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Abstract— In this paper we formulate and solve a prob-

lem of resource allocation over a given time horizon with

uncertain demands and uncertain capacities of the available

resources.

In particular, we consider a number of data sources

with uncertain bit rates, sharing a set of parallel chan-

nels with time varying and possibly uncertain transmis-

sion capacities. We present a method for allocating the

channels so as to maximize the expected system through-

put. The framework encompasses quality-of-service require-

ments, e.g. minimum-rate constraints, as well as priorities

represented by a user-specific cost per transmitted bit.

We assume only limited statistical knowledge of the source

rates and channel capacities. Optimal solutions are found

by using the maximum entropy principle and elementary

probability theory.

The suggested framework explains how to utilize mul-

tiuser diversity in various settings, a field of recently growing

interest in communication theory. It admits scheduling over

multiple base stations and includes transmission buffers to

obtain a method for optimal resource allocation in rather

general multiuser communication systems.

Keywords— Maximum Entropy, Multiuser Diversity, Re-

source Allocation, Scheduling, Uncertainty.

I. Introduction

IN this paper we consider a problem of allocating band-
width among users sharing a number of channels. A

number of sources are producing bits at unknown rates.
These bits are to be transmitted to U users (or receivers).
The sources share a number, R, of transmission channels
(or resources) which may be used to send the produced bits
to the receivers.

The problem is an extension and reformulation of a sim-
pler resource allocation problem, the “widget problem”,
studied by Jaynes [1] (also mentioned in [2] ch. 14), where
there were three possible decisions and one resource, with
known constant capacity, which could only be used exclu-
sively for one task.

In our present problem each channel-receiver pair has a
time-varying number associated with it, denoting the num-
ber of bits that can be sent over the link at a prescribed
bit error rate (BER), given that the channel is used ex-
clusively for transmitting to that specific receiver. We will
henceforth denote this number as the effective capacity1 of

Mathias Johansson is with Dirac Research AB and the Signals &
Systems Group, Uppsala University, Uppsala, Sweden. E-mail: math-
ias.johansson@signal.uu.se .

Mikael Sternad is with the Signals & Systems Group, Uppsala Uni-
versity, Uppsala, Sweden. E-mail: mikael.sternad@signal.uu.se .

1The term capacity is here used in a non-traditional way and should
not be confused with any of the usual information theoretic capacity
definitions. The effective capacity denotes the transmission rate for a
given BER requirement that a user obtains if no other users transmit
simultaneously on the channel. The actual transmission rate becomes
less than that if the channel is shared among several users.

that link.
Bits produced by the sources are stored in buffers mon-

itored by a transmission controller. The transmission con-
troller aims to distribute the bits over the channels so that
the number of bits in the buffers is minimized, or equiva-
lently so that the system throughput is maximized. The
question that we address is then: given only limited knowl-
edge of the actual source rates and effective capacities, how
should the controller distribute the resources?

The main information-theoretic motivation for using
scheduling in mobile communications comes from the ob-
servation [3] that the sum-of-rates capacity for a single
channel increases with the number of users and that it
is maximized by transmitting exclusively to the user with
highest channel power. This phenomenon, denoted mul-
tiuser diversity [4], suggests that independent channel fluc-
tuations between different users should be taken advan-
tage of instead of being combatted. The concept is very
similar to multi-antenna diversity. Knopp [4] describes it
as selection diversity at the transmitting end. The result
in [3] however assumes perfect channel knowledge, a sin-
gle channel, additive Gaussian disturbances only, and that
transmission buffers cannot be emptied.

Following the publication of [3], scheduling in wireless
communications has received an increasing amount of at-
tention, but the focus has been on assuming that there is
always data to send (buffers are never emptied) and that
the scheduler has perfect channel knowledge.

In high-level schedulers, stochastic channels are some-
times introduced by two-state models (error-free or random
errors) [5], which might be considered too coarse. In [6],
[7] a framework is suggested for scheduling several time-
slots ahead which takes known buffer sizes into account
but requires perfect channel prediction. Another rule, the
proportional fair scheduler [8], gives exclusive access to the
user who currently has the highest effective capacity nor-
malized by its average allocated throughput, thus striking
a balance between fairness and performance, but again re-
quiring complete knowledge of the effective capacities. A
similar result to that in [3] is obtained in [9] for a set of par-
allel broadcast channels corrupted only by additive white
Gaussian noise. Another line of work [10], [11] which has
been used for multi-hop networks and on-off types of links
with constant effective capacity considers queue stability
as the main criterion. An interesting application of this
criterion which also shows a relation to the proportional
fair scheduler is reported in [12], where queue stabilizing
schedulers are adapted to support quality-of-service (QoS)
constraints.

Until recently, little had been published concerning al-



location of multiple shared transmitters except for base
station assignments in the uplink with the objective of
minimizing allocated mobile powers [13], [14] and a sim-
ilar downlink problem [15]. After the submission of this
paper however, the capacity region for both the Gaus-
sian multiple-input multiple-output (MIMO) broadcast
and multiple-access channel has been found under the as-
sumption of perfect channel knowledge at the transmitter
and subject to the qualification that there is always data
to send [16], [17], [18]. In order to achieve the sum capacity
for any of these MIMO channels, exclusive allocations must
in general be abandoned. Moreover, all currently known
schemes require substantial amounts of channel feedback
and are extremely computationally demanding. In [19]
the case of partial channel knowledge is investigated and a
simplified resource allocation scheme based on using sev-
eral randomized beams is devised. The scheme transmits
to the user with maximum signal-to-interference ratio on
each beam. When the number of users approaches infinity,
this scheme approaches the capacity-optimal scheme. For
the case of few users, however, there is still a lack of low-
complexity low-feedback schemes that approach the sum
capacity.

In this paper, we do not focus on the general MIMO
case; the model considered here assumes parallel channels
where use of one channel does not affect any other chan-
nel. Instead, our focus is on scheduling transmissions un-
der uncertain channel conditions and uncertain source rates
with the objective of maximizing total throughput under
quality-of-service constraints. These topics have hitherto
not been investigated in any detail. The aim of this paper
is to provide such a study.

In summary, this work extends the current literature
by providing means for resource allocation with uncertain
source rates, taking buffer levels into account, and schedul-
ing with multiple parallel transmitters over arbitrary time
periods. Furthermore, the scheduling framework is ex-
tended to take into account inaccurate channel predictions.

In two seminal papers [20], [21] , Jaynes introduced the
maximum entropy principle as a consistent method for de-
termining probability distributions under constraints on
mean values of functions of data. The principle is ap-
plicable to inference problems with well-defined hypoth-
esis spaces but incomplete data. A motivation for its
use is contained in the entropy concentration theorem [22],
which states that given the imposed constraints, the max-
imum entropy distribution can be realized in overwhelm-
ingly more ways than any other distribution. It is thus
considered as the least biased solution for determining prior
probabilities under the given constraints. It has been suc-
cessfully applied to a variety of problems, the reference list
providing a sample of examples from image reconstruction
[23] [24], spectrum estimation [25], finance [26], language
modelling [27], and physics [28], [29]. We here propose
that the maximum entropy principle be used for modelling
uncertain data flows in mobile communications systems.

The paper is organized as follows: in Section II we
present the problem formulation, whereas in Section III

Fig. 1. The system consists of U buffers, one for each receiver. R
transmission resources are available and user u receives ρurtcurt bits
at time t from transmitter r.

we recapitulate the maximum-entropy principle and use it
to model the uncertain source flows. Following this, Sec-
tion IV presents the solutions for three different states of
knowledge concerning source rates and effective capacities.
Before concluding the paper, in Section V some observa-
tions are made concerning the behavior of the scheduler
for different degrees of uncertainty. The performance is
also compared to that obtained by the proportional fair
scheduler.

II. Distributing Bandwidth Among Users

Sharing a Set of Channels

The problem we shall investigate is how to allocate trans-
mission resources with possibly uncertain effective capac-
ities to sources with uncertain bit rates. A motivating
application has been the problem of link-level predictive
scheduling of a broadband downlink radio resource to mo-
bile users with independently varying channel capacities
due to fast fading [30], [6]. Here we consider a slightly
generalized problem.

In Figure 1 an overview of the system is given. There are
U users, and equally many buffers. We will schedule the
use of the R channels for T time slots. Each channel is here
taken to be a transmission resource that is orthogonal to
all other channels, ie. usage of one channel does not affect
other effective channel capacities. For instance, a channel
may be a frequency bin in an OFDMA system or one out
of several non-interfering antenna beams.

During the scheduling horizon T , each buffer is filled
with nu bits, u denoting the user index. A buffer may also



have a number, Su, of bits remaining in stock from previ-
ous scheduling rounds. The objective of interest will be to
minimize the buffer contents at the end of the scheduled
time horizon. In a completely deterministic situation, this
amounts to minimizing the loss function

L =
U
∑

u=1

g
(

Su + nu −
T
∑

t=1

R
∑

r=1

curtρurt

)

, (1)

where g(x) = x if x > 0, else g(x) = 0. The time-varying
effective capacity of the rth channel to user u is denoted by
the integer curt, while ρurt is the fraction (0 ≤ ρurt ≤ 1)
of the bandwidth of the rth channel that we allocate to
user u at time t. For instance, if ρurt = 1, user u uses
the rth channel exclusively at time t. The total channel
usage

∑

u ρurt for a given channel r at a time t must satisfy
∑

u ρurt ≤ 1. The minimization of (1) would be performed
by adjusting ρurt under whatever constraints the specific
system poses on ρurt.

The total number of incoming bits, nu, in the time in-
terval T is the sum of the influxes at each time instant
t:

nu =

T
∑

t=1

nut . (2)

In cases where we have knowledge of time variations, we
will use this more detailed notation. In general, as a nota-
tional convention, for any quantity a, we will use at most
three indices: aurt, where u (1 ≤ u ≤ U) denotes user in-
dex, r (1 ≤ r ≤ R) channel index, and t (1 ≤ t ≤ T ) time
index. Whenever any of these three indices is omitted the
quantity represents the sum over all values of the omitted
index.

In general, complete knowledge of the effective capaci-
ties or the number of incoming bits at any specific future
time is unavailable. Therefore we cannot directly minimize
L but must resort to assigning probability distributions for
nu and curt and minimize the expected loss. Assuming that
knowledge of effective channel capacities gives no informa-
tion of incoming bit rates 2, and vice versa, we can factor
the joint prior probability3

P (nucurt|I) = P (nu|curt, I)P (curt|I) =

= P (nu|I)P (curt|I) (3)

and the expected loss becomes

〈L〉 =

U
∑

u=1

∞
∑

curt=0

∞
∑

nu=0

P (nu|I)P (curt|I) ×

× g

(

Su + nu −
T
∑

t=1

R
∑

r=1

curtρurt

)

. (4)

2Although certain communication protocols actually change their
transmission rates due to channel variations, these protocols, eg. TCP
(Transmission Control Protocol), react on slower time scales than
would normally be used in scheduling decisions at the link layer.

3To indicate that the probability expressions will change according
to the information at hand, all probabilities are conditioned on I,
which denotes any available information relevant for inferring nu or
curt.

Throughout the rest of the paper we will find it conve-
nient to use the notation 〈Lu〉 for the expected loss con-
tribution corresponding to user u, with the total expected
loss being the sum of all user contributions:

〈L〉 =
U
∑

u=1

〈Lu〉 . (5)

The scheduling framework we propose relies on minimiz-
ing (4) subject to various constraints. The rest of the paper
is concerned with deriving the expected loss contributions
〈Lu〉 for a few typical cases in mobile communications. It
should be emphasized that the cases differ only in what
knowledge the scheduler uses.

Finding the minimum of (4) will in general turn out to
require non-linear programming. The basic constraints on
ρurt are:

∑

u ρurt ≤ 1 ∀r, t (6)

0 ≤ ρurt ≤ 1 ∀u, r, t , (7)

but in general we may have an additional number of matrix
equalities and inequalities representing constraints imposed
by the specific system architecture on different resources.
Examples of such constraints include

• a limited set Ω of rate levels, implying that the transmis-
sion rate ρurtcurt must belong to the set Ω,
• in a time division system, ρurt can only be 0 or 1,
• some channels may not be accessible to all users, i.e.
∃r,∃u, ρurt = 0,
• in a network guaranteeing some minimum level of ser-
vice quality, constraints may take the form of user-specific
minimum channel access levels, ρurt ≥ ηurt, or minimum
transmission rates

∑

r

∑

t ρurtcurt ≥ ϕu.

These types of constraints are readily treated by avail-
able software for solving non-linear programming problems
and present no conceptual difficulties. The general problem
can thus be transformed to different specialized settings,
all represented by the same average loss function but with
different optima due to the restrictions on ρurt.

Minimizing the number of bits remaining in stock is
equivalent to maximizing the sum of the users’ bit rates.
With this criterion, user specific priorities can be intro-
duced as multipliers to each user’s loss contribution in (5).
This can be interpreted as a user-specific cost per bit, ex-
pressed as a function π(u, {θu}) of any set {θu} of known
parameters (such as time, delay, buffer levels, average ef-
fective capacities, average influxes, bit prices, etc.). The
generalized criterion is then to minimize

〈L〉 =

U
∑

u=1

π(u, {θu})〈Lu〉 . (8)

For instance, if π(u, {θu}) is defined as the reciprocal of user
u’s average throughput, we obtain a generalized version of
the proportional fair scheduler [8]. We will not consider
fairness any further; it is sufficient to note that any fairness



requirement or user priority that can be formulated as a de-
terministic function describing an equivalent user-specific
cost per bit is compatible with the given formulation.

Another possible approach could be to use quadratic cri-
teria in order to punish large buffers and consequently aim
at reducing the risk of buffer overflow. A disadvantage
of using a quadratic criterion here is that the scheduler
would no longer maximize the sum of the users’ bit rates,
hence capacity would be wasted. Another problem is that
if priorities are introduced as multiplicative factors for each
user’s contribution to the total loss, the priorities will loose
their intuitive meaning as incurring a certain cost per bit to
the network. It can be shown that some queue stabilizing
schedulers are local approximations to using a quadratic
criterion on the buffer levels (see [31] and [32]). Thus, they
do not maximize throughput and have a risk of starving
other users when a single user floods its buffer.

In the sections following the next we derive the expected
loss contribution for each user u, 〈Lu〉 for different states
of prior information by the use of the maximum entropy
principle. Solutions are given for three different states:
• Section IV-A assumes knowledge of average source rates
and exactly known capacities.
• In Section IV-B we relax the requirement of perfect chan-
nel knowledge and instead assume capacity predictions of
varying accuracy.
• Finally, in Section IV-C source flows are subdivided into
packets and the scheduler requires knowledge of the average
number of packets produced for each packet size.

III. The Maximum Entropy Approach to Source

Flow Modelling

Building on Shannon’s explanation [33] of entropy for
discrete events,

H = −
∑

A

P (A|I) log P (A|I) , (9)

as a measure of uncertainty4, Jaynes proposed [20], [21]
that prior probabilities be constructed by maximizing the
entropy under the constraints given by the information at
hand. The solution is considered to be the least biased
possible as any other solution would imply lower entropy
and thus lead to a less uncertain state than implied by the
given information. In effect, unwarranted assumptions, or
information that is not available, would be injected into the
consequent inference. The entropy concentration theorem
[22] further establishes that the maximum entropy distri-
bution is the sampling distribution which can arise in the
greatest number of ways under the imposed constraints.
Specifically, if in a long data sequence certain mean val-
ues of the sequence have been recorded but not the actual
sequence itself, then out of all possible sequences that sat-
isfy the given mean values, the overwhelming majority will
have an entropy extremely close to the maximum. This is
a combinatorial fact similar to the asymptotic equiparti-
tion principle [33]; the longer the sequence and the more

4Although the logarithm in the entropy expression may be taken to
any base, in this paper we restrict log to denote the natural logarithm.

mean values recorded, the tinier the fraction of sequences
that does not follow the maximum entropy distribution.
A main motivation for using maximum entropy distribu-
tions is thus simply that there are so many more of them!
This has been taken to mean that use of the maximum
entropy principle for assigning priors under incomplete in-
formation results in a ”discipline for avoiding unnecessary
assumptions” [34]. Formal properties of maximum entropy
distributions are given in [2], ch. 11.

The source flows in the current problem are not assumed
to be known in detail. A common assumption concerning
near-future networks is that traffic to a large extent will
consist of Internet flows. Modelling an individual Internet
data source is however a notoriously difficult problem [35].
Various distributions have been proposed, the most com-
monly used consists of assuming that the number of packets
per time unit is Poisson distributed. This distribution has
some justification when the incoming packet streams stem
from a large number of independent sources, but not in
the case of a single-user source flow. Another approach
would be to record individual histograms for each user in
the transmitter and use them as approximate probability
distributions. That is however not realistic; the amount of
data that has to be collected would typically be larger than
that obtainable during a user’s connection.

Instead, we propose to use the maximum entropy ap-
proach. We shall use the maximum entropy principle to
model the source rates nu subject to knowledge of the av-
erage source rate 〈nu〉 for each user5. We first recapitulate
the general maximum entropy problem and its solution,
and then derive the distribution for the source rates.

A. Finding a maximum entropy distribution

Consider a problem where we have knowledge of mean
values Fk of certain functions, fk(·), of data:

n
∑

i=1

Pifk(xi) = Fk , 1 ≤ k ≤ m (10)

where Pi denotes the probability for each possible “state
of nature”, indexed by i ∈ {1..n}.

We wish to find the set of probabilities Pi, for all possible
i, that maximizes the entropy

H = −
n
∑

i=1

Pi log Pi . (11)

This is a standard variational problem solvable by using
Lagrange multipliers when m < n. In Appendix A it is
shown that using the partition function [20]

Z(λ1, . . . , λm) ≡
n
∑

i=1

exp
[

−λ1f1(xi) − . . . − λmfm(xi)
]

(12)

5The average source rate can be estimated at the transmitter based
on the incoming data. An initial estimate can be obtained by using
the average of all users’ data streams.



we have the formal solution

Pi =
1

Z(λ1, . . . , λm)
exp
[

−λ1f1(xi) − . . . − λmfm(xi)
]

,

(13)
where {λk} are the Lagrange multipliers which are chosen
so as to satisfy the constraints (10). This is the case when

Fk = − ∂

∂λk

log Z, 1 ≤ k ≤ m . (14)

In (10) - (14) we have the general maximum entropy
problem and its solution. It should be noted that the so-
lution presented here automatically includes the constraint
∑n

i=1 Pi = 1 without need for an additional Lagrange mul-
tiplier.

B. The maximum-entropy probability distribution for the
source flows

We are to assign a prior probability distribution for
non-negative integer quantities, nu, u = 1 . . . U , having
known means 〈nu〉. Denoting this information by I, we
now turn to find the P (nu|I) which maximizes the entropy
−∑nu

P (nu|I) log P (nu|I) under the constraints

〈nu〉 =

∞
∑

nu=0

nuP (nu|I) , u = 1 . . . U . (15)

Notice that the summation index reflects that the integer
nu is non-negative. The partition function (12) becomes

Z(λ1, . . . , λU ) =

∞
∑

n1=0

. . .

∞
∑

nU=0

exp(−λ1n1 − . . . − λUnU )

=

∞
∑

n1=0

(

. . .

( ∞
∑

nU=0

exp(−λUnU )

)

. . .

)

exp(−λ1n1)

=

U
∏

u=1

1

1 − e−λu

, (16)

where we first rewrote the expression according to xa+b =
xaxb and then used the closed form expression for the ge-
ometric series. The Lagrange multipliers are now deter-
mined from (14):

〈nu〉 = − ∂

∂λu

log Z =
1

eλu − 1
. (17)

Independence between different probabilities yields higher
entropy than dependencies, and consequently the maximum-
entropy probability assignments P (nu|I) factor:

P (n1, . . . , nU |I) = P (n1|I) . . . P (nU |I) . (18)

Inserting (16) into (13) and using (18) and (17) we obtain

P (nu|I) = (1 − e−λu)e−λunu , nu = 0 . . .∞

=
1

〈nu〉 + 1

( 〈nu〉
〈nu〉 + 1

)nu

(19)
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Fig. 2. The maximum entropy probability distribution for a non-
negative integer quantity n with known mean 〈n〉.

as the distribution of highest entropy subject to the con-
straints (15) and

∑

P (nu|I) = 1.
The maximum-entropy derivation of the negative expo-

nential distribution above can also be found in [1]. In Fig-
ure 2 the distribution is plotted for different mean values.
The skewness of the curve arises because nu is only defined
for non-negative values. Hence, for a larger mean value
the curve tends more and more towards a uniform distri-
bution. The distribution would be different if nu had a
known upper bound. For instance, if the nu represent the
number of dots on the face of a die, we must include that
1 ≤ nu ≤ 6 in our probability derivation. This yields a
distribution which is skewed differently depending on the
given mean values6.

IV. Specific Solutions to the General Resource

Allocation Problem

A. Knowledge of average source rates and exact capacities

Here we will work out the expected loss contribution of
user u, 〈Lu〉 (cf. (5)), for the scheduling problem when
the average number of incoming bits during the interval T ,
〈nu〉, in each buffer is known and the effective capacities of
the transmitters are exactly known. Denoting this infor-
mation by I and following the derivation in Section III-B
we assign P (nu|I):

P (nu|I) =
1

〈nu〉 + 1

( 〈nu〉
〈nu〉 + 1

)nu

. (20)

For clarity, we introduce

xu =

T
∑

t=1

R
∑

r=1

curtρurt , (21)

6For the case of data flows, there is an upper bound which is deter-
mined by the bandwidth of the fixed network preceding the buffers.
This limit is neglected here because it is usually much larger than the
expected source flow of each user.



describing the total number of bits sent from buffer u over
the scheduled time horizon T . With P (nu|I) given by (20)
the expected loss contribution with known curt becomes:

〈Lu〉 =

∞
∑

nu=0

P (nu|I)g(Su + nu − xu) (22)

=

{

〈nu〉
(

〈nu〉
〈nu〉+1

)xu−Su

, xu > Su

Su + 〈nu〉 − xu , xu ≤ Su .
(23)

The summation over nu in (22) is evaluated in Appendix
B with the result (23).

In certain problems the expected values of the influxes
at time t defined in (2), nut, vary over time, i.e. we have
knowledge of 〈nut〉 (defined analogously to (15)) for spec-
ified times t. In Appendix C the solution for this case is
derived. The resulting loss contribution for time-varying
expectations of incoming bit rates is:

〈Lu〉 =

{

Ku〈nu1〉
(

〈nu1〉
〈nu1〉+1

)xu−Su

, xu > Su

Su + 〈nu〉 − xu , xu ≤ Su ,
(24)

with

Ku =

T
∏

k=2

1

〈nuk〉 + 1
× 1

1 − 〈nuk〉
〈nuk〉+1

〈nu1〉+1
〈nu1〉

(25)

where, for the case xu > Su, the influx averages in Ku are
no longer ordered chronologically, but have been reordered
by decreasing size, with the index k, to ensure convergence
of the geometrical series. Notice also that Ku, the product
over all averages which are smaller than 〈nu1〉, is a constant
that does not depend on the actual resource allocation ρurt.
Therefore, if the minimum loss is calculated iteratively this
factor need not be recalculated at each iteration.

B. Knowledge of average source rates and accuracy of ca-
pacity predictions

In this section we turn to a case which is of particular
interest in applications for mobile communications. Here,
a transmitter may predict future channel conditions with
some known accuracy based on measured fading patterns at
the receivers (see e.g. [36], or [37]). Adaptive modulation
is then used to adjust the effective capacity.

We must now consider three different effective capaci-
ties: the predicted one ĉurt, the potential one c̄urt, and the
eventually obtained one curt. The potential effective capac-
ity c̄urt is the number of bits that could be sent over the
channel at time t with a prescribed error rate if we knew
the channel and thus could choose the optimal modulation
level. With inaccurate channel knowledge however, if the
potential effective capacity is lower than predicted, then
the modulation level may be set too high leading to a per-
formance degradation due to increasing bit error rates. If
on the other hand the predicted capacity is lower than the
potential capacity, then the modulation level is set lower
than the optimum and the obtained effective capacity will
equal the predicted capacity (i.e. the obtained capacity

will again be lower than the potential capacity). Thus, the
probability for the outcome of the prediction (in the sense
of being larger than, smaller than, or equal to the poten-
tial capacity) will determine the probability for obtaining
a given effective capacity.

We assume that the accuracy of prediction is represented
by a known variance, σ2

urt, and that the prediction itself
ĉurt is the expected value of the potential (but unknown)
effective capacity, c̄urt. As an example of how the predic-
tion can be obtained, in [36], [37] an unbiased quadratic
channel power predictor is derived, based on which it is
possible to derive a pdf for the channel power ([36] ch. 7-
8). Using that pdf one can determine the corresponding pdf
for the effective capacity given a certain BER requirement
by a change of variables. This can for instance be carried
out by using the approximate BER expressions from [38].
Consequently, the expectation of the resulting pdf provides
an unbiased prediction of the effective capacity.

In the case of a nonnegative integer quantity such as the
potential effective capacity, finding the maximum-entropy
distribution for known expectation and variance is analyt-
ically intractable. However, it is well-known [33] that the
Gaussian distribution has the highest entropy for a given
mean and variance if the quantity of interest is defined over
the entire real axis. If the expectation of a Gaussian distri-
bution is positive and large compared to its standard devi-
ation, then it has negligible probability mass for negative
numbers. Therefore, for reasonably accurate predictions
of c̄urt we may safely assign a Gaussian distribution as an
accurate description of our state of knowledge.

However, as mentioned, the obtained capacity depends
on the prediction error ĉurt− c̄urt. There are three possible
cases:
1. ĉurt ≤ c̄urt. In this case the obtained effective capacity
will equal the predicted one, curt = ĉurt.
2. c̄urt ≤ ĉurt ≤ c∗urt. If the predicted value is higher than
the potential effective capacity, then the modulation level
will be set too high and thus the obtained effective capac-
ity will decrease. Here, curt is given by a function f(ĉurt)
which depends on coding and other system-specific param-
eters. A reasonable approximation is to assume that the
obtained effective capacity decreases linearly with the pre-
dicted value, reaching zero at a point c∗urt = vc̄urt. We
comment further on this model choice and the determina-
tion of v in the end of this section.
3. ĉurt ≥ c∗urt. In this interval, the obtained capacity is
zero.

In summary we obtain an effective capacity curve as de-
scribed by Figure 3.

In Appendix D the probability for the obtained effective
capacity curt given the predicted value is derived as the
sum of the contributions from each of the three cases. It is
shown that the probability for the obtained capacity is

P (curt|I) = P1(curt|I) + P2(curt|I) + P3(curt|I) (26)

where

P1(curt|I) =
1

2
δ(curt − ĉurt) (27)
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Fig. 3. The obtained capacity as a function of the predicted capacity
with linear decline for too large predictions.

P2(curt|I) =
v − 1√
2πσurtv

exp

[

−
(

v − 1√
2σurtv

)2

(curt − ĉurt)
2

]

× (H(curt) − H(curt − ĉurt)) (28)

P3(curt|I) = δ(curt)

(

1

2
− 1

2
erf

(

(v − 1)ĉurt

vσurt

√
2

))

(29)

where H(x) denotes the Heaviside step function and

erf(x) = 2√
π

∫ x

0
e−t2dt. The probability distribution for the

obtained capacity is plotted for ĉurt = 40 and for different
values of σurt and v in Figure 4.

We will now calculate each user’s contribution 〈Lu〉 to
the expected loss (4) with respect to P (nu|I) and P (curt|I).
Assuming independence between the two probability distri-
butions, we can use the results obtained in the last section.
The expected loss contribution will consist of a sum of two
components, one for xu > Su and another for xu ≤ Su,
weighted by their respective probabilities P (xu > Su|I)
and 1 − P (xu > Su|I):

〈Lu〉 = P (xu > Su|I)〈Lu1〉 + (1 − P (xu > Su|I))〈Lu2〉 .
(30)

It is however reasonable to assume that P (xu > Su|I) is
approximately 1 or 0, eg. when the standard deviation for
the prediction is not extremely large. Hence we use the
simpler rule

〈Lu〉 ≈
{

〈Lu1〉 , 〈xu〉 > Su

〈Lu2〉 , 〈xu〉 ≤ Su ,
(31)

where 〈Lu1〉 and 〈Lu2〉 are derived below with the results
(42) and (43), and

〈xu〉 =

R
∑

r=1

T
∑

t=1

ρurt〈curt〉 (32)

where

〈curt〉 =

∫

curtP (curt|I)dcurt =
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Fig. 4. The probability distribution for the obtained capacity given
the prediction ĉurt = 40.

=
1

2

{

ĉurt + ĉurterf (αurtĉurt)

+
1√

παurt

[

exp
(

−α2
urtĉ

2
urt

)

− 1
]

}

(33)

with

αurt =
v − 1√
2σurtv

. (34)

The integral is straightforward and the proof is omitted.

Consider the calculation of 〈Lu1〉 which is the expecta-
tion with respect to P (curt|I) of the corresponding case in
(23). To distinguish between the expected loss with re-
spect to P (nu|I) from (23) and the one currently under
investigation we here assign the notation 〈Lu1〉P (nu|I) for
the former one.

Using the algebraic relation xa+b = xaxb we rewrite the
expression for xu > Su in (23) as

〈Lu1〉P (nu|I) = 〈nu〉
( 〈nu〉
〈nu〉 + 1

)

∑

T

t

∑

R

r
curtρurt−Su

= 〈nu〉
( 〈nu〉
〈nu〉 + 1

)−Su T
∏

t=1

R
∏

r=1

( 〈nu〉
〈nu〉 + 1

)curtρurt

.

Averaging over P (curt|I) gives the expected loss contribu-
tion with respect to both P (nu|I) and P (curt|I):

〈Lu1〉 = 〈nu〉
( 〈nu〉
〈nu〉 + 1

)−Su

×
T
∏

t=1

R
∏

r=1

∫ ∞

−∞
P (curt|I)

( 〈nu〉
〈nu〉 + 1

)curtρurt

dcurt .(35)

Inserting (26) into (35), the integral over curt contains
three mutually exclusive intervals. We label the corre-
sponding integrals I1, I2, and I3. The first integral I1



corresponding to the point curt = ĉurt is simply

I1 =
1

2

( 〈nu〉
〈nu〉 + 1

)ĉurtρurt

. (36)

The second integral, I2, ranges from 0 to ĉurt. Using
(28) we obtain

I2 =

∫ ĉurt

0

P2(curt|I)

( 〈nu〉
〈nu〉 + 1

)curtρurt

dcurt (37)

=
1

2
exp

(

ρurtĉurt log

( 〈nu〉
〈nu〉 + 1

)

+ ρ2
urtγ

2
urt

)

×

×
(

erf

(

(v − 1)ĉurt

vσurt

√
2

+ ρurtγurt

)

− erf (ρurtγurt)

)

, (38)

where

γurt =
σurtv

(v − 1)
√

2
log

( 〈nu〉
〈nu〉 + 1

)

. (39)

Finally, the third integral, I3, represents the single point
curt = 0 and using (29) we have:

I3 =

( 〈nu〉
〈nu〉 + 1

)0ρurt
(

1

2
− 1

2
erf

(

(v − 1)ĉurt

vσurt

√
2

))

(40)

=
1

2
− 1

2
erf

(

(v − 1)ĉurt

vσurt

√
2

)

. (41)

Using I1 from (36), I2 from (38), and I3 from (41) in
(35) the expected loss contribution of user u with predicted
capacities is, if xu > Su,

〈Lu1〉 = 〈nu〉
( 〈nu〉
〈nu〉 + 1

)−Su T
∏

t=1

R
∏

r=1

(I1 + I2 + I3) . (42)

The second case in the expected loss contribution from
user u (31) is simply

〈Lu2〉 =

∫

P (curt|I)(Su + 〈nu〉 − xu)dcurt

= Su + 〈nu〉 − 〈xu〉 (43)

The loss contributions in (42) and (43) are valid when
predicted capacities can be modelled by a Gaussian distri-
bution with known variance and expected value 〈ĉurt〉 =
c̄urt. It also requires that the obtained capacity decreases
linearly when the predicted capacity ĉurt is larger than the
potential capacity c̄urt. It should however be emphasized
that the linear decrease and the actual choice of v is a sub-
jective choice, and not a property of the channel. The value
of v depends on how sensitive the application is to depar-
tures from the desired BER. For low BER requirements,
even a small prediction error leads to a substantial depar-
ture from the desired BER. For example, with uncoded
M-QAM modulation7, increasing from 4 bits to 5 bits per
symbol at an SNR of 20 dB increases the BER by a factor
of more than 200. (Use of coding increases the sensitivity.)

7Approximate BER formulas from [39] are used in these calcula-
tions.

Typically, in order to determine v we find the BER in-
crease which means that the data must be retransmitted.
We then determine the corresponding rate increase that
would cause this BER discrepancy. If for instance M-QAM
is used with a desired BER of 10−4, and if a BER increase
by a factor 100 would require that the data be retransmit-
ted, then it can be found that v ≈ 1.5 will be a good model.
If a BER increase by a factor 10 would require retransmis-
sion, then v ≈ 1.2. Typical values of v are thus in the range
1 < v < 2. The linear decrease in curt for predictions larger
than the potential capacity can be questioned, but clearly
it satisfies the obvious requirement that the curve should
be monotonic decreasing. Other alternatives would be to
use either some concave of some convex decreasing func-
tion, but that could hardly make any substantial difference
for the actual expected loss value unless the magnitude of
the function’s derivative would be very nearly zero for one
interval and large for the remaining part. These cases will
not be considered here, as they would rarely be encountered
in practice.

The final expression (42) for 〈xu〉 > Su is rather com-
plex and in the simulations of Section V-D we investi-
gate whether the basic scheduler assuming perfect channel
knowledge can be used with predicted values as an alterna-
tive to the more computationally burdensome minimization
of (31). A simpler alternative to using (31) is however pos-
sible; note that we can approximately retain the desired
property of lowering the predicted effective capacity when
the uncertainty is high by using (23) with xurt replaced by
〈xurt〉 from (33). This approximation to (31) is exact if Su

is large compared to 〈xurt〉.

C. Knowledge of Average Rates for Each Packet Size

We now consider the case where the sizes of incoming
packets are known to the scheduler. The number of possible
packet sizes is assumed small, for reasons we shall come
back to in the derivations. Further, the expected number of
incoming packets of each size in the time interval T is given.
The effective capacities curt are here assumed known.

Let the packet sizes in the uth buffer, cf. Figure 1, belong
to a set {ku} with Ku elements. Let muk be the number of
packets of size k which are received in the uth buffer dur-
ing the scheduling horizon T , with 〈muk〉 assumed known.
In order to find a closed-form expression for the expected
loss, we make a logic partitioning of each buffer u into
Ku buffers. Hence, each user’s buffer is split so that each
packet size gets its own buffer. The remaining number of
bits from the previous round, Su, is also split into Ku par-
titions Su =

∑

k kSuk. Note however that this is only a
logical separation for mathematical convenience.

Our new loss function is

L =

U
∑

u=1

∑

k∈{ku}

g

(

kmuk + kSuk −
∑T

t=1

∑R

r=1
curtρurt

Ku

)

, (44)

where kmuk is the size (in bits) of the packet multiplied
by the number of packets received by that size. It should
be noted that the packet-enumerated loss function (44) is



equivalent to the bit-enumerated function (1). With the
new loss function it is however easier to model knowledge
of size-dependent packet-rates than when using (1).

For each user u we assign a probability distribution de-
scribing our knowledge of the future influxes muk corre-
sponding to packets of size k. The probability assignment
is analogous to (19):

P (muk|I) =
1

〈muk〉 + 1

( 〈muk〉
〈muk〉 + 1

)muk

, (45)

and the resulting expected loss contribution of user u is

〈Lu〉 =
∑

k∈{ku}

∞
∑

muk=0

P (muk|I)g
(

kmuk + kSuk − xu

Ku

)

.

(46)
For each k ∈ {ku} we must separate between two possible
cases, xu

kKu
> Suk and xu

kKu
≤ Suk, which leads to differ-

ent expressions. The derivation follows the procedure in
Appendix B where (23) is derived. Consequently the total
user contribution consists of the sum

〈Lu〉 =
∑

k∈{ku}
〈Luk〉 (47)

where

〈Luk〉 =







k〈muk〉
(

〈muk〉
〈muk〉+1

)

xu

kKu
−Suk

, xu

kKu
> Suk

k〈muk〉 + kSuk − xu

Ku
, xu

kKu
≤ Su .

(48)
It should be noted that if there is a wide variety of packet

sizes, i.e. if Ku is large, then the expression above would
consist of too many terms for it to be tractable in actual
calculations. We should then instead assign a probabil-
ity density for nu, the number of incoming bits in each
buffer. This is possible (see [1] for a similar derivation)
and results in a Gaussian approximation. The derivation
is rather lengthy, and it is not presented here due to space
considerations.

V. Comments and Simulations

By using prior probability distributions with maximum
entropy subject to our information constraints, we avoid as-
sumptions concerning the “underlying” long-run behavior
of the sources. The use of the maximum entropy distribu-
tion is motivated because it is the distribution which can
arise in the greatest number of ways when the outcomes
are constrained to agree with the given information [22].

Other reasonable approaches to modelling the influxes
include using more information in the initial probability
assignments, and adapting the distributions according to
incoming data using Bayes’ theorem. For instance, if we
have knowledge of correlations over time or among differ-
ent user streams, then we can use this information in the
maximum entropy formalism to obtain prior distributions
of lower entropy than using the mean values only. If such
correlations are known to exist but their absolute values are
unknown a priori, then the initial probability distribution

should be updated recursively according to Bayes’ theo-
rem as observations of the data streams become available.
More research needs to be directed towards finding meth-
ods that can infer patterns in on-going data streams and
adapt posterior distributions with low complexity. A step
in this direction has been taken in very recent work [40],
but more work is needed for the specific case of individual
data streams.

A. On the optimality of time division multiple access
(TDMA)

Previous work [41] claims that time division is an optimal
scheduling policy in CDMA on the grounds that it mini-
mizes the received power levels from other users. However,
in CDMA systems, the bad effects of interference are alle-
viated by well-designed codes. The interfering users’ signal
levels are not necessarily harmful to the detection perfor-
mance of the desired user and thus we cannot conclude that
it is always optimal to use time division.

In spite of this one might conjecture that, would the
buffers never be emptied, it might be optimal to use time
division also when interference does not affect receiver per-
formance. This conjecture was proven to be true in the
deterministic case in the sense of maximizing the sum-of-
rates capacity of an uplink in a multiuser single-cell sce-
nario by Knopp and Humblet [3] when the time-varying
fading channels were perfectly tracked and known at the
transmitters. In general, however, neither source rates nor
channels are perfectly known and buffers may be emptied.
Hence, time division is not always an appropriate choice.
To see this, consider the problem of scheduling one chan-
nel one time slot at a time, ie. R = 1, T = 1. It can
be observed from the expected loss expression (23) that if
the buffer contents of the user with the highest effective
capacity cut satisfies Su ≥ cut, then the minimum loss is
obtained by transmitting exclusively to that user. If this
condition is not met, then we cannot conclude that ex-
clusive transmission is optimal in the sense of maximizing
expected throughput.

Example V.1: Consider the problem of assigning band-
width across two users using one channel and one time
slot, i.e. U = 2, R = 1, T = 1. Assume that the users have
S1 = S2 = 10 bits in stock and their expected influx for
the next time slot is 〈n1〉 = 〈n2〉 = 10. Assume knowledge
of the effective capacities, c1 = 17 and c2 = 20.

Figure 5 plots the total expected buffer contents using
(23) as a function of ρ1 = 1−ρ2. The optimum assignment
is to split the bandwidth almost equally among the users.
Even though the user with the highest capacity seems to
have a large probability for being able to transmit 20 bits
(since S2 + 〈n2〉 = 20) the uncertainty is still considerable
and the best decision is to refrain from exclusive transmis-
sion. The probability that n2 = 0 is large, and we can only
be certain about transmitting 10 bits (the number of bits
already in stock) to user 2. Therefore, it would be unnec-
essarily risky to let user 2 obtain all bandwidth when we
know for certain that it can be used to reduce the buffer
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Fig. 5. The expected loss using (23) as a function of ρ1 = 1− ρ2 for
the scenario in Example V.1.

levels of user 1. 2

If the scheduler uses a longer time horizon, the minimum
loss is obtained with exclusive allocations for each time slot
if for every time slot the user with maximum capacity at
that time fulfills the criterion Su ≥ cut. If there at any
time slot is some user with maximum effective capacity
having less data to send than the channel allows, no general
conclusion about the optimality of exclusive transmission
at any time slot can be drawn. We may conjecture that
the scheduler will indeed use exclusive assignments also in
many cases that are not covered by the general conditions
for optimality; the loss expression does however not give
any simple criterion for this to be the optimal choice in
general.

Further, for the conjecture to be true, the transmission
resources (consisting of antennas, codes, modulation for-
mat, etc.) must be such that there is no additional advan-
tage of letting two users transmit at the same time. For
instance, some resources might not be mutually exclusive,
i.e. two users may utilize them fully at the same time. The
model used throughout this paper does not consider such
resources.

B. Multiuser diversity gain

In this section we investigate how the capacity of a sys-
tem increases with the number of users when utilizing mul-
tiuser diversity.

In Figure 6 the sum throughput is plotted as a function
of the number of users in a simulated system. The results
were obtained using the basic scheduler with perfect chan-
nel knowledge using (23) in a scenario with two parallel
independently fading channels (R = 2). Each user expe-
rienced independent Rayleigh fading on the time scale of
slots, and the effective capacity was modelled as the integer
nearest below the Shannon capacity for a channel disturbed
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Fig. 6. The total downlink throughput obtained in a system employ-
ing the basic scheduler increases with the number of users. Each user
experienced independent Rayleigh fading on the time scale of slots,
with an average SNR of 10 dB.

by additive white Gaussian noise only8,

curt = log2 (1 + γurt) , (49)

where γurt denotes the SNR at the receiver. Assuming one-
tap Rayleigh fading, γurt is exponentially distributed. The
average SNR was set to 10 dB, and the source rates were
set so that the transmission buffers were never emptied.

Define the multiuser diversity gain, or scheduling gain, α,
as the ratio between the obtained total throughput, x, and
the throughput that would have been obtained by simple
round-robin scheduling, x(RR),

α =
x

x(RR)
. (50)

Figure 6 then describes the scheduling gain of the simu-
lated scenario, since round-robin scheduling gives a sum
throughput equal to the average effective capacity for any
one of the users.

C. Comparison with proportional fair scheduling

In a new set of simulations the proportional fair scheduler
(see eg. [8]) was compared to the basic scheduler from
Section IV-A with knowledge of effective capacities (using
(23)). Both these schedulers use knowledge of the channel
to guide their decisions. The proportional fair scheduler
does however not consider the effects of source rates and
hence the possibility of empty buffers. Implicitly it assumes
that there is always data to send.

The proportional fair scheduler works as follows. The
data rates that the users’ channels can support at each time
slot t (the effective capacity) is known to the scheduler.
The scheduler then keeps track of the average throughput

8The model used here would in reality require perfect channel adap-
tation and a continuum of modulation levels and coding rates.



TABLE I

Parameters for the comparison of proportional fair scheduling with

the maximum entropy scheduler for known channels. Average

inflows per time slot,
〈ni〉

T
, average SNR (dB) at the receiver, γu,

and the corresponding average effective channel capacity (number of

bits per time slot), 〈curt〉.

〈ni〉

T
γu(dB) 〈curt〉

User 1 2 10 2.9
User 2 6 13 3.7
User 3 1.5 13 3.7

Tu(r, t) of each user u in a past window of length tc. On
each channel r and time slot t, the scheduler transmits
exclusively to the user with the largest curt

Tu(r,t) . The param-

eter tc is used as a forgetting factor in the calculation of
the windowed average throughput. It is used as a means
of obtaining fairness, by giving a user access to a chan-
nel when its effective capacity is high relative to its own
average throughput over the time scale tc. In [8], a single
base station is considered. Here, we adapt the proportional
fair scheduler to multiple parallel channels simply by treat-
ing an additional channel as additional time slots. In other
words, if we are to assign two channels and three time slots,
the scheduler works exactly as if it were to schedule one
channel and six time slots. After each single assignment,
the average throughput Tu(i) (where i indexes assignments
regardless of whether it describes time slot or channel) is
recalculated according to [43]:

Tu(i) = (1 − 1

tc
)Tu(i − 1) +

1

tc
cu,i−1δ(u − u∗) , (51)

where δ(u− u∗) = 1 if user u was the transmitting user u∗

in the most recent assignment, otherwise, δ(u − u∗) = 0.
The schedulers were run on the same data sets, with

source rates nut drawn from a Poisson random number
generator9, and effective capacities generated from the rate
expression (49) using an exponential pdf for the SNR. The
parameters used are listed in Table I. The forgetting factor
for the proportional fair scheduler was set to tc = 7.

The simulated scenario consisted of two parallel indepen-
dently fading channels (R = 2) and three users (U = 3).
The scheduling horizon was T = 3 time slots, and the
schedulers were run for a total of 60 time slots. The re-
sults listed in Table II are averages from 100 realizations.
The table reports average throughput and average buffer
levels after the 60 time slots.

The results show that in this scenario the total through-
put increases by approximately 30% using (23) compared
with using the proportional fair scheduler. In particular,
the throughput of user 2 is severely degraded when buffer
contents are neglected. In terms of buffer levels it is clear
that the second user’s buffer would overflow, causing fur-
ther throughput degradation and increasing delays due to

9This choice is admittedly somewhat arbitrary. For a discussion of
the problems involved in modelling and simulating individual Internet
sources see [35].

TABLE II

Results for the comparison of proportional fair scheduling with the

maximum entropy scheduler for known channels. The average

number of bits remaining in the buffers after 60 time slots are listed

in columns 1 and 2 for the proportional fair scheduler (PF) and the

scheduler with known curt proposed here (ME). The last two

columns display average total throughput in bits.

S60(PF) S60(ME) Tp(PF) Tp(ME)
User 1 2 11 117 108
User 2 170 35 191 326
User 3 0 4 92 88
Total 172 bits 50 bits 400 bits 522 bits

the invoking of higher-layer mechanisms such as decreasing
transmission rates or retransmissions.

Comparing the results for users 2 and 3, having equal
channel statistics, we see that the throughput ratio of the
two users is identical to the ratio of their average inflows
when using maximum entropy scheduling. If the inflows
are taken to reflect each user’s service requirements, then
this means that fairness is obtained without any explicit
fairness constraint on the policy. On the other hand, a
user with very low average SNR and small channel vari-
ability would obviously risk starvation with the proposed
scheduler.

It can be noted that a maximum SNR scheduler (which
is a special case of the proportional fair scheduler when
all users have independent but identical channel statistics)
could approach the performance of the maximum entropy
scheduler were the transmission buffers constantly flooded
with data. A more important observation is that this case is
normally prevented from occurring in a real system due to
rate-control mechanisms such as provided by TCP. Sched-
ulers should therefore always take buffer contents into ac-
count. The additional use of source rate diversity further
increases the performance of the maximum entropy sched-
uler.

Another interesting result from this simulation can be
observed by studying the throughput obtained for the sec-
ond user, 326 bits. Instead of trying to use multiuser di-
versity to our advantage we could split the available band-
width into three equal parts, and always transmit to all
users. Instead of 326 bits, user 2 would then obtain a total
throughput of 3.7

3 × 2 × 60 = 148 bits. Thus, the indi-
vidual throughput increases by 120% when using the fluc-
tuating channels and arrival rates as sources of diversity.
The proportional fair scheduler only achieves an increase
of 29% since it does not take the varying arrival rates into
account. Evidently, there are substantial benefits associ-
ated with taking advantage of the fact that, on average,
the other users’ arrival rates are lower than their effective
capacities. Neglecting this source of diversity results in
decreased individual and total throughput.

D. Results for different amounts of channel uncertainty

Having established that channel information and taking
arrival rates into account are critical issues, two questions
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naturally arise:
1. How does the accuracy of channel predictions affect in-
dividual and total throughput?
2. Do we need to use the more complex scheduler when
using inaccurate channel predictions or can we equally well
use the simpler one, assuming perfect channel knowledge?

To answer the first question, we study the throughput
degradation of a user as a function of increasing prediction
inaccuracy. The simulation setup consists of scheduling six
users according to (31), with two independently fading and
non-interfering channels, R = 2, and a scheduling horizon
of T = 3 time slots. All users have an average SNR of
10 dB, and the Rayleigh fading model from Section V-B
is used with the effective capacity described by (49). (The
average potential effective capacity is thus approximately
2.9 bits.) The buffer influxes are large compared to the
effective capacities. All users except the first one have
nearly perfect prediction, σurt = 0.1. During a simula-
tion run for 60 time slots, user one’s prediction accuracy
was held at a constant value. The simulation was then
repeated for a range of increasing prediction inaccuracies
σ1rt = 0.1 . . . 3.5. Figure 7 shows the throughput of user
one for two different BER sensitivities, v = 1.3 and v = 1.1.
We see that the throughput degrades very quickly for de-
creasing prediction accuracy. Already at σ1rt = 0.15 the
throughput has degraded to roughly 60% of what a user
with σ1rt = 0.1 obtains. The reason is that there is almost
always another user with equally high predicted capacity,
but with higher accuracy, thereby leaving user one at a dis-
advantage since a larger uncertainty σurt results in lower
expected effective capacity (33).

In terms of an individual user’s performance at any spe-
cific time slot, therefore, an important property of the pre-
dictor is that its accuracy should be comparable to that of

the other users. On the level of system throughput, how-
ever, since the expected throughput 〈xurt〉 decreases with
prediction inaccuracy, the total throughput necessarily de-
creases too if the accuracy is equal among users. But if the
accuracy varies independently among users, it is likely that
there is at least one user with both high SNR and good ac-
curacy. From a system throughput perspective, therefore,
prediction accuracy should preferably vary across users. As
long as each user has on average similar prediction accuracy
as other users, this is indeed desirable for individual users
as well. Furthermore, prediction accuracy in the high-SNR
region is more important than for low SNR, since a user
will only be scheduled for transmission in the former case.

Addressing the second question, a simulation setup was
run comparing (31) with the basic scheduler using (23) but
employing the predicted values of the effective capacity,
ĉurt, instead of the true values. Here, all parameters ex-
cept the prediction accuracies were the same as for the
previous simulation; the prediction accuracies varied inde-
pendently among users, channels and time slots according
to a uniform probability distribution, σurt ∈ [0, 3].

The sum throughput using (31) was 17% higher than
when using (23) for v = 1.1, and 16% higher for v = 1.3.
The performance difference between the two schedulers10

can be interpreted as a third diversity dimension; in ad-
dition to multiuser diversity and source rate diversity, the
prediction accuracy diversity allows the full Bayesian solu-
tion (31) to pick a user with both high effective channel
capacity and high prediction accuracy. This implies that
the more complex scheduler should be used in situations
where different users have different prediction accuracies,
for instance due to different user velocities.

VI. Conclusions

In this paper a problem of optimizing resource assign-
ments in the presence of uncertainty was considered for
applications in mobile communications. The problem was
formulated as a minimization of the expected total buffer
contents, given by the general expression (4), a sum of con-
tributions from each user. It was noted that the framework
is compatible with user priorities represented by determin-
istic functions describing an equivalent cost per bit.

Each user’s contribution to the total expected loss was
calculated for three different cases, each representing a typ-
ical state of knowledge at the scheduler. With knowledge
of effective capacities and of average influxes, the expected
loss contribution was found in (23). Using knowledge of
the accuracy of capacity predictions, a Gaussian distribu-
tion was assigned for the predicted capacities. It was noted
that the obtained capacity is a function of the prediction,
and the resulting probability distribution for the effective
capacities was derived for the case when too large predic-
tions result in a linear decrease of obtained capacity. The

10Notice that if all users would have had the same prediction accu-
racy (this is unlikely, since different users move at different velocities),
then there would not have been any performance difference between
the two schedulers, since using (31) would merely reduce all users’
expected capacity by a nearly equal amount.



consequent expected loss contribution was found in (31).
In a packet data system with knowledge of packet sizes, ef-
fective capacities, and average influxes for each packet size,
the resulting expected loss contribution was described by
(46).

A substantial increase in throughput due to multiuser di-
versity gain from maximum entropy scheduling was demon-
strated in simulations. A comparison of maximum entropy
scheduling with the proportional fair scheduler showed that
the maximum entropy scheduler achieved higher through-
put by also utilizing source rate diversity. Further simula-
tions demonstrated that in order to obtain high throughput
the scheduler needs to have accurate channel knowledge.
Degradation of channel prediction accuracy for one user
inevitably led to reduced throughput for that user as de-
scribed by Figure 7. Including knowledge of prediction
accuracy into the criterion resulted in improved system
performance compared to using the basic criterion with
predicted capacities instead of the true values. The per-
formance difference was a consequence of exploiting the
prediction accuracy diversity. The larger the variations in
channel prediction accuracy and the more users in the sys-
tem, the larger the resulting gain of using the full Bayesian
solution (31).

The Bayesian solution thus prioritizes users with well-
determined high-rate channels, and with data to send. In
the limit, as the number of users tends to infinity and the
prediction accuracies vary independently over the users,
the full Bayesian solution would approach the throughput
of the scheduler with perfect channel knowledge, since then
there would almost always exist a user having maximum
effective capacity with negligible uncertainty.

Observe also that the expected loss expressions could be
used in other types of schedulers as well. For instance, with
strict delay requirements, a simple and effective scheme for
exclusive one-slot scheduling would be to transmit to the
user u who yields the largest total loss decrease, 〈L(ρur =
0)〉 − 〈L(ρur = 1)〉 (which is the best exclusive scheduling
policy in the sense of minimizing expected loss). Then at
the next time slot, the remaining U−1 users would compete
similarly. For each time slot, the set of competing users is
reduced, and after U time slots, the process repeats. The
maximum delay for any user would then be 2U − 1 time
slots. This type of scheduling policy with reduced channel
feedback is investigated further in [44].

In conclusion it should be pointed out that, although
the framework was formulated in a communication theo-
retic setting, the rationale can be employed in other forms
of resource optimization problems where the demand, nu,
is incompletely known. The case of incompletely known
supply, curt corresponding to the solution laid out in Sec-
tion IV-B, would however require a different supply dis-
tribution than here. This is in principle straightforward;
given any testable information regarding the actual supply
mechanisms, find the P (curt|I) that maximizes the cor-
responding entropy. Given that model, the solution that
maximizes the number of satisfied orders is again given by
(4).

Appendices

A.

The maximum entropy distribution is found using the
Lagrange method. Using the constraints (10) we form the
functional

H(P ) = −
n
∑

i=1

Pi log Pi +

m
∑

k=1

λk

(

Fk −
n
∑

i=1

Pifk(xi)

)

(52)
and differentiate with respect to Pi:

∂H(P )

∂Pi

= − log Pi − 1 −
m
∑

k=1

λkfk(xi) . (53)

Setting this equal to zero we have the general form of
the entropy-maximizing probability mass:

Pi = exp
[

−1 −
m
∑

k=1

λkfk(xi)
]

. (54)

However we have not yet included the constraint that
∑n

i=1 Pi = 1. This is just a normalization, and we obtain:

Pi =
1

∑n
i=1 exp

[

−∑m
k=1 λkfk(xi)

] exp
[

−
m
∑

k=1

λkfk(xi)
]

.

(55)
The Lagrange multipliers λi are chosen so that the con-
straints (10) are satisfied.

This procedure is formulated in a compact form by in-
troducing the partition function (12) and rewriting (55) as

Pi =
1

Z(λ1, . . . , λm)
exp
[

−
m
∑

k=1

λkfk(xi)
]

. (56)

In order to find the Lagrange multipliers satisfying the
constraints (10) we notice that differentiating log Z with
respect to each λk gives:

∂

∂λk
log Z =

1

Z(λ1, . . . , λm)

n
∑

i=1

(

−fk(xi) ×

× exp
[

−λ1f1(xi) − . . . − λmfm(xi)
])

= −
n
∑

i=1

Pifk(xi) , (57)

which is the formulation of the constraints (10).
Thus the constraints (10) are satisfied by choosing the

Lagrange multipliers so that

Fk = − ∂

∂λk

log Z . (58)

B.

In Section IV-A, in the derivation of the expected loss
contribution assuming knowledge of effective capacities and
average source rates, we need to evaluate the summation



over nu in (22). Using the probability assignment (20) for
the influxes we obtain:

∞
∑

nu=0

P (nu|I)g(Su + nu − xu) =

{ 〈L†〉 , xu > Su

Su + 〈nu〉 − xu , xu ≤ Su .

(59)
where

〈L†〉 =

∞
∑

nu=0

P (nu|I)(Su + nu − xu)

−
xu−Su
∑

nu=0

P (nu|I)(Su + nu − xu)

=

∞
∑

nu=0

1

〈nu〉 + 1

( 〈nu〉
〈nu〉 + 1

)nu

(Su + nu − xu)

−
xu−Su
∑

nu=0

1

〈nu〉 + 1

( 〈nu〉
〈nu〉 + 1

)nu

(Su + nu − xu)

=

∞
∑

nu=0

1

〈nu〉 + 1

[( 〈nu〉
〈nu〉 + 1

)nu

nu + (60)

+

( 〈nu〉
〈nu〉 + 1

)nu

(Su − xu)

]

(61)

−
xu−Su
∑

nu=0

1

〈nu〉 + 1

[( 〈nu〉
〈nu〉 + 1

)nu

nu + (62)

+

( 〈nu〉
〈nu〉 + 1

)nu

(Su − xu)

]

(63)

= 〈nu〉 + Su − xu (64)

−(Su − xu)

( 〈nu〉
〈nu〉 + 1

)xu−Su+1

(65)

−〈nu〉
(

1 −
( 〈nu〉
〈nu〉 + 1

)xu−Su
)

(66)

−(Su − xu)

(

1 −
( 〈nu〉
〈nu〉 + 1

)xu−Su+1)

(67)

= 〈nu〉
( 〈nu〉
〈nu〉 + 1

)xu−Su

. (68)

The infinite progression in lines (60) and (61) are stan-
dard sums which can be found in [45] (eqns. 0.231.2 and
0.231.1). They correspond to the solution (64). The finite
sum in lines (62) and (63) can also be found in [45] (eqns.
0.113 and 0.112). The arithmetico-geometric progression
(62) corresponds to the solution spanning lines (65) and
(66), while the geometric series (63) corresponds to the so-
lution (67).

C.

Here we derive the expected loss contribution for known
time-varying influx averages, assuming perfect knowledge
of the effective capacities. The probabilities for nut for dif-
ferent times t factor according to the maximum entropy
principle and thus we can rewrite the expected loss contri-
bution as a product of independent terms. As in (23) we
need to separate between the cases xu > Su and xu ≤ Su.
It follows immediately from the derivation of (23) in Ap-
pendix B that for xu ≤ Su the loss contribution for user u

is

〈Lu〉 = Su +
∑T

t=1〈nut〉 − xu

= Su + 〈nu〉 − xu , xu ≤ Su .
(69)

Consider the calculation of 〈Lu〉 in the case xu > Su.
For reasons we shall come back to in the derivation we
need to reorder the 〈nut〉 by decreasing size. Thus, we
replace the time indexes t by size indexes k, where larger
k corresponds to smaller size. We start by deriving the
average loss with respect to P (nu1|I), for given smaller
influxes nu2, nu3, . . ., which we denote by 〈Lu〉P (nu1|I). By

substituting Su +
∑T

k=2 nuk for Su in the derivation of (23)
in Appendix B it follows directly that

〈Lu〉P (nu1|I) = 〈nu1〉
( 〈nu1〉
〈nu1〉 + 1

)xu−Su−
∑

T

k=2
nuk

= 〈nu1〉
( 〈nu1〉
〈nu1〉 + 1

)xu−Su
T
∏

k=2

( 〈nu1〉
〈nu1〉 + 1

)−nuk

. (70)

This means that the expected loss averaged over the in-
fluxes at the remaining times, nu2, . . . , becomes

〈Lu〉 = 〈nu1〉
( 〈nu1〉
〈nu1〉 + 1

)xu−Su

×
T
∏

k=2

∞
∑

nuk=0

P (nuk|I)
( 〈nu1〉
〈nu1〉 + 1

)−nuk

. (71)

The sum over nuk in (71) is, by using (20), given by

∞
∑

nuk=0

1

〈nuk〉 + 1

( 〈nuk〉
〈nuk〉 + 1

)nuk
( 〈nu1〉
〈nu1〉 + 1

)−nuk

=

∞
∑

nuk=0

1

〈nuk〉 + 1

( 〈nuk〉
〈nuk〉 + 1

〈nu1〉 + 1

〈nu1〉

)nuk

(72)

=
1

〈nuk〉 + 1





1

1 − 〈nuk〉
〈nuk〉+1

〈nu1〉+1
〈nu1〉



 . (73)

In the last equality the reordering of 〈nuk〉 by decreas-
ing size is needed to ensure convergence of the geomet-
ric series (72) (eqn. 0.231.1 in [45]) , which requires
〈nuk〉

〈nuk〉+1
〈nu1〉+1
〈nu1〉 < 1. The average loss is then

〈Lu〉 = 〈nu1〉
( 〈nu1〉
〈nu1〉 + 1

)xu−Su

×
T
∏

k=2

1

〈nuk〉 + 1





1

1 − 〈nuk〉
〈nuk〉+1

〈nu1〉+1
〈nu1〉



 .(74)

D.

In Section IV-B the probability for the obtained effective
capacity curt given a prediction is needed in order to calcu-
late the expected loss. We derive the probability for each
of the three cases (cf. Figure 3) and then add the resulting
distributions to obtain the total probability distribution.



1. When ĉurt ≤ c̄urt the obtained capacity is curt = ĉurt.
Because the distribution for the predicted capacity is sym-
metric and centered at the potential capacity c̄urt we have

P1(curt|I) =
1

2
δ(curt − ĉurt) (75)

where δ is the Dirac delta.
2. In the second interval, c̄urt ≤ ĉurt ≤ c∗urt, we use the
aforementioned linearly decreasing function in describing
the obtained capacity:

curt = − 1

v − 1
ĉurt +

v

v − 1
c̄urt . (76)

Leaning on previous remarks we model the potential ca-
pacity as a Gaussian distribution according to c̄urt ∼
N (ĉurt, σ

2
urt). Using the result

x ∼ N (m , σ2) ⇒ ax + b ∼ N (am + b , a2σ2) (77)

and the relation (76) it is concluded that

curt ∼ N
(

− 1

v − 1
ĉurt +

v

v − 1
ĉurt ,

(

vσurt

v − 1

)2
)

= N
(

ĉurt ,

(

vσurt

v − 1

)2
)

. (78)

Notice that this distribution is attained only for the interval
0 ≤ curt ≤ ĉurt.
3. In the third interval, ĉurt ≥ vc̄urt or equivalently
−∞ ≤ c̄urt ≤ ĉurt/v, the obtained capacity is zero. The
probability for this is

P3(curt|I) = δ(curt)

∫ ĉurt/v

−∞

P (c̄urt|I)dc̄urt

= δ(curt)

∫ ĉurt/v

−∞

1
√

2πσ2
urt

exp
[

− 1

2σ2
urt

(c̄urt − ĉurt)
2
]

dc̄urt

= δ(curt)

(

1

2
− 1

2
erf

(

(v − 1)ĉurt

vσurt

√
2

))

, (79)

where erf(x) is the error function

erf(x) =
2√
π

∫ x

0

e−t2dt . (80)

Gaussian integrals like the previous one are solved by com-
bining eqns. 3.322.1, 3.322.2, and 3.323.2 in [45].
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