
1

Based on ”A Guide to Population Modelling for Simulation”
Mikael Sternad and Leif Gustafsson, Jan. 2019

Carpe Systemus*

* System under study

Compartment
Based
Model
(CBM)

Situation
Based
Model
(SBM)

S3

S1 S2 S4

Agent
Based
Model
(ABM)

Entity
Based
Model
(EBM)

Internal
structure

External  
structure



2

Physics Biology Demography

Ecology

Epidemiology

Queuing systems Production Etc.

Population Models

Population models are models based on discrete entities such 
as atoms, molecules, genes, cells, humans, animals, plants etc. 

We will here focus on creating (nonlinear) dynamic models that

- are useful for simulation, 
- where some quantities/state variables are discrete, and 
- where we often need to use stochastic descriptions.
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Alternative representations:
Agent-based model  (ABM)   (Object oriented)

Micro description of each individual (entity).
Individuals may differ in behaviours and attributes.

Entity-based model  (EBM)
Micro description of each individual (entity). 
Common behavioural logic – but individuals may differ in attributes.

Compartment-based model (CBM)
Macro description of sub-populations. 

Similar  individuals are  aggregated into compartments (state variables).

Traditionally deterministic models with continuous state variables

Situation-based model  (SBM) (e.g. Markov)  
Macro description of all possible situations of the conceptual model.
Each and every situation (‘state’) and transition between situations 
must be described.

S3

S1 S2 S4
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System, Conceptual Model and Realisations

Choice of
model type

CONCEPTUAL 
POPUL. MODEL
Knowledge and 
assumptions about: 
• structure
• mechanisms
• data
• …

Entity-based 
model
Compartment-
based model
Situation-based  
model (e.g. Markov)

TASK: To reproduce a Conceptual model for execution

SYSTEMus
developing 
over time

PURPOSE
of the study

Occam’s 
razor

Agent-based 
model

“All models are wrong, but some are useful.” – for a specific purpose
(George Box)
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I. EXAMPE:  CONCEPTUAL SIR MODEL

• The probability of each Susceptible individual being 
infected by some Infectious individual is approximated by 
p⋅ I per time unit (for small p).

• The expected time in the Infectious stage is T time units.

•A population of n individuals is affected by an infectious 
disease, with three consecutive stages: 

S → I → R. 
[S = Susceptible, I = Infectious & R = Recovered (and immune)]

Usually we will set: S(0)=1000, I(0)=1, R(0)=0,  p=0.0003, T=4.
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Agent-based model  – SIR example
Each individual is separately modelled (micro model) and has:
1) Attributes (e.g. Name, Sex, Age, Stage of disease, etc.)
2) Behavioural logic (e.g. Meets other individuals, Gets infected, Recovers, ...)

Got 
infected

?

RECOVERED

SUSCEPTIBLE

Yes

No INFECTIOUS
Draw ‘residence 
time’ from a 
distribution and wait 
that time.

Individual No. 1
Attributes
Name: John
Sex: Male
Age: 32
Stage: S

Got 
infected

?

RECOVERED

SUSCEPTIBLE

Yes

No INFECTIOUS
Draw ‘residence 
time’ from a 
distribution and wait 
that time.

Individual No. 2
Attributes
Name: Maria
Sex: Female
Age: 57
Stage: S

Got 
infected

?

RECOVERED

SUSCEPTIBLE

Yes

No INFECTIOUS
Draw ‘residence 
time’ from a 
distribution and wait 
that time.

Individual No. 3
Attributes
Name: Bob
Sex: Male
Age: 26
Stage: I

Got 
infected

?

RECOVERED

SUSCEPTIBLE

Yes

No INFECTIOUS
Draw ‘residence 
time’ from a 
distribution and wait 
that time.

Individual No. …
Attributes
Name: Eve
Sex: Female
Age: 33
Stage: S

Got 
infected

?

RECOVERED

SUSCEPTIBLE

Yes

No INFECTIOUS
Draw ‘residence time’ 
from a distribution and 
wait that time.

Individual No. 1001
Attributes
Name: Eric
Sex: Male
Age: 18
Stage: S

t

Individuals
1
2
3
4
5
6
7
…

Results

S: ···· I: —– R: - - -

Epidemic on average ≈ 54.6 persons
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Entity-based model – SIR example 

t

Individuals
1
2
3
4
5
6
7
…

Results

S: ···· I: —– R: - - -

Attributes
Name: Eric
Sex: Male
Age: 18
Stage: S

Got 
infected

?

RECOVERED

SUSCEPTIBLE

Yes

No INFECTIOUS
Draw ‘residence time’ 
from a distribution and 
wait that time.

All individual have a common logic
(≈ Railway) – but individual attributes.

Attributes
Name: Ivar
Sex: Male
Age: 42
Stage: I

Attributes
Name: Sara
Sex: Female
Age: 23
Stage: R

Each individual has Attributes
(e.g. Name, Sex, Age, Stage of disease, etc.)
- But the Behavioural logic is common

(e.g. Individuals meet, Infection is transferred, Individuals recover, ...)

Epidemic on average ≈ 54.6 persons
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Compartment-based model – SIR example

Compartments (state variables): 
• SUSCEPTIBLE (S)
• INFECTIOUS (I)
• RECOVERED (R)

Epidemic ≈ 318.5 persons

F1 F2
x

Here: S(t), I(t) and R(t) are approximated as 
real-valued, in a deterministic model.

“Macro model”: Individuals are not modelled, 
only the numbers in each compartment.
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Situation-based model – SIR example
(with 3 stages & only 3 entities)

State transition relation:    x(t+h) =  x(t)P  can be used for two purposes:
1) Propagate the whole pdf (real-valued x(t+h)).
2) Simulation: Generate a unique next state   (e.g. x(t+h) =  (0,…,0,1,0,…0)).

(  Epidemic size then depends on step length h)

The transition graph can be represented by a Transition matrix P:

Transition graph:
3,0,0

2,1,0

2,0,1 1,0,2

1,1,1 0,2,1 0,1,2

0,0,3

0,3,0

1,2,0

(1-Σ means 
that the row 
must sum up 
to unity.)

To situation

From 
situation



10

Conclusions so far…

Micro, Macro and Situation-based models 
realised from the same Conceptual model 
may produce different results! 

• Why?

• Can this be fixed? Then how?
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II.  A NEW VIEW OF MODELLING
ABM, EBM, CBM & SBM realisations of a Conceptual 
model can produce mutually consistent results!

But this requires understanding and  following some rules

Aspects to be discussed briefly:
A. Modelling the distribution of residence times in a stage
B. Time handling
C. Stochasticity and model uncertainty
D. Discrete or continuous matter?

(We need a stochastic CBM where compartments contain integers)
E.    Combined simulation (mix of both discrete and continuous )

First we need to understand how ABM, EBM, CBM & SBM are related.

Consider a SIR model with:
n = 6 males + 5 females. Males and females are here distinguished.
Residence time in I-stage is a 3-Erlang distribution with average T.
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S       I1      I2       I3   R

Stochastic Compart-
ment-Based Model

4

2

1

0

10

0

0

1 2

Entity-Based Model

S             I        R

S         I    R

Agent-Based Model

Conceptual 
SIR model

S   I   R

4 1 1

2 1 2

Transformations between model types – SIR model

T1
1:1

S         I        R

Inside
out

T2

Super-
positionT3

Attribute
expansion

T4
Identity 
dropp

T5

S          I       R

Stage
to  
compartment  
expansion

T6
Combinat. 
expansion

T7

Situation-Based Model

But with 34 020 situations !
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STAGE vs. COMPARTMENT
The duration (Residence time) in a stage is often not specified deterministically

But a single compartment (state 
variable) always produces an 
exponential residence-time 
distribution.

Comp.
in out

T

Same average 
residence time T.

Confusion of Stage and Compartment often gives disastrous consequences!

T

Stage
in out

A stage has a 
residence time 
distribution that 
must be reproduced 
in the model.
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In CBM, a stage mostly must be represented 
by a structure of several compartments

Residence time distribution equals the normailzed (deterministic) impulse response 

Can be sufficiently approximated by a linear dynamic system structure of 
compartments in series and/or in parallel.

Example: A stage (average Residence time = T ) is often represented by k serial 
compartments (each with the time constant T/k ).

T

Residence-time 
distribution

k=1

k=2
k=3

k=5

k=10 The k-Erlang(T/k) 
distribution of the 
residence time for 
k=1, 2, 3, 5 and 10
compartments.

TT

Stage
in out …X1 X2 Xk
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TIME HANDLING

Describe the continuous 
process or just what happens 
at the collision events.

Newton’s cradle

Event scheduling (to next event)
Only discrete events are modelled    
(by describing what then happens). 

• Exactly one event per time step.

Time slicing (Δt)
The model is updated by small time-steps.

• Many events may occur per time step.

Micro time slicing (h)
The model is updated with extremely small time-steps.
• Usually zero and occasionally one event occurs per time step. 

(Also used mathematically for diff. equations, lim h→ 0).
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Time-handling principles

Independent events (x) 
over time, with constant        
probability λ per time unit.

|---x---x-x-----------x-------x---x----x--x------x--------x--x-->

Exponential distribution
of time between events
Exp[-λ].
(ABM & EBM)

“Event scheduling”

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

“Micro time slicing”

Bernoulli distribution
(h = Length of interval)
Ber[h ⋅λ]
(where h ⋅λ << 1). 
(SBM)

“Time slicing”

Poisson distribution
(Δt = Length of interval)
Po[Δt⋅λ].
(CBM)

Int.1=3 Int.2=1 Int.3=2 Int.4=3 Int.5=2

Δt
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Representation and time handling principles can 
be freely combined

Entity-based Compartment-
based

Situation-
based

Event 
scheduling

Time slicing
(Δt)

Micro time 
slicing 

(0 or 1 ev./h)

lim analysis
h→0

1) DES: Discrete System Simulation
2) SSA: Stochastic Simulation Algorithm
3) PoS: Poisson Simulation (Tau-leap simulation)

DES1

(1959)
SSA2

(1976)
Markov jump 

model

(sometimes 
very useful)

PoS3

(2000)
(Markov 
model)

(possible but 
stupid)

(possible but 
stupid)

ODEs

Markov model
(1906)

Stat. Analysis
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Random distribution of events over time (slowly time-varying λ(t))
|---x– x---x------- x---x--------------------x-----x--x-----------x---- time

Poisson Simulation (PoS)
(Stochastic compartment-based modelling with time-slicing)

Poisson distributed numbers
of events in [t, t+Δt)       
with average Δt⋅λ(t) events

POP(t) will stay integer 
for all time.

1. Set Pop(t=0) = integer 

2. The number of events from the
Po-distribution is always integer

Δt

3 events 2 events 0 events 3 events 1 event

Δt
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Deterministic and stochastic CBMs

X(t+Δt) = X(t) + Δt⋅F1 - Δt⋅F2
Δt⋅F1 = Po[Δt⋅input(t)]
Δt⋅F2 = Po[Δt⋅output(t)]

Stochastic compartment-based modelDeterministic comparment-based model

F1 F2
x

X(t+Δt) = X(t) + Δt⋅F1 - Δt⋅F2
Δt⋅F1 = Δt⋅input(t)
Δt⋅F2 = Δt⋅output(t)
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Combined simulation in CBM

A combined Volterra model where:
X = prey = grass (continuous state variable).
Y = no. of predators = sheep (discrete). 

ΔX = Δt⋅(Rb – Rk –Rd)
Δt⋅Rb = a⋅X              (birth)
Δt⋅Rk = k⋅X2 (competition)
Δt⋅Rd = b⋅X⋅Y          (death)

ΔY = Δt⋅(Fb –Fd)   
Δt⋅Fb = Po[Δt⋅c⋅X⋅Y] (birth)
Δt⋅Fd = Po[Δt⋅d⋅Y] (death)

Grass with no predators
– only competition

Note the elegance of combining continuous 
and discrete processes in the same model!

Sheep extinction

Grass with no predators
– only competition
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Stochastic models (Also with alternative strucures, structural uncertainty)

Continuous time 

Systemus

Environment

Dice represent where different types of stochasticities can be included in the model

- An epidemic system under study
- Several possible models: Structure 1 is a SIR model based on the stages S, I and R, with

Infected stage modelled by a single compartment. (Other Structures use more states.)

Also added here: An ‘Authority’, which monitors and affects the infection rate.

Capturing modelling uncertainty

• Transition stochasticity
(“demographic”)

• Parameter stochasticity 
(“environmental”)

• Initial-value 
stochasticity

• Information  
stochasticity
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III.  CAN WE DROP STOCHASTICS IN A CBM? 

Deterministic SIR

Stochastic SIRConceptual 
Model

EBM SBMCBMABM

Deterministic CBM
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Deterministic vs. Stochastic SIR model
where S(0)=1000, I(0)=1 & R(0)=0 and p=0.0003, T=4 time units.

50 replications – mostly no epidemic!

Average epidemic size ≈ 54.6 persons

S := S - Δt⋅F1
I  := I + Δt⋅F1 - Δt⋅F2
R := R + Δt⋅F2
F1 := p⋅S⋅I
F2 := I/T

Epidemic size ≈ 318.5 persons
Always an epidemic!

S := S - Δt⋅F1
I  := I + Δt⋅F1 - Δt⋅F2
R := R + Δt⋅F2
F1 := Po[Δt⋅p⋅S⋅I]/Δt
F2 := Po[Δt⋅I/T]/Δt
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0.74
…

Stochastic 
average

Deterministic vs. Stochastic SIR model – cont.
Pdf over the number of infected individuals in 10 000 replications.

The deterministic population model generates a biased result in this case:
Its epidemic size differs from the average epidemic size generated
by the corresponding stochastic model.

The difference is mainly due to that epidemics will often never get started
at all in the stocastic case. This never occurs in the deteministic model!
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When will a deterministic population 
model produce unbiased results?

1. For a linear dynamic population system, a deterministic model will 
produce unbiased results as long as all compartments remain non-
negative for both the deterministic and the (demographically) 
stochastic model. 

This also requires that the question under study is compatible with                
a solution over a fixed time interval. 

2. If the flows in a model with demographic stochastics stay large
and if the local linearised dynamics is asymptotically stable,    
then unbiased results are approached in the limit of large flows.

Testing a deterministic model for bias:
- Run the stochastic model for, say, 10,000 simulation runs. 
- Then run the deterministic model once. 
- Compare whether the outcome is within the confidence interval 
of the stochastic results.
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IV.  CHOICE OF MODEL TYPE
The appropriate choice of model type (ABM, EBM, CBM or SBM) 
can often be the difference between a smooth and successful project 
versus hard work and a failure! 

There are several aspects to consider:

Micro or macro problem?

Lucid & pedagogic

Appropriate size of model?

Easy to build, fit, validate and handle

The access to data (e.g. individual or aggregated) is also important

…
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Model size for different representations

The number of elements in a model is a good proxi for its size. 
Entity-based: Number of individuals
Comp.-based: Number of compartments
Situation-based: Number of situations

The number of situations (for a closed 
population) is: n+k-1 over k-1 = 
= (n+k-1)!/[n!⋅(k-1)!]
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Which model representation to choose?

• Agent & Entity-based models are required: 
1)  For heterogeneous models (with many attributes).
2) When you need a micro perspective to follow individuals.
(3) Are usually best when a continuous attribute space (e.g. 

geographical locations) is involved.

• Situation-based models are never a good choice for simulation!   
(But they have powerful analytical features that can be 
useful for very small models.)

• Stochastic compartment-based models are usually simplest for 
most studies of populations when you are not primarily interested 
in the individual, e.g. in epidemiology or ecology. 

Deterministic CBM (when not distorting results) can be very nice    
- One simulation instead of many
- Often partly analytical (e.g. equilibrium obtained from dx/dt=0).
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V.  CONCLUSION

SYSTEMus
CONCEPTUAL

MODEL

EBM

SBM

CBM

ABM

“All models are wrong, 
but some are useful”

Refers to this step … not to this step!
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Extra slides
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1C. Combined sim. model categ.

1B. Continuous sim. model categ.

1A. Discrete sim. model category
=========================
2. Model representation  

(subjects with attributes and
procedures)

a. Agent based
b. Entity based
c. Compartment based

d. Situation based
3. Handling uncertainties of

a. Structure
b. Transitions
c. Initial conditions
d. Parameters
e. Signals

4. Output functions
5. Time handling

a. Micro time slicing
b. Time slicing
c. Event scheduling

6. Start & Termination criteria
a. Definite: If time=τ Then break
b. Indefinite: If cond. Then break

SYSTEMS WORLD

Actual or 
assumed reality

Environment
to the system

Population 
system

CONCEPTUAL WORLD
“What to do”

Purpose 
Information 
about objects, 
structure, 
properties, 
behaviours, etc.

CONCEPTUAL MODEL

1. A. Discrete/ B. Contin./ 
C. Combined category

2. Conceptual representation
of  the system under study 
and influences from its
environment 

3. Uncertainties about
structure and behaviours

4. Outputs of interest
5. Time (contin. or events)
6. Time period of interest

Definition of:
- System with boundaries
- Interaction w. environment
- Aggregation level 
- Study period
- Purpose of study

SIMULATION MODELS WORLD
“How to do it”
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ABM & EBM CBM SBM (Markov)
WORLD 
WIEW

Micro: Individuals
(n ∈ N)

Macro: Amounts 
stored in compartments
(x ∈ R)

Extreme decompo-
sition into every 
situation the model 
can take   (s ∈ N)

COMPO-
NENTS

Actors/entities and 
Resources

Compartments and 
flows

Situation vector & 
Transition matrix 

DYNAMICS Programmed behaviour  
(Flowchart)

System of diff. 
Equations
(dx/dt=f(x, t)

Matrix multiplication
based on the Markov 
condition

TIME Discrete events Continuous (almost) Fixed time step

RANDOM Usually of central 
importance

Usually no randomness Conditional probab.

RESULTS Statistics accumulated 
during a simulation

Time functions x=f(t) How the situations 
(states) develop 

LANGUAGE General program lang. +
Discrete event handler, 
Actors, Resources, etc.

Program package for 
integr. of dif. equations 
+ Functions, etc. 

Mathematical matrix 
operations

THE OLD VIEW OF MODELLING

Unfortunately they often produce inconsistent results and conclusions



A)  Discrete or continuous modelling
ABM, EBM & SBM are by nature discrete. Transitions are based on probabilities.
Discrete models use a micro view of atoms, molecules, genes, cells, humans, 
animals, plants etc. 

CBM (ODE) is by nature continuous. Transitions are based on fractions.
Continuous models use a macro view of very large numbers of atoms, molecules, 
genes, cells, humans, animals, plants etc. 

When n→∞ then Std. dev. = 1/√ n→ 0, why stochasticity can be dropped.

(The Law of Large Numbers)

Physics Biology Demography

Ecology

Epidemiology

Economy Production Etc.

Discrete Models (“Population models”)

Physics Biology Demography

Ecology

Epidemiology

Economy Production Etc.

Continuous Models (“Lumped models”)
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Agent/Entity, Comp. 
& Situation-based 
models

n=1 000 entities

k=3 compartments

501 501 situations

Present 
situation

State No. Comb.  (S,I,R)

0 (1000, 0, 0)

1 (999, 1, 0)

2 (999, 0, 1)

3 (998, 2, 0)

4 (998, 1, 1)

5 (998, 0, 2)

6 (997, 3, 0)

…

13 522 (837, 7, 156)

…

501 501 (0, 1, 999)

501 501 0, 0, 1000)

# Susc. # Infect. # Recov.

837 7 156
Agent/ 
Entity

Attribute  
(S, I or R)

1 S

2 S

3 I

4 S

5 R

… …

… …

999 R

1 000 S

Focus on: a) Individuals

Agent or Entity-based

b) Number in 
various stages

Compartment-based

c) Situations

Situation-based

Conceptual model
(n=1000 individuals in 3 stages)

Susceptible Infectious Recovered
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Most processes in real life require a finite time to be performed

For e.g. biological/medical processes a finite time is needed for 
digesting, transportation of nutrients, defeating a disease, developing a 
cancer, growing an embryo, etc. 

Only a few non-biological processes, like radioactive decay, may be 
accurately modelled with a single compartment (exponentially 
distributed residence time).

Feasible and unfeasible distribution of residence time

For such a process a first order process is biologically unfeasible
because it means that the probability of performing the process in 
almost zero time, i.e. finishing it within (0,ε), is larger than finishing it 
in any other time interval (t,t+ε) of length ε.
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Why not just add noise to a deterministic model?
Ex:  Radioactive decay with  Δx(t) = - ax(t)Δt + e(t)Δt

(where e(t) is Normal distributed white noise.)
Artefacts:

Stochastics must be 
modelled !
(Often can’t just add or 
multiply random noise!)

• Non integer no. of atoms X
• X never levels out
• Variations never 

decrease

• New atoms may be
created

• The number of atoms 
may become negative

• When a quantity xi
becomes negative –
equations including xi
may get mad and  
produce rubbish

• Results depend on Δt
The shorter Δt the more
energy in the noise.

• …
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An M/M/s queuing system. Here, QS is a compartment holding the total number of 
currently queuing and served tokens. The arrival rate is λ (lambda), the service rate 
(per server) is μ (mu) and the number of parallel servers is s. 

The lower part of the diagram shows devices for counting arrivals and departures, 
and for calculating average queue-time, queue-length and server utilisation.

Queuing systems are common in ABM & EBM.
They can also be created in stochastic CBM (PoS)
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Warnings for deterministic compartment modelling
Be aware of the treacherous nature of deterministic modelling of populations. 

– A deterministic model may behave very differently and produce wrong estimates.

Deterministic concepts force us to make a profound distortion of reality by: 
•  replacing entities by continuous quantities and 
•  representing irregularly occurring events by smooth real-valued flows. 
Although this strongly simplifies the modelling, it often excludes a number of real 
aspects and phenomena and may create more or less biased results.

The modeller must be aware of the quagmire of potential problems. A deterministic
model of a popul. must be tested against a corresponding stochastic population model.

A modellers should be very restrictive in the use of deterministic modelling of 
populations. Disciplines dealing with population models (ecology, epidemiology, etc.) 
should not base theories and studies on deterministic models. 

– Neglecting stochastic jumps could change the mode of the solution: Real  
phenomena such as extinction or stochastically generated oscillations will get lost.
– All information about variations is lost: probability distribution functions, 
confidence intervals, extremes, correlations, etc.
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+ If average results are unbiased, then a deterministic model can produce 
the average results in just one simulation run (instead of averaging over many 
simulation runs of a stochastic model).  

+ Parameter estimation, optimisation and sensitivity analysis are difficult and 
problematic to perform with stochastic models. If a deterministic model will 
reproduce average results correctly, then the deterministic model can be used 
to obtained estimates. These estimates can then be used in a corresponding 
stochastic model, which will reveals additional features such as the variability 
around the average outcomes.

+ A linear deterministic model is scalable – which not is the case for the 
corresponding stochastic model. You can then often simplify the modelling 
by working with fractions (instead of absolute numbers) of a population.

Attractive properties of a (non-misleading) 
deterministic CBM
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Situation-based modelling is extremely problematic
+ Mathematical calculation on the complete situation vector. Of theoretical value!

Decomposing a model into situations will only create problems without giving any 
advantage in simulation! Stay away from situation-based models in simulation!

– Huge size already for relatively small models. 
– Experience shows that the complexity often leads to over-simplification.
– The step-size (h) between points in time is implicit and

fixed. (Change of h requires a total rebuilding of the transition matrix.)
– Any model change requires a complete rebuilding of P.
– Time varying parameters or environmental stochasticity

requires rebuilding the transition matrix each time step.
– Bad structural overview.
– Execution time is long.
– Model fitting is very problematic.
– Etc.

(NOTE that the underlying conditional probability [P(A|B)] and the Markov 
condition (memorylessnes) are not unique for Markov models. They are 
equally true for ABM, EBM and CBM .)
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