example:

g21k -DLABEL main.asm

does not pass the define down to the assembler. While

asm21k -DLABEL main.asm

works as expected.

• G21K functions cannot return program memory structures.

• G21K generates signed numbers as the product of a multiplication.
The results are bit exact. However, the runtime code generates
incorrect overflow and underflow interrupts.

	Book Table of Contents
	Next Chapter
	Previous Chapter
	List of Books
	Navigation Help
	Chapter 2: G21K C Compiler
	2.1 Introduction
	2.2 Invoking G21K
	2.3 Environment Variables
	2.4 Compiler Stages & Files
	2.4.1 Stages
	2.4.2 File Types
	2.4.3 File Formats
	2.4.4 COFF Tools
	2.4.4.1 CSWAP
	2.4.4.2 CDUMP

	2.5 Files Involved in Compilation
	2.5.1 Runtime Header
	2.5.2 Architecture File
	2.5.3 Library Files
	2.5.3.1 Custom Library Files

	2.6 Optimization
	2.7 Target System Selection
	2.8 Example
	2.8.1 The primes.c Program
	2.8.2 primes.ach
	2.8.3 Compiling primes.c
	2.8.4 Running & Examining primes.exe with CBUG
	2.8.4.1 Invoking CBUG
	2.8.4.2 Displaying Data
	2.8.4.3 Stepping
	2.8.4.4 Using Breakpoints

	2.9 Compiler Restrictions

