
 UPTEC IT0422

Thesis Report Examensarbete 20 p
Master of Science in Engineering 29 September 2004
University of Uppsala
29 September 2004

Wanda for MATLAB
Methods and Tools for Statistical Handling of Poisson Simulation

Tutor: Leif Gustafsson
Author: Tomas Hedqvist

Abstract

Modeling flow rates as stochastic processes introduce stochastic properties in
Continuous System Simulation models. This is particularly useful in models of
middle-sized system where both stochastic and dynamic properties can be of great
importance for the behavior of the system.

Wanda for MATLAB consists of two programs for statistical handling of dynamic
stochastic simulation, Wanda StocRes and Wanda ParmEst. Both are provided with a
clean, easy-to-use graphical user interface and requires only MATLAB version 6 or
later.

Wanda StocRes is used to measure variations in output quantities. It runs a model for
a specified number of times and collects the output each time. Basic statistic
measures are calculated for the results data.

Wanda ParmEst estimates model parameters and calculates the precision for these
estimates. This is done in two phases. In the first phase a deterministic model is
fitted to system observation data to produce the estimates. In the second phase, the
estimates are transferred to a model with the same dynamic structure as the
deterministic one, but with stochastic flow rates. The stochastic model is then run for
a specified number of times, each time producing a different result. The deterministic
model is then fitted to these results producing a set of new estimates each simulation
run. Statistics are then calculated for these estimates.

The programs provide various tools for visualization and further processing of the
simulation results.

Wanda for MATLAB is distributed as freeware and in full source code for further
enhancement by users.

Contents

1 INTRODUCTION – ASPECTS OF SCALE 1

COMBINING STOCHASTICS AND DYNAMICS 2

PURPOSE 2

2 BASIC PRINCIPLES OF POISSON SIMULATION 3

IMPLEMENTING STOCHASTICS 3

THE POISSON PROCESS 4

SIMULATING POISSON PROCESSES 5

OTHER DISTRIBUTIONS 5

AN INSTRUCTIVE EXAMPLE 5

3 TREATING STOCHASTICS 10

MEASURING VARIATIONS IN OUTPUT QUANTITIES 10

PARAMETER ESTIMATION 10

4 WANDA FOR MATLAB 12

DEVELOPMENT OF WANDA FOR MATLAB 13

WANDA FOR MATLAB VERSION 1.0 14

5 REFERENCES 17

APPENDIX A 19

APPENDIX B 39

1 Introduction – Aspects of Scale

Simulating a model of a system described in terms of mathematical equations is an
effective mean to collect various kinds of information about the system. For example
it can give a deeper understanding of a system, or it can be used to help construct
full-scale real-world systems.

It would be possible to build a deterministic model that exactly behaves like the real
system, but information may be scarce for a number of reasons. It can be practically
impossible to retain all information, either because it is difficult to measure variables
affecting the system, or because the system is so complex that there exists too much
information to keep track of. In the real world it can often be both. Forecasting the
weather imaginably tampers with both problems. Randomness in a model is the
cause of simplification compared to the system, and sometimes it is useful to include
stochastic properties in a simplified model.

In some systems it is interesting to simulate the behavior of single entities. For
example, simulating a hard drive on a computer can be done by recognizing three
different states that the device can be in; it is either idle, reading, or writing.
Formulating the probabilities that the device moves from one state to another may
render a Markov chain model or a discrete event system model of the system. Focus
then is on the stochastic properties. Results come out as waiting times and other
statistics from events. But in systems with a large number of entities, such as a
compound of decaying radioactive atoms, the stochastic variations become
insignificant due a very large number of atoms in the compound. Such a system
behaves very close to a deterministic system and is often best simulated by a purely
dynamic model. Results then focus on the dynamics and functions of time.

In between the micro-scale of the computer hard drive example and the macro-scale
of the decaying atoms, there is a meso-scale where the number of entities is large
enough to make simulation of single entities unnecessary complex, but small enough
to make stochastic variations significant. This is where a combination of both
dynamic and stochastic properties in simulation models becomes interesting. A
simulation model for a meso-scale system requires modeling of the dynamic
properties as well as of the stochastic properties of the system since the stochastics
excite the dynamics, and the dynamics change the conditions for the stochastics [1].

It should be noted though, that in all the above cases a deterministic model could be
used to describe the system if all information needed is available, but as mentioned
earlier, it is not always practical or even possible.

1

Combining Stochastics and Dynamics

There is more than one way to combine stochastic and dynamic properties in the
same model. Building a model with numerous Markov chains is one, but it is not
always practical when leaving the micro-scale and entering the realm of the meso-
scaled models. Another way is to add noise to a deterministic model and thus make it
stochastic, but this carries with it a number of problems discussed in later sections.
One way that is efficient in many ways is to introduce stochastics in a Continuous
System Simulation (CSS) model. Advantages with CSS models are that they represent
dynamic properties in a very nice manner and that they can be built using familiar
mathematical formulas. When using CSS models whether they are stochastic or not,
interest is lifted from the fate of a single entity or event to an aggregated scale where
only the rate of events is interesting. This is generally focus of the interest in meso-
scale systems and therefore it is a suitable method for simulating such systems.

When introducing stochastic properties to a CSS model, the results will also become
stochastic and subject of variations. There will no longer be any definite answers.
This raises the need for performing statistical analysis on the results to provide
valuable information about the stochastic variations in the model. Performing
statistical analysis on such models requires tools to handle both the simulations and
the analysis.

Purpose

The purpose of this paper is to present the underlying principles that govern
modeling and simulation of Poisson models, and to present software tools for
simulation of such models and statistical analysis of the resulting data.

2

2 Basic Principles of Poisson
Simulation

A CSS model is composed of a system of differential equations that can be
represented with states and flows. Each state has a state value that can only change
by a flow into or out from it. Flows can either be constant or change over time.
When simulating the system, the equations are solved repeatedly for a small step in
time during which the flow can be considered constant, thus rendering output values
at a number of points in time.

CSS models can be built based on well-known physical formulas, a clear advantage
when modeling systems governed by physical principles. The dynamic characteristics
of the component in a system may be well known. In fact, a few typical equations is
fundamental to many models used in simulation, no matter what science discipline
they are used in. A dynamic model can often be built using little else than knowledge
of these equations [2].

Implementing stochastics

Ordinary CSS models do not include stochastic properties but our limited knowledge
about the real world sometimes causes us to implement a stochastic behavior in the
models. It is especially in models with a limited number of simulated entities that the
lack of compete knowledge makes a difference. When a very large number of entities
are simulated, the stochastics that are implemented tend to become insignificant.

The challenge is to include stochastics in the model to reflect the uncertainty of the
systems behavior that is caused by incomplete information of the system. Stochastics
must then be implemented to give useful information about the unaccounted
variations that exist in the system.

One way of implementing stochastic properties is to add noise of some stochastic
distribution to states, parameters, or flows in the model. Noise added either to the
model’s input or output introduces stochastic properties into a dynamic model with
an otherwise strictly deterministic structure.

Adding noise is not problem-free though. Added directly to the model’s output, it
will only be a superimposed disturbance to the deterministic model. Noise that is
added to the input does on the other hand trigger the dynamics and can result in a
model with correct stochastic and dynamic properties, but still causes a few problems.
First, the characteristics of the noise must be determined, e.g. it must be given a
distribution. In a model that is not trivial several noise signals are added and must be
estimated. Second, if the time step, dt, is changed, the distribution of the noise must
be adjusted. Third, only in few models a negative state value has a meaning. Yet, the

3

noise must be modeled with mean equal to zero thus opening for the possibility that
negative state values occur. This must be handled with in some way. Also, in some
models when a state value has reached zero it should not be possible for it to recover
and once again assume a positive value, which can be the case if noise is merely
added [3].

In many cases it is more suitable to make the model structure itself stochastic. The
flow into or out from a state has an intensity, λ(t). During a time step dt, short
enough to let the flow rate be considered constant, the flow will be equal to λ*dt.
Stochastics can be implemented by modeling the flow rate as a stochastic process
instead of a deterministic function.

One should remember that in some cases, a model with deterministic structure and
noise added to flows or states is will display a behavior more similar to the behavior
of the depicted system. For example this could be the case when a disturbed
measurement signal is included into the model. Stochastics can be introduced into a
complex model both in its structure and as noise in order to get the best behavior.

The Poisson Process

The limited number of entities involved in the meso-scale world implies that flows
between states in a simulation model are typically counted in integer numbers, as
compared to the macro-scale world where they are typically counted in continuous
sets. Stochastic processes driving meso-scale systems are in other words typically
discrete, such as the Poisson process.

When stochastic events occur one at a time and independent of each other and past
events, the counting process of arrivals is a Poisson process. Since events happen
one at a time, the Poisson process is a discrete process that only generates integer
numbers. In a Poisson process, the number of events that takes place during a time
interval dt is Poisson distributed with expected value λ*dt. This means that on
average the flow during any time period will have the same value as in the
deterministic case, but it will fluctuate, creating stochastic variations in the flow. The
flow rate is calculated by dividing the flow with time and becomes Po(λ*dt)/dt.

Consider a radioactive decay. The atoms yet not decayed make up a state and their
number is the state value. From this state there is an outflow equal to the amount of
atoms decaying. Let the flow rate be lambda and the state be x. The equation
describing the decay can be written as:

dx/dt = -lambda*x

The number of atoms leaving the state during the time unit dt is:

dx = -lambda*x*dt

This is not a perfectly correct description of reality. Since the atoms decay randomly
one at a time and independently from each other, they make up a Poisson process.
Rewriting the second equation to include the stochastic properties renders the
following equation:

dx = -Po(lambda*x*dt)

The average number of atoms leaving the state during the time period dt is the same
as in the deterministic case, lambda*x*dt, but is not evenly distributed. Instead, it is
Poisson distributed and the flow rate thus become Po(lambda*x*dt)/dt.

4

Simulating Poisson Processes

When simulating a Poisson process, a call to a Poisson random number generator is
made for each time step, giving the number of events that have occurred during the
interval. This number is either added or subtracted from the state value for the next
iteration.

In a non-stationary process the intensity varies but can be considered stationary
during a very short time step. Thus the intensity is updated between time steps,
implying a shortest time step allowed based on how fast the intensity changes. This
can be very advantageous in terms of efficiency when simulating models where state
values change very little or not at all for long periods and very rapidly during short
intervals [3].

Other Distributions

Even though Poisson processes often are very useful in stochastic CSS models,
processes with other distributions will sometimes describe reality better. It could be
continuous processes when flows are on an aggregated scale but still subject of
stochastic variations [3].

Modeling a water reservoir with respect to the amount of water currently held in it is
one example of when continuous flows can be used. The outflow from the reservoir
is dependent on the amount of water in the reservoir while the inflow is dependent
on weather conditions, e.g. how much it has rained recently, and can thus be
modeled as a continuous flow. In this case the dynamics are triggered by the
stochastics and the model requires both properties to be a useful description of the
real system.

An Instructive Example – the Lotka-Volterra Equations

An instructive example is the Lotka-Volterra equations1, describing a system of preys
and predators in terms of differential equations. It is a highly simplified model of
nature, where two spices, prey and predator, live in a restricted area. Let the two
species be rabbits (X) and foxes (Y). The rabbits breed proportional to their number
X, and die in encounters with foxes proportional to X*Y, or in competition with
themselves, proportional to X*X. The foxes breed proportional to the number of
rabbits they can eat, X*Y, and die proportional to their number Y. Introducing the
constants a, b, c, d, and k we have the following relations:

Born rabbits /dt = aX
Eaten rabbits /dt = bXY
Rabbits dead in competition /dt = kX2
Born foxes /dt = cXY
Dead foxes /dt = dY

leaving us with these equations describing the change in the numbers of rabbits and
foxes:

dX/dt = aX-bXY-kX2
dY/dt = cXY –dY

1 Example from [3]

5

There are three possible stationary solutions obtained by setting dX/dt and dY/dt to
zero and solving for X and Y:

X = Y = 0
X = a/k, Y = 0
X = d/c, Y = (a-kd/c)/b

The first solution is obviously not of interest. In the second solution, foxes become
extinct (they have starved to death), and in the third solution, foxes and rabbits live
in equilibrium, foxes feeding on rabbits and holding their number down.

Simulating this model with start values as in case 3 will give constant levels of both
rabbits and foxes. Disturbing the system by setting start values outside equilibrium
gives fluctuations that eventually die out. It is difficult to imagine a real system in
nature where the number of foxes and rabbits are constant. Birth rates and death
rates vary stochastically, and so they can be modeled as Poisson processes.

Born rabbits /dt = Po(X*a*dt)/dt
Eaten rabbits /dt = Po(X*Y*b*dt)/dt
Rabbits dead in competition /dt = Po(X*X*k*dt)/dt
Born foxes /dt = Po(X*Y*c*dt)/dt
Dead foxes /dt = Po(Y*d*dt)/dt

With these definitions it is possible to build a model that simulates the system
dynamically and stochastically. The result is seen in Figure 1. Note that the foxes
become extinct because they starve to death somewhere between the times 600 and
650 and that the system thereafter varies around the second stationary solution.

Figure 1. Results from a Poisson simulation model with number of foxes (dotted, green) and
rabbits (solid, blue). Foxes become extinct at t = 611 and the system starts to vary at a new
stationary solution determined only by competition among rabbits.

6

The results from the Poisson simulation can be compared to the results from
simulating the same system without stochastics implemented. In this case birth and
death rates are deterministic and the output of the model will be deterministic as well.
Starting the deterministic system in equilibrium will only display two straight,
horizontal lines in a graph over time. Disturbing the system by starting the simulation
with “too many” foxes and “too few” rabbits give the result seen in Figure 2. The
system is stable and converges to its equilibrium.

Figure 2. Number of foxes (dotted, green) and rabbits (solid, blue) in a deterministic dynamic model
without noise. Initial values of foxes and rabbits are set outside equilibrium to disturb the system,
which however is stable leading to fluctuations dying out at around t = 500.

Adding superimposed noise to the output of the model gives the kind of result as
seen in Figure 3. Depending on the characteristics of the noise (here it is gaussian)
different results can be obtained but it will still be an essentially deterministic model
with some disturbance on the output since there is no connection between the
stochastics and the dynamics.

7

Figure 3. Number of foxes (dotted, green) and rabbits (solid, blue) in a deterministic model with
superimposed noise added to the output. As in figure one, the initial values have been set outside
equilibrium. The graphs clearly display the separation between dynamics and stochastics.

If noise is added to the flows in the model, e.g. death rates and flow rates, another
picture of the system can be seen (Figure 4). This corresponds better to the
stochastic CSS model but still some differences can be noted. First, the
characteristics of the stochastic variations do not agree between the models. This can
be adjusted by fine-tuning the characteristics of the distribution of the noise to better
match the Poisson model, but this can be a very difficult or even impossible process.
Second, as can be seen from the figure, foxes are able to recover after having been
extinct. Also this can be handled in the model, for example by explicitly setting both
birth and death rates to zero after they have become extinct.

8

Figure 4. Number of rabbits (solid, blue) and foxes (dotted, green) in a model with noise added to
flows. It now resembles the Poisson model and some more fine-tuning of the model will further
increase the resemblance. It will be very difficult to find a distribution for the noise that results in
outputs with the same characteristics as the Poisson model though. Also note the periods where foxes
actually become extinct but recover.

9

3 Treating Stochastics

Besides analyzing single simulation runs of Poisson models, statistical analysis should
be performed for two reasons, measuring variations in output quantities and
measuring the precision of estimated parameters.

Measuring variations in output quantities

One purpose of running Poisson simulations is to measure variations in output
quantities. Since the model is stochastic, it will not produce the same result for any
two replications, but there will be variations in the output. Measuring these variations
gives valuable information about the system depicted by the model. [4]

The procedure of measuring variations in output quantities is simple. The model is
simulated N times with different seeds producing N sets of results that will all be
different. Based on the N samples, statistic measures such as mean, standard
deviation, and confidence intervals can be calculated and visualized.

Parameter estimation

Simulation can also be used to estimate parameters in a model. If the model is
stochastic it will be impossible to get precise estimates, but variations of an estimate
can be calculated providing valuable information about the estimate. [4]

Fitting the model against a series of observation data of the system produces
estimates of the model parameters. Usually this is done with a least square method.
The stochastics can at first be left out of the model resulting in a deterministic model
with the structure and the same dynamic properties as the original model. Fitting a
deterministic model against observations of the system can produce an estimate of
the parameter that is not specific to a particular sequence of random numbers, but
there is no indication on how good this estimate is. The deterministic model can then
be fitted against a stochastic model N times, producing N estimates. Based on these
N samples statistic measures such as standard deviation, confidence intervals, and
other can be calculated for the estimation parameters.

The system observation is an array of state values for different points in time. It can
be made up of several observations from the real system. Fitting a deterministic
model to a system observation is done by minimizing an objective function. The
objective function collects the system observation data and the output from the
deterministic function and squares the difference between them for every point in
time. The sum of differences is the output from the objective function. A simplex
optimizer [5] is then used to find the minimum of the objective function by testing
different values for the parameters.

10

In a second phase the precision of the estimated values can be measured. A
stochastic model with the same structure as the deterministic model but with
stochastic flow rates is run N times. For each time, the deterministic model is fitted
against the output from the stochastic model by using the same principles as in the
first phase, only with the difference that the system observation is replaced with the
output from the stochastic model. Statistic measures can then be calculated for the N
estimates produced.

11

4 Wanda for MATLAB

To handle statistic analysis of stochastic and dynamic simulations two programs were
developed. Wanda StocRes is intended for measuring variations in output quantities
[6] while Wanda ParmEst is intended for parameter estimation [7]. Together they
form the program package Wanda for MATLAB (User documentation is provided in
Appendix A). No program was especially designed for single simulation runs since
this case needs no supervisory programs and the simulation as well as the analysis
could be handled directly by MATLAB.

An early version of Wanda was developed by Gustafsson [8]. This was implemented
as a stand-alone program running simulations in Powersim. However, a need for a
more general base was identified and a whish to have the same kind of program for
the MATLAB environment was expressed. MATLAB is one of the most widely used
programs for technical computing and simulation. Because of the availability of
installed copies and the fact that it is a powerful program with many desired features,
it is a preferred environment to base a more general implementation of Wanda on.
Some of the advantages of using MATLAB [9] as the base for Wanda are:

1. MATLAB is widely used in industry as well as in education. Applications
built for MATLAB have the potential to reach more users than if any other
language would have been chosen.

2. MATLAB features extensive computing capabilities. Since this type of model
is mathematically described as differential or difference equations it is often
convenient to express the model in the same familiar notation. MATLAB
offers both the syntax to do this and a wide variety of solvers for the
equations.

3. Seamless integration is offered between MATLAB and Simulink in which
models also can be built and simulated, taking advantage of the special
features available.

4. Analysis of the results is also made easy. Several tools are available both for
analysis computation and visualization.

5. Extensive external interfaces are available, providing portability from other
simulation languages, and enabling interaction with many other applications
such as Microsoft Excel and PowerPoint.

6. Direct access is offered to models, or part of models, built in C or
FORTRAN.

12

Development of Wanda for MATLAB

Wanda for MATLAB was developed as two separate programs, Wanda StocRes for
measuring variations in output quantities and Wanda ParmEst for parameter
estimation. Even if there are many similarities in the two programs, not the least in
the user interfaces, their respective usage differs enough to motivate two programs.
Wanda for MATLAB is developed as an “open code” project, and is free to use and
modify. Copyright remains with the developing team.

Some principles defining the behavior guided the development of the tools. Here
they are summarized:

1. Models shall be implemented as MATLAB m-files to allow flexibility and an
easy interface to Wanda.

2. The programs shall have a Graphical User Interface (GUI) that shall be easy
to use and kept as simple as possible. Functions shall be available through
logical menus.

3. The programs shall calculate basic statistical measures for the result and
present and visualize them

4. Only supervisory functions shall be implemented in the programs in order to
keep it as flexible and versatile as possible.

5. It shall be possible to take advantage of MATLAB’s extensive computation
and visualization capabilities. Any simulation results are easily made available
to MATLAB’s base workspace.

6. The programs shall not require any toolboxes to be installed. Only MATLAB
version 6 or later is required.

7. The code shall be open to modifications by users.

8. The programs shall be free to use and distribute.

More specifically, StocRes shall be able to:

1. Run a model

2. Specify which output arguments that should be analyzed

3. Collect the outputs from each simulation run

ParmEst shall be able to:

1. Run a parametric deterministic model and adjust output from it to system
observation data by minimizing an objective function so that model
parameters can be estimated.

2. Transfer the estimates to a stochastic model

3. Run the stochastic model N times and adjust output from the deterministic
model to output from the stochastic model by adjusting the parameters of
the deterministic model to minimize an objective function.

13

Wanda for MATLAB version 1.0

The Wanda for MATLAB project has resulted in two programs, Wanda StocRes and
Wanda ParmEst, differing from their predecessors in many ways. They share layout
and many functions with each other.

Both programs are implemented as pure MATLAB applications, meaning they are
operating system independent. They are provided in their basic form, as MATLAB
function m-files, which allows for further development and customizations by the
user. User licenses are completely free, even though copyright remains with the
author.

The programs are given Graphical User Interfaces that are kept as simple as possible,
following normal conventions. Most functions are available through drop down
menus. Only the simulation controls are available as buttons in the programs’ main
windows. Most of the window space is dedicated to displaying simulation results.
There are two modes in which results can be displayed, Summary mode and details
mode. In Summary mode a list of the studied parameters and some basic statistic
measures are displayed. In Details mode only data for only one variable is displayed
at a time. However, the statistic measures are displayed with higher accuracy (more
digits) and in addition a histogram is displayed for the parameter. In the main
window the user can specify the number of simulations runs for the programs to run
and follow the progress for how many runs have been made.

StocRes is used to measure variations in output quantities. It runs a model for a
specified number of times and collects the output each time. Basic statistic measures
are calculated for the results data.

StocRes main Window in ‘Summary Mode’

ParmEst estimates model parameters and calculates the precision for these estimates.
This is done in two phases. In the first phase a deterministic model is fitted to system
observation data to produce the estimates. In the second phase, the estimates are
transferred to a model with the same dynamic structure as the deterministic one, but
with stochastic flow rates. The stochastic model is then run for a specified number of
times, each time producing a different result. The deterministic model is then fitted
to these results producing a set of new estimates each simulation run. Statistics are
then calculated for these estimates.

14

ParmEst Main Window in ‘Details Mode’

The statistic measures that are automatically calculated by StocRes or ParmEst are
the following:

1. Average

2. Standard deviation

3. Max

4. Min

5. Confidence Interval for the mean

6. Percentile

Settings for confidence interval (left-, right-, or two-sided, confidence level) and
percentile are accessible through a dialog window. Changes to these settings after
completed simulation has immediate effect on displayed statistics.

StocRes and ParmEst share a number of functions:

1. Visualization. Visualization of the data can be done in histograms and scatter
plots. In ParmEst a plot of the deterministic model together with the system
observation data can be created as well.

2. Save and Load. The state of StocRes or ParmEst including the results data can
be saved at one occasion and loaded back later. This allows simulations or
work with the results to be continued at a later time.

3. Export. Result data can be sent to MATLAB’s base workspace for further
processing. This means that all of MATLAB’s features and capabilities can be
used.

4. Printing. The Main window with calculated results can be printed.

5. User-defined functions. Any user-defined MATLAB function can be applied to
the results data through a dialog window.

6. Simulation Report. After simulations are done, a report with information about
the simulation can be automatically generated. It contains information about

15

the simulated model file, the time of simulation, the number of runs done
and for ParmEst also the total number of function evaluations.

Model files for StocRes and ParmEst are implemented as MATLAB m-file functions.
The internal workings of the model files are never seen or accessed by the programs,
which opens for possibilities to use MATLAB’s interfaces to other languages and
programs. This means that models can be built in for example, C or FORTRAN, or
some CSS language like Powersim or Simulink.

16

5 References

[1] Gustafsson, L., 2004, “Studying Dynamic and Stochastic Systems Using

Poisson Simulation” in Liljenström, H. & Svedin, U. (eds.), Micro – Meso
– Micro: Addressing complex Systems Couplings, Word Scientific
Publishing Company, Singapore.

[2] Ljung, L. & Glad, T., 1991, Modellbygge och simulering, Studentlitteratur,
Lund.

[3] Gustafsson, L., 2000, “Poisson Simulation – A Method for Generating
Stochastic Variations in Continuous System Simulation”, Simulation, 74:5,
pp. 264-274.

[4] Gustafsson, L., Methods and Tools for Statistical Analysis of Poisson
Simulation, Submitted.

[5] Press, W., H., Flannery, P., B., Teukolsky, S., A. & Vetterling, W., T.,
1989, Numerical Recipes in Pascal The Art of Scientific Computing,
Cambridge University Press, Cambridge.

[6] Hedqvist, T., 2004, Wanda StocRes for MATLAB – User Documentation,
Uppsala University.

[7] Hedqvist, T., 2004, Wanda ParmEst for MATLAB – User Documentation,
Uppsala University.

[8] Gustafsson, L., 2004, Tools for Statistical Handling of Poisson Simulation:
Documentation of StocRes and ParmEst, Dept. of Biometry and
Engineering, The Swedish University of Agricultural Sciences.

[9] MathWorks., 2002, Using MATLAB version 6, The MathWorks Inc.,
Natick, MA.

17

18

Appendix A

Wanda StocRes for MATLAB
User Documentation version 1

19

20

Wanda StocRes for MATLAB

• Installation and Requirements 23

• What is StocRes? 23

• The Main Window 23

• Starting and Quitting 24

• The Model File 25

• Connecting to a Model 27

• Running Simulations 31

• Analyzing Results 32

• Saving and Loading 38

21

22

Installation and Requirements

Wanda StocRes for MATLAB requires MATLAB version 6 or later and is operating
system independent. There are no other hardware requirements than those for
MATLAB.

Since Wanda StocRes for MATLAB is a pure MATLAB application, it requires no
explicit installation. Unpack the Wanda package in the directory where you would
like to have the programs reside and edit the Startup File for MATLAB to include
the directory in the MATLAB path (see the MATLAB documentation).

What is StocRes?

StocRes is a program for measuring variations in output quantities from stochastic
CSS models. It is a supervisory program that runs a number of simulations and
collects the results. It also performs basic statistical analysis of the results.

The Main Window

When you start StocRes, the main window appears. It contains simulation controls
and tools for analyzing results.

23

StocRes Main Window

 a b c d e f g h i

a – Plot variable against popup, see “Analyzing Results”
b – Menus – easy to reach functions
c – Status line – information on status
d – Number of runs – set number of simulation runs, see “Running Simulations”
e – Number of runs done – follow the progress
f – Results – view results of simulations directly, see “Analyzing Results”
g – Opened file – the model file currently simulated

h – Run/Stop/Continue button – control simulations, see “Running Simulations”

i – Reset button – start over, see “Running Simulations”

Starting and Quitting

Starting StocRes

To run StocRes you must first run MATLAB, and the directory containing the
StocRes files must be on the MATLAB path or be the current directory. Type
‘stocres’ in the MATLAB command window to start StocRes. This will cause

24

StocRes’ main window to appear on the screen, and its home directory will be added
to the MATLAB path.

Quitting StocRes

Quit StocRes by selecting Exit from the File menu, or by clicking the close box in
the StocRes main window. StocRes quits immediately without issuing a warning
message. Simulation results that have not been saved will be lost. Plots created from
the ‘Plots’ menu will remain after StocRes has been quit.

Some settings and preferences will be saved by StocRes to the file stocresini.mat
when quitting.

The Model File

StocRes expects a function m-file with one or more output variables. The inside of
the file is never seen by StocRes, so there are no restrictions on how to build the
model.

Using Varargin and Varargout

StocRes accepts input arguments of type varargin in model files, as well as output
arguments of type varargout. The only restriction is that the model must have at least
one output argument and that this is defined before simulation begins. See “Opening
a Model” on page 7.

Building Models outside MATLAB

StocRes calls the model file with all output arguments and any eventual input
arguments, but the model file internals is never seen. It is therefore possible to build
the model using any MATLAB interface to other programs.

First and foremost this opens the possibility to build models in Simulink, even if
other CSS languages and programs also can be interfaced. Simulink provides
simplified model building using a graphical interface. Connect to the Simulink model
from the function m-file using the sim command (see the Simulink documentation
for full command syntax). Another possibility is to use the interface to connect to a
“real“ physical model.

25

Example

Insure.m is an example model that simulates the number of insurance cases and the
total cost for an insurance company due to an insurance policy.

The risk of an accident that will cause the insurance to fall out varies over the year in
a sinusoidal manner. The number of accidents during a time step is Poisson
distributed as Po(dt*risk*stock)/dt. Accidents are cumulated over the year.

The stock of insurance holders is held constant.

The cost for each accident is randomly distributed. Since the interest is on the total
cost for a year, there is little point in calculating the cost for each accident. Instead,
the annual cost is normal distributed (according to the central limit theorem) with
expectation cumulated accidents * average cost, and variance standard deviation *
square root of cumulated accidents. A sample from this distribution is then drawn at
the end of the year to get the total cost for the year.

This is the m-file for implementing the model. It should be found in the examples
directory.

function [cost, cum_acid] = insure(varargin)
% cost annual cost
% cum_acid cumulated number of accidents
% varargin stock of insurance holders

% Use specified stock if given as input, or default
% otherwise
if nargin == 1
 stock = varargin{1};
elseif nargin > 1
 warning(‘All input arguments will not be used.’);
 stock = varargin{1};
else
 stock = 20000;
end

dt = 1; % time step is one day
m = 6.700; % average cost for one accident
s = 5.500; % standard deviation for cost
T = [1:dt:365]; % time vector
cum_acid = 0; % initial value

% simulate accidents
for t=1:length(T)
 risk = 0.00002*(sin(T(t)*(2*pi)/365)+2);
 accidents = Poisson(dt*risk*stock)/dt;
 cum_acid = cum_acid + accidents;
end

% simulate annual cost
cost = randn*sqrt(cum_acid)*s+m*cum_acid;

26

Output arguments are cost and cum_acid, the output quantities we are
interested in studying. If any input argument is given to the model it is used as the
stock of insurance holders. Otherwise a default stock is used. The time step (dt) is
fixed and set to one day, and the model is simulated over one year. Expectation and
standard deviation for the cost of a single accident is set as constants (m and s
respectively).

Connecting to a Model

Select Connect to Model ... from the File menu. Choose the model file and click
OK. The simulation settings dialog box will now appear. It allows you to assign
values to eventual input arguments as well as choose which output arguments you
would like to study and calculate statistics for. Note that a model must have at least
one output argument.

Recently used files are available in Recent Files under the File menu. It is a
convenient shortcut to connect to files recently used. The selected file will be
connected to and the settings dialog will appear.

Click OK when all settings have been made to leave the simulation settings dialog
and keep the settings made. Click Cancel to leave without saving the settings.

27

a
b
c
d

e
f
g

h
i

Model Settings dialog.

a – Value text box – set values for input arguments

b – Input Variables popup

c – Define button

d – Send seed checkbox – automatically send seeds to the model

e – Add and Remove buttons – select which parameters to study

f – Model Variables listbox

g – Added Variables listbox

h – File Help button – view help for connected model

i – Command Line Equivalent – overview how the model is called

Note that you can only have one file connected at a time in the same StocRes
window. By connecting to a new file an already connected file will close, and any
simulation results will be lost. However, you can have multiple instances of StocRes
running at the same time connected to different models.

Defining Input Variables

If the model function has any input variables, these must be defined before any
simulations can be run. Input variables can be used for simulating a model with
different values for constants, allowing different cases to be simulated without having

28

to alter the model file. For example they can be used to choose integration step size
or initial values, or for setting any other parameter values. They are not restricted to a
certain data type and can be used for any purpose.

Input variables will be displayed with their names in the input variables popup. To
define an input variable, select it in the Input Variables popup menu and type the
definition you would like to give it in the Value text box. Then click the Define
button. The definition of the variable will be stored and used in the simulations as an
input argument to the model function. Subsequent definitions will replace ones
already made.

Sending Seeds

Using predefined seed sequences is useful for the reproducibility of simulations.
Seeds can be generated within the model file, but you can also let StocRes
automatically send seeds to an input variable for easy variation of controlled random
sequences.

Check the Send seed checkbox before clicking Define and leave the Value text box
empty to do this.

StocRes can use any MATLAB m-function to retrieve seeds. The seed generator
function must have the following call syntax:

[seed] = seedGenerator(p1,p2,…,pn)

where seed is the seed and p1, p2, … , pn are input arguments.

The seed generator used by StocRes can be selected by choosing Seed Generator
from the Settings menu. This will display a dialog box with two input fields in which
the function name and eventual input arguments are specified respectively.

Seed Generator Dialog.

If the specified seed generator uses more than one input argument, they should be
separated with commas. Leave the bottom field empty if no input argument is used.

Directly Entering and Overviewing Model Function Call

Definitions of input variables will be visible in the Command Line Equivalent
textbox to allow inspection of what input arguments will be used. It displays the
actual function call StocRes will use to run one simulation. When definitions of input
variables are made these will immediately appear in the text box.

It is possible to enter input variable definitions directly into the textbox as long as the
syntax is correct. Put the values you want to assign to the input arguments as a

29

comma separated list within the parentheses. Note that this is an alternative way of
defining input variables.

Varargin

StocRes accepts models with input arguments of the type varargin. When opening
such a model, varargin will be displayed in the input variables popup. If only one
argument is to be passed in varargin, it can be defined in the Value text box. If more
than one argument is to be passed in varargin, definitions must be made using the
Command Line Equivalent text box. Type the values of the arguments you want to pass
as a comma separated list within parentheses (using MATLAB standard function call
syntax).

Example

The following piece of code shows a model that uses varargin to override default
values of two constants (A and B). If more than two input arguments are supplied,
only the first two will be used and a warning will be issued.

function [Y] = myModel(varargin)

switch nargin
case 0
 A = 10; B = 0.5;
case 1
 A = varargin{1}; B = 0.5;
case 2
 A = varargin{1}; B = varargin{2};
otherwise
 A = varargin{1}; B = varargin{2};
 warning('All input arguments will not be used.');
end
.
.
.

When opening this model in StocRes, the command line equivalent will be

[Y] = myModel
To call this function with two arguments having the values 8 and 1, add the input
argument as a comma separated list so that the full line reads

[Y] = myModel(8,1)

Selecting the Output Variables to Study

The model file is required to have at least one output variable, but can have many
more. These are the quantities of interest in StocRes. Repeated simulations will result
in a number of samples, and statistics will be calculated for each variable based on
these samples.

30

The model function’s output variables are displayed in the Model Variables listbox.
Choose the ones you want to calculate statistics for by selecting them in the Model
Variables listbox and click the Add button, or add all at once by clicking the Add all
button. You can also remove added variables by clicking the Remove or Remove all
buttons. Note that all variables will be assigned a value during simulations, but you
choose the ones that you want to display results and calculate statistics for.

Varargout

StocRes accepts models with output argument of type varargout. When opening a
model with variable number of output arguments, the command line will show only
empty brackets. Type the argument names within the brackets and hit return on the
keyboard. The argument names you choose will appear in the Model Variables listbox
and they can now be selected for studying as for any static output argument.

Note that in an output argument list with both static and variable arguments, the
varargout keyword must follow after the static arguments.

Running Simulations

When the simulation settings are done, StocRes is ready to start running simulations.
In the Runs text box in the main window you can specify the number of simulations
you want StocRes to run. Default is 100. In the Done text box the number of
completed simulation runs is displayed and continually updated so that you can
follow the simulation process.

The Run/Stop/Continue Button

Click the Run button to start running simulations. The label on the Run button will
now change to Stop, and clicking it while running simulations will cause StocRes to
stop before the next run. When stopping simulations manually, the button will
change its label to Continue. Clicking again and it will revert to Stop. You can stop
and continue simulations without restrictions. When the specified number of runs
has been completed, a message box will appear confirming that the simulations are
complete and the button will be labeled Run again.

31

Simulation Report

When simulations are finished, you can create a simulation report. It will contain the
following data:

• Date and time for report generation

• Path and name of the model file

• Number of simulation runs completed

• Total time for the simulations

• Time when simulations was finished

Select Generate Report from the Functions menu. A dialog box will appear
allowing you to choose the name of the file you want to put the report in. The report
will be saved as an ASCII text file.

Analyzing Results

StocRes features a number of tools for analyzing data from simulations. In addition
to the statistics that are calculated, visualization is possible in graphs. You can also
apply any built-in function or your own function to the results.

Displayed Statistics

Statistics will be calculated and displayed for the simulations that were made before
StocRes was stopped. When continuing, simulation results will be added to and
statistics will be recalculated after the next stop.

StocRes has two different display views. Toggle between them by selecting either
View Summary or View Details from the View menu. In the View Summary mode,
a list of results for all variables is visible. In the View Details mode only one variable
is visible at a time. The result is shown with higher precision and in addition a
histogram is displayed. If results for more than one variable have been produced, you
can change between the results for the different variables by choosing the variable
you want to study from the Select variable list.

32

Statistic Settings

To set confidence level and percentile, select Statistics from the Settings menu. The
statistics settings dialog then appears. It is also possible to specify whether
confidence intervals should be one- or two-sided, and if they should be to the left or
to the right if one-sided.

Statistic Settings dialog.

Click OK when you have made your settings, or Cancel to close the dialog without
doing any changes. Note that you can change the statistics settings also after having
done simulations. Calculated measures will then change automatically to the new
settings.

Plots

StocRes offers some built in plots to be created from simulation data:

• Scatter Plot

• Histogram

• Histogram of All

From the Functions menu, select Plot in New Figure and the plot you want to
create. The plot will appear in a new figure that can be further formatted (see the
MATLAB documentation).

To create a scatter plot, select the variable you want to have on the x-axes in the
results frame (in View Summary mode, select variable by marking it in the results
listbox, and in View Details mode, select it from the popup list), and the variable you
want on the y-axes in the Plot variable against popup. Then select Scatter Plot from
Plot in New Figure in the Functions menu.

33

Histograms are created with the data from the variable selected in the results frame
by selecting Histogram from the Plot in New Figure menu.

Histogram. StocRes plot functions open in a new figure where they can be further enhanced.

Histograms for all variables can be created in the same figure. Select Histogram of
All to do this. Each variable will be displayed with a separate color in the figure.

Other kinds of graphs can also be created, either by issuing a plotting command
from the Define Function dialog (see “Applying Other MATLAB Functions” p.13),

34

or by exporting the variable to MATLAB’s base workspace and continue working
with it outside of StocRes (see “Export Data to the Base Workspace” p.14).

Applying Other MATLAB Functions

Analyzing results from the simulations is not restricted to the built-in functions
available in StocRes. You can also apply any other function to the results.

Select Define Function from the Functions menu. A dialog box will then appear.
Type the command in the bottom text box and click Apply. It will be sent to and
evaluated in MATLAB’s base workspace. The command must be a correct
MATLAB expression, but you can use both built-in functions and write your own m-
file functions for customized data processing.

In the Define function dialog box a list of all available variables is displayed. Below
the listbox is information about the selected variable’s size, class and the number of
bytes it occupies. There is also a list of the most recently used commands. By
choosing one in the list it will automatically appear in the command text box.

Define Function dialog.

Example

After completed simulations you have three variables, X, Y, and Z, all equally sized
arrays. To make a 3d scatter plot using the built-in MATLAB function scatter3,
type ‘scatter3(X,Y,Z)’ and click Apply. The variables X, Y, and Z will be sent
to the base workspace and the expression will then be evaluated resulting in a 3d
scatter plot in a new figure.

35

Using Other Programs for Analysis and Presentation

It is possible to use other programs and utilities than MATLAB for data processing
and presentation of the results. MATLAB offers several external interfaces. For
instance, you can export your data to Microsoft Excel using ActiveX and DDE (see
the MATLAB documentation). There are two ways to get your simulation data out of
StocRes:

• Send it to the base workspace (see “Export Data to the Base Workspace”,
p.36

• Write your own function to export the data (see “Applying Other MATLAB
Functions”, p.35

Once the simulation data is in the base workspace you can take advantage of
MATLAB’s data exporting capabilities (see the MATLAB documentation).

Saving and Loading

Simulation results can be saved for later use. StocRes saves the simulation results and
the state it is in to a MATLAB *.mat file. Loading this file will restore StocRes to the
state it was in when saved. It is then possible to continue simulations and/or using
analysis tools and other features of StocRes.

To save results, select Save Results from the File menu and choose the file you
want to save in from the dialog box that appears. Load the results back and restore
the state by selecting Load Results from the File menu and choose the file you
want to load. An error message will appear if the file does not contain data saved by
StocRes.

If you want to save only the results for use outside StocRes, export the results to the
MATLAB base workspace and save it from there (see the MATLAB documentation
for saving workspace variables).

Export Data to the Base Workspace

StocRes is intended for running simulations and providing basic analysis. If you want
to do a more extensive analysis of the simulation data, you can send the results to
MATLAB’s base workspace, where it can be further processed, saved or exported to
other programs such as Microsoft Excel.

To export the simulation results to the base workspace, select Send to Base from
the File menu. Simulation results will be assigned to the variable srdata in the base

36

workspace. In case the output is strictly numeric, srdata will be a numeric array;
otherwise it will be a cell array.

37

38

Appendix B

Wanda ParmEst for MATLAB
User Documentation version 1

39

40

Wanda ParmEst for MATLAB

• Installation and Requirements 43

• What is ParmEst? 43

• The Main Window 45

• Starting and Quitting 46

• The Model File 46

• Connecting to a Model 50

• Running Simulations 54

• Analyzing Results 55

• Saving and Loading 60

41

42

Installation and Requirements

Wanda ParmEst for MATLAB requires MATLAB version 6 or later and is operating
system independent. There are no other hardware requirements than those for
MATLAB.

Since Wanda StocRes for MATLAB is a pure MATLAB application, it requires no
explicit installation. Unpack the Wanda package in the directory where you would
like to have the programs reside and edit the Startup File for MATLAB to include
the directory in the MATLAB path (see the MATLAB documentation).

What is ParmEst?

ParmEst is a program for parameter estimation and statistical analysis of estimates in
stochastic CSS models.

ParmEst uses a bootstrapping approach to estimate parameters and works in two
phases. In the first phase, a deterministic model is fitted against system observations
to produce an estimate of the parameter. The deterministic model is evaluated for a
first guess on the parameter value (which must be supplied by the user). An objective
function squares the difference between the output from the deterministic model and
the system observations and sums the squares. A simplex optimizer is used to find
the minimum of the objective function and hence the parameter value that minimizes
the difference with the system. This parameter value is then the estimate. In the
second phase, the estimate is transferred to the stochastic model, a replica of the
deterministic model, but with stochastics built into it. The stochastic model is run
once producing an output against which the deterministic model is fitted to produce
an estimate. This is repeated N times giving a set of N estimates. Statistic measures
can then be calculated based on these N samples to provide an idea to the quality of
the estimate from phase one.

Statistical measures include: average, standard deviation, min, max, confidence
interval, and percentile. ParmEst can also visualize results in forms of scatter plots
and histograms, and take full advantage of MATLAB’s extensive capabilities.

43

Example

Assume that we want to calculate the decaying rate of a radioactive isotope (here
called lambda). The dynamic model describing the decay is the well known negative
exponential function, where lambda is the decaying rate or the intensity of the
process and y is the number of atoms not yet decayed in a compound:

dydt = -lambda*y.

A Least Mean Square algorithm can be used to fit the model against the system
observation and produce an estimate for lambda. Because the atoms have a
stochastic behavior, decaying randomly, the decay in the compound which we have
observed will not follow the mathematical model exactly but show some variations.
This means that since we have only one observation that we can use, the estimate
will be somewhat unsure. To get an idea of how good our estimate is, we can make
our model stochastic and simulate it a number of times, each time fitting the
deterministic model to the stochastic and thus producing many estimates for which
we can calculate variations.

The stochastic model has the same structure as the deterministic one, but introduces
Poisson distributed randomness. In the deterministic model, lambda is the decaying
rate as if decay was deterministic and perfectly smooth. In the stochastic model, the
decaying rate is stochastic and can be modeled as a Poisson process. The flow rate
can be held constant during a short time period, dt. The number of atoms decaying
during this time period will then be Po(lambda*y*dt) and the stochastic model will
consequently have the following flow rate:

dydt = -(Poisson(lambda*y*dt))/dt

By repeatedly simulating the stochastic model and fitting the deterministic model to
it each time, we get a number of estimates who, due to the stochastic properties of
the mode,l varies slightly. Thus, variations around the estimate we produced in phase
one can be calculated and we get an idea of how good the estimate is and how much
we can expect it to vary in the real world.

44

The Main Window

 a b c d e f g h i

a – Plot variable against popup, see “Analyzing Results”

b – Menus – easy to reach functions
c – Status line – information on status
d – Number of runs – set number of simulation runs, see “Running Simulations”

e – Number of runs done – follow the progress
f – Results – view results of simulations directly, see “Analyzing Results”

g – Opened file – the model file currently simulated

h – Run/Stop/Continue button – control simulations, see “Running Simulations”

i – Reset button – start over, see “Running Simulations”

45

Starting and Quitting

Starting ParmEst

To run ParmEst you must first run MATLAB and the directory containing the
ParmEst files must be on the MATLAB path, or be the current directory. Type
‘parmest’ in the MATLAB command window to start ParmEst. This will cause
ParmEst’s main window to appear on the screen, and its home directory will be
added to the MATLAB path.

Quitting ParmEst

Quit ParmEst by selecting Exit from the File menu, or by clicking the close box in
the ParmEst main window. ParmEst quits immediately without issuing a warning
message. Simulation results that have not been saved will be lost. Plots created from
the ‘Plots’ menu will remain after ParmEst has been quit.

Some settings and preferences will be saved by ParmEst in the file parmestini.mat
when quitting.

The Model File

A ParmEst model is comprised of one main function and five model components:

1. System observation

2. Deterministic model

3. Stochastic model

4. Objective function for phase one

5. Objective function for phase two

None of these functions can use variable number of input or output arguments.

46

Main Function

The main function has no input arguments and returns function handles for the five
model components. It has no other purpose than to bring the various parts of the
model together. The function handles returned are used during simulation.

System Observation Function

A model includes one or more observations of the system. An observation is a time
series of data, e.g. values of the studied parameters. In the first phase, the squared
difference between the output from the deterministic model and the system is
minimized. The system observation function returns the system observation as a
matrix. It is then passed to the objective function together with the output from the
deterministic model.

Deterministic Model

The deterministic model describes the continuous system without stochastics
implemented. ParmEst expects a function representing the system. The deterministic
model function must take the estimated parameters as input arguments, and return
an output that corresponds to the system observation.

Stochastic Model

The stochastic model has the same dynamic structure as the deterministic model, but
has stochastics implemented. It takes the parameter values from phase one as input
arguments and returns a stochastic output. Because of its stochastic properties it is
preferable to build this model using the Euler approximation.

Objective Functions

Two objective functions are needed, one for each phase. They take two vectors as
input, square the element-wise difference between them and return the sum of the
squared differences. The two objective functions are then minimized by finding the
smallest sum by testing for different parameter values.

47

The structure of a ParmEst model.

Example

This example of a ParmEst model describes a radioactive decay, e.g. a negative
exponential function. The parameter that is of interest for estimation is the decaying
rate, here called lambda. All parts of the model file (system observations,
deterministic and stochastic models, and objective functions) reside as subfunctions
to the main function.

The system function, called sys_decay, returns an array with system observations that
are stored in a mat-file and hence must be loaded.

Both the deterministic and stochastic models use the Euler approximation to project
the trajectory. Using MATLAB’s built-in ode solvers could give unexpected results
because of the stochastic properties of the model. It is also substantially faster to use
a simpler algorithm.

Objective functions are needed to minimize the difference between the system and
the deterministic model in phase one, and the difference between the stochastic and
the deterministic models in phase 2.

function [sysh,deth,stoh sysminh,stominh] = decay
% WANDA ParmEst demo model of radioactive decay
% using the Euler approximation.
%
% Returns the following function handles:
% - sysh system function
% - deth deterministic model
% - stoh stochastic model
% - sysminh objective function for phase one
% - stominh objective function for phase two
%
% Parameter for the deterministic and stochastic
% models is lambda, the decaying rate.

48

sysh = @sys_decay;
deth = @det_decay;
stoh = @sto_decay;
sysminh = @sysmin_decay;
stominh = @stomin_decay;

%--- System --
function Y = sys_decay
sysdata = load('decay_sysdata', 'Y');
Y = sysdata.Y;

%--- Deterministic Function ------------------------
function y1 = det_decay(lambda)
Y(1:100) = 100; % Initialize
for k=2:(100)
 X = lambda*Y(k-1); % Flow rate
 Y(k) = Y(k-1)-X*dt; % Update
end

%--- Stochastic Function ---------------------------
function Y = sto_decay(lambda)
Y(1:100) = 100; % Initialize
for k=2:(100)
 X = Poisson(lambda*Y(k-1)*dt)/dt; % Flow rate
 Y(k) = Y(k-1)-X*dt; % Update
end

%--- System Minimizing Function --------------------
function S = sysmin_decay(x,y)
A1 = x-y;
A2 = A1.^2;
S = sum(A2);

%--- Stochastic Model Minimizing Function ----------
function S = stomin_decay(x,y)
A1 = x-y;
A2 = A1.^2;
S = sum(A2);

49

Connecting to a Model

Select Connect to Model ... from the File menu. Choose the model file and click
OK. The Model Settings dialog box will now appear. It is a tabbed dialog box with
three tabs:

1. General – Settings for model components and simplex optimizer

2. Deterministic Model – Settings for the deterministic model and estimated
parameters

3. Stochastic Model – Additional settings for the stochastic model

Recently used files are available in Recent Files under the File menu. It is a
convenient shortcut to open files recently used. The selected file will open and the
settings dialog will appear.

Click OK when all settings have been made to leave the Model Settings dialog and
keep the settings made. Click Cancel to leave without saving the settings. The Help
button will display help for ParmEst in the Help Browser.

The General Tab

In the General tab, you can specify which function represents which model. To the
left there are five popup menus, one for each model component. ParmEst’s default
behavior is set the functions in the same order as the function handles returned by
the model main function. If this is not the case, then select the correct functions
representing each model component in the popups.

1. In the general tab there are also some settings for the simplex optimizer and
the number of system observations.

2. Max number of iterations – maximum number of iterations the simplex
optimizer is allowed to perform during one simulation run.

3. Max number of function evaluations – maximum number of function
evaluations the simplex optimizer is allowed to perform during one
simulation run.

4. Termination tolerance – termination tolerance on minimized variable

5. Number of system observations – number of observations in the system

1-3 are used by the simplex optimizer and passed directly to it. 4 is used when
calculating confidence intervals.

50

The Deterministic Model Tab

The Deterministic Model tab is where you specify which function arguments that
are the parameters to be minimized. All arguments in the model are displayed in the
Parameter Name popup list, and each one of these must be defined either as a
constant or as a parameter to be minimized.

To define an argument as a constant, specify the value in the Constant/Start value
box and click Define. The value you specified will appear as an input argument in
the Command Line Equivalent textbox at the bottom of the tab.

To define an argument as a parameter that the function will be minimized for, enter a
start value in the Constant/Start value textbox. Then check the Estimate
parameter checkbox and select the corresponding variable in the stochastic model in
the Corresponding stochastic parameter popup list. Click Define to complete the
definition. The start value will appear as an input argument in the Command line
equivalent textbox.

To see the help file for the deterministic model function, click File Help. The help
text is displayed in the MATLAB Help Browser. If the model function is a
subfunction, the help text for the parent function will be displayed.

51

a

b

c

d

e

f

a – Parameter name popup – Select input parameters
b – Constant/Start value textbox – Specify start values for the simplex optimizer
c – Corresponding stochastic parameter textbox – Estimate a parameter and send it
 automatically to the stochastic model
d – Define button

e – File help button – view help for the model file
f – Command line equivalent – overview how the model is called

The Stochastic Model Tab

In the Stochastic Model tab you can specify constant values for input arguments. If
an argument has been defined as a corresponding parameter to an estimated
parameter, the Constant textbox will read ESTIMATED and no further definition
can be made of that argument. A constant value for the stochastic model is defined
in the same way as for the deterministic model.

The help for the stochastic model, if it exists, can be seen in the MATLAB Help
Browser if you click File Help.

52

ParmEst can automatically send seeds to input arguments in the stochastic model.
Leave the Constant/Start value textbox empty and check the Send seed checkbox
before you click Define.

A new seed is automatically produced for each simulation run, but not for each time
step. ParmEst uses a generator function to produce the seeds. This function can be
specified after the settings for the model has been completed and has the following
syntax:

seed = seedGenerator
seed = seedGenerator(p1,p2,…,pn)

where seed is the seed, seedGenerator is the name of the function, and
p1,p2,…,pn are input arguments.

In the Settings menu, select Seed Generator. This will display a dialog box with to
text fields. Specify the name of the function that shall produce the seed in the first
field. If the function has any input arguments, specify them as a comma separated list
in the second field.

Seed Generator dialog

53

Running Simulations

When the settings for the model are done, ParmEst is ready to start running
simulations. In the Runs textbox you can specify the number of simulations you
want ParmEst to run in the second phase. Default is 100. In the Done textbox the
number of completed simulation runs is displayed and continually updated so that
you can follow the simulation process.

Parmest will first run phase one, in which the deterministic model is fitted against the
system observation. This results in estimates of selected parameters, which are
automatically transferred to the stochastic model for phase two.

If you want to run phase one only, then set the number of runs to 0. ParmEst will
then stop before starting phase two and will not calculate any statistic measures. You
can continue and run phase two by specifying a positive number of runs for phase
two and then click the Run button.

In phase two, ParmEst will run the stochastic model once and then fit the
deterministic model to the resulting output. This will be repeated for the number of
times specified in the Runs box, producing a set of estimates. Statistics will then be
calculated for these estimates.

The Run/Stop/Continue Button

Click the Run button to start running simulations. The label on the Run button will
now change to Stop, and clicking it while running simulations will cause ParmEst to
stop before the next run.

When stopping simulations manually, the button will change its label to Continue.
Clicking again and it will revert to Stop. You can stop and continue simulations
without restrictions. When the specified number of runs has been completed, a
message box will appear confirming that the simulations are complete and the button
will be labeled Run again.

Generate Simulation report

When simulations are finished, you can create a simulation report. It will contain the
following data:

• Date and time for report generation

• Path and name of the model file

• Number of function evaluations in phase one

• Time for simulations in phase one

• Number of completed simulation runs in phase two

• Number of function evaluations in phase two

54

• Time for simulations in phase two

• Time when simulations was finished

Select Generate Report from the Functions menu. A dialog box will appear
allowing you to choose the name of the file you want to put the report in. The report
will be saved as an ASCII text file.

Analyzing Results

ParmEst features a number of tools for analyzing data from simulations. In addition
to the statistic measures that are calculated, visualization is possible in a variety of
graphs. You can also apply any built-in MATLAB function or your own function to
the results.

Displayed Statistics

Statistics will be calculated and displayed for the simulations that were made before
ParmEst was stopped. When continuing, simulation results will be added to and
statistics will be recalculated after the next stop.

ParmEst has two different display views. Toggle between them by selecting either
View Summary or View Details from the View menu. In the View Summary mode,
a list of results for all estimated parameters is visible. In the View Details mode only
one parameter is visible at a time. The result is shown with higher precision and in
addition a histogram is displayed. If results for more than one variable have been
produced, you can change between the results for the different variables by choosing
the variable you want to study from the Select variable list.

Statistic Settings

To set confidence level and percentile, select Statistics from the Settings menu. The
statistics settings dialog then appears. It is also possible to specify whether
confidence intervals should be one- or two-sided, and if they should be to the left or
to the right if one-sided.

55

Click OK when you have made your settings, or Cancel to close the dialog without
doing any changes. Note that you can change the statistics settings also after having
done simulations. Calculated measures will then change automatically to the new
settings.

Plots

ParmEst offers some built in plots to be created from the simulation results data:

Plot of System Data and Deterministic Model

• Scatter Plot

• Histogram

• Histogram of All

From the Functions menu, select Plot in New Figure and the plot you want to
create. The plot will appear in a new figure that can be further formatted (see the
MATLAB documentation).

Plot displays a graph of the system observation(s) data together with a graph of the
deterministic model evaluated using the estimate from phase one.

56

To create a scatter plot, select the variable you want to have on the x-axes in the
results frame (in View Summary mode, select variable by marking it in the results
listbox, and in View Details mode, select it from the popup list), and the variable you
want on the y-axes in the Plot variable against popup. Then select Scatter Plot from
Plot in New Figure in the Functions menu.

57

Histograms are created with the data from the variable selected in the results frame
by selecting Histogram from the Plot in New Figure menu.

Histograms for all variables can be created in the same figure. Select Histogram of
All to do this. Each variable will be displayed with a separate color in the figure.

Other kinds of graphs can also be created, either by issuing a plotting command
from the Define Function dialog (see “Applying Other MATLAB Functions” p.28),
or by exporting the variable to MATLAB’s base workspace and continue working
with it outside of ParmEst (see “Export data to the Base Workspace” p.30).

Applying Other MATLAB Functions

Analyzing results from the simulations is not restricted to the built-in functions
available in ParmEst. You can also apply any other function to the results.

Select Define Function from the Functions menu. A dialog box will then appear.
Type the command in the bottom textbox and click Apply. It will be sent to and
evaluated in MATLAB’s base workspace. The command must be a correct
MATLAB expression, but you can use both built-in functions or write your own m-
file functions for customized data processing.

In the Define function dialog box a list of all available variables is displayed. Below
the listbox is information about the selected variable’s size, class and the number of
bytes it occupies. There is also a list of the most recently used commands. By
choosing one in the list it will automatically appear in the command textbox.

58

Example

After completed simulations you have three variables, X, Y, and Z, all equally sized
arrays. To make a 3d scatter plot using the built-in MATLAB function scatter3, type
‘scatter3(X,Y,Z)’ and click Apply. The variables X, Y, and Z will be sent to
the base workspace and the expression will then be evaluated resulting in a 3d scatter
plot appearing in a new figure.

Using Other Programs for Analysis and Presentation

It is possible to use other programs and utilities than MATLAB for data processing
and presentation of the results. MATLAB offers several external interfaces. For
instance, you can export your data to Microsoft Excel using ActiveX and DDE (see
the MATLAB documentation). There are two ways to get your simulation data out of
ParmEst:

• Send it to the base workspace (see “Export Data to the Base Workspace”
p.60

• Write your own function to export the data (see “Applying Other MATLAB
Functions” p.58

Once the simulation data are in the base workspace you can take advantage of
MATLAB’s data exporting capabilities (see the MATLAB documentation).

59

60

Saving and Loading

Simulation results can be saved for later use. ParmEst saves the simulation results
and the state it is in to a MATLAB *.mat file. Loading this file will restore ParmEst
to the state it was in when saved. It is then possible to continue simulations and/or
using analysis tools and other features of ParmEst.

To save results, select Save Results from the File menu and choose the file you
want to save in from the dialog box that appears. Load the results back and restore
the state by selecting Load Results from the File menu and choose the file you
want to load. An error message will appear if the file does not contain data saved by
ParmEst.

If you want to save only the results for use outside ParmEst, export the results to the
MATLAB base workspace and save it from there (see the MATLAB documentation
on saving workspace variables).

Export Data to the Base Workspace

ParmEst is intended for estimating parameters, running simulations and providing
basic analysis. If you want to do a more extensive analysis of the simulation data, you
can send the results to MATLAB’s base workspace, where it can be further
processed, saved or exported to other programs such as Microsoft Excel.

To export the simulation results to the base workspace, select Send to Base from
the File menu. Simulation results will be assigned to the variable pedata in the base
workspace. pedata will be a numeric array.

	1 Introduction – Aspects of Scale
	Combining Stochastics and Dynamics
	Purpose

	2 Basic Principles of Poisson Simulation
	Implementing stochastics
	The Poisson Process
	Simulating Poisson Processes
	Other Distributions
	An Instructive Example – the Lotka-Volterra Equations

	3 Treating Stochastics
	Measuring variations in output quantities
	Parameter estimation

	4 Wanda for MATLAB
	Development of Wanda for MATLAB
	Wanda for MATLAB version 1.0

	5 References
	Appendix A
	Starting StocRes
	Quitting StocRes
	Using Varargin and Varargout
	Building Models outside MATLAB
	Example
	Defining Input Variables
	Sending Seeds
	Directly Entering and Overviewing Model Function Call
	Varargin
	Example

	Selecting the Output Variables to Study
	Varargout

	The Run/Stop/Continue Button
	Simulation Report
	Displayed Statistics
	Statistic Settings
	Plots
	Applying Other MATLAB Functions
	Example

	Using Other Programs for Analysis and Presentation
	Export Data to the Base Workspace

	Appendix B
	Example
	Starting ParmEst
	Quitting ParmEst
	Main Function
	System Observation Function
	Deterministic Model
	Stochastic Model
	Objective Functions
	Example
	The General Tab
	The Deterministic Model Tab
	The Stochastic Model Tab

	The Run/Stop/Continue Button
	Generate Simulation report
	Displayed Statistics
	Statistic Settings
	Plots
	Applying Other MATLAB Functions
	Example

	Using Other Programs for Analysis and Presentation
	Export Data to the Base Workspace

