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Part I.   INTRODUCTION

Discrete or continuous?

Time

Quantities xi
• (Continuous)
•

 
Discrete

•
 

Continuous realised as:
Quasi-continuous 
(Δt adjusted to small enough)

• (Discrete)

Population 
models
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Population Models
Population models concern collections of discrete entities such as 

atoms, molecules, genes, cells, humans, animals, plants etc. In 
population models, the integer number of individuals/entities in a 
population or sub-population is the main property of interest. The 
processes with discrete entities develop over continuous time.

Physics Biology Demography

Ecology

Epidemiology

Queuing systems Production Etc.

Population Models

Characteristics:
 

•

 
Discrete entities  •

 
Number of entities ≥ 0

•

 
Dynamics over continuous time  •

 
Stochastic events  

•

 
Results as probability distribution functions
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SIMULATION = model experiment

SYSTEM

MODEL

Influence

Input data Output

System behaviour

Experiments

3)1)

2)

1)

1) Describing the system with a model (and input with corresp. data).
2) Performing the experiments.
3) Conclusions about how the system should behave.

For complex systems analysis is seldom possible – then use 
simulation!
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Different types of models

Stoch- 
astic

Determi- 
nistic

Static Dynamic

Statistical 
models

Algebraic 
models 

(+ - * / )

Differential
equ. models

Dynamic &
stochastic 
models 

Dynamic &
stochastic 
models 

Many 
biological, 
medical, 
agricultural, 
etc. systems 
belong here!



6

Types of dynamic & stochastic simulation

Real systems develops continuously over time! 
A time-discrete model ⇒ parameters become func. of the time-step!
Randomness should be modelled – not just added!

Stoch-
astic

Determi- 
nistic

Static Dynamic

• Contin. System Simulation
- Quasi time-continuous approach

• Discrete-time approach

•Discrete Event Simulation
• Poisson Simulation
•Markov Simulation
• (ARMA models etc.)

• Monte Carlo
simulation

(discrete event
approach)

• e.g. Experiments on
a spreadsheet

• Discrete Event Simulation
• Poisson Simulation
• Markov Simulation
• (ARMA models etc.)



7

Could we use only DYNAMIC or only 
STATISTC methods? (in e.g. epidemiology)

No!
 

Stochastic variations excite the dynamics! And 
dynamics changes the conditions for the stochastics!

No!
 

We need statistical estimates (mean, variance, correlation,   
confidence interval, hypothesis test etc.)

*****
• The same model should handle both dynamics and stochastics in an 

integrated way. 
• Also stochastics must be modelled ! (You can’t just add random 

noise! – See next frame!)
• Only for linear models the expected value of the stochastic model 

equals the results of the deterministic one! (And even then there are 
dangerous pitfalls!)
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Just adding noise
 

???
Ex: Radioactive decay with dx/dt=–ax+e(t) 
(where e(t) is Normal distributed white noise.)

Artefacts:
• Non integer atoms!
• X never levels out!
• Variations don’t 

decrease!
• New atoms may be

created!
• Number of atoms 

may become negative!
• When a quantity xi

becomes negative –
equations including xi
may get mad and  
produce rubbish!

• Results depend on Δt!
• The shorter Δt the more

energy in the noise.
• …

Also stochastics 
must be modelled !
(You can’t just add 
random noise!)
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System, Conceptual Model and Realisations

The Conceptual Model is our best understanding of the system from observations, 
measurements., deductions, beliefs etc. 

*)  “A model should be made as simple as possible –

 

but not simpler!”
**)

 

You must know what you can do with different types of models. “If you only have 
a hammer – every problem looks like a nail!”

State-based model

Analytical model
Statistical model

Choice of
model type**

Occam’s razor*

II. Technical realisationI. Conceptualisation:

 

Knowledge &
feasibility problems

SYSTEM
Studied 
population 
developing 
over time

CONCEPTUAL 
MODEL
Knowledge 
about structure, 
mechanisms and 
data

Micro sim. model
Macro sim. model

...

PURPOSE

 
with the study

ARMA model
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Consistency - free from contradiction

Consistent results from stochastic micro-, macro- & Markov  
models means that their results should have the same 
statistics (mainly: probability distribution functions).

Consistent
results ?

Micro 
model Results

Macro 
model Results

Markov 
model Results

SYSTEM
Studied 
population 
developing 
over time

CONCEPTUAL 
MODEL
Population of 
individuals. 
(Stochastic state 
transfers.)
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How to deal with EVENTS - 1 
(This leads to fundamentally different approaches!)

Time-handling principles:
 

(Event The intensity is here λ

 

EVENTS/time unit)

time

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Bernoulli distribution for 
a time fragment h
⇒ State based models
(e.g. a Markov model)

Exponential interevent 
time distribution ⇒

 
Discrete

 

Event Sim.

 

model

Poisson distribution
within a time-step Δt 
⇒

 

Poisson Simul. model

Uniform (random) 
distribution over time

|   x   x x             x      x           x   x x      x                   x x   x     

3 events      1 event       2 events      3 events      0 events      3+ ev.

Ber[λ⋅h]

Po[λ⋅Δt]

Exp[λ]

Basic stochastic mechanism
Δt

N*U[0,L]
(λ=N/L)
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How to deal with EVENTS - 2
In the last frame we assumed that the intensity λ

 
was constant.

• However, it is enough if the intensity is close to constant during 
a time-step Δt. Then we can also handle λ= λ(t).

• Further, Δt must always be short compared with the rate of the 
dynamic changes. So λ=λ(xi ) or λ=λ(x); where x=(x1 , x2 , …, xn ) 
are also feasible!

Thus: λ=λ(x,t) works in: Ber[λ(x,t)⋅h], Exp[λ(x,t)]
 

and 
Po[λ(x,t)⋅Δt] !
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Three consistent approaches - 1
•

 
Discrete Event Simulation (DES)
– Micro description.
– Based on entities (e.g. individuals) that may be    

unique in characteristics and behaviour.

•
 

Poisson Simulation (PoS)
- Macro description. Similar entities are aggregated into
compartments (state variables). (A stochastic extension 
of Continuous System Simulation.)

- Based on compartments and flows between 
compartments

•
 

Markov model
(The mathematical theory is exact when h→0.)

– Macro description – (individuals are not identifiable).
– Based on system states.
– Each and every situation and transition between

states must be described.

a11 a12 a13 … a1n
a21 a22 a23 … a2n
…
an1 an2 an3 … ann
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Three consistent approaches - 2
Never use stochastic modelling if you don’t have to! 

If you have to, then:

• Use DES

 

when you need to describe unique entities that should be identifiable

• Use PoS

 

when you can aggregate many entities into a number of compartments

• Never use Markov models for simulation

 

– There is no case where this 
technique is superior or even equally good.
(Markov theory has a great theoretical value in the field of Stochastic Processes.)

– Gives huge models (unless one entity is studied, like in single channel models)
– Slow execution
– Bad mental visualisation
– Very problematic to modify or extend. 
– Rigid to change (especially awkward for optimisation and model fitting
– No way of adjusting size of the time-step
– Illusory simple but full of pitfalls. Attracts people with little mathematical 

understanding and often results in very bizarre results.    - Etc.
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Example: Compartments or Markov states ?
Represent just 10 entities in only 3 possible situations (compartments)!

Three consistent approaches - 3

etc. until (9,1,0), (10,0,0)

A state is a rather abstract concept (not very problem oriented)! 
It will only create problems without giving any advantage!

This gives a matrix with 4356 transition probabilities!

Poisson Simulation
X Y

Z
dx/dt=Fyx -Fxy +Fzx -Fzx

dy/dt=Fxy -Fyx +Fzy -Fyz

dz/dt= Fxz -Fzx +Fyz -Fzy

x(0)=..,  y(0)=.., z(0)=..

Markov model: 66 states: 
(The matrix has 66x66 transition probabilities)

(0,0,10)
(0,1,9)
(0,2,8)
(0.3,7)
(0,4,6)
(0,5,5)
(0,6,4)
(0,7,3)
(0,8,2)
(0,9,1)
(0,10,0

(1,0,9)
(1,1,8)
(1,2,7)
(1,3,6)
(1,4,5)
(1,5,4)
(1,6,3)
(1,7,2)
(1,8;1)
(1,9,0)

(2,0,8)
(2,1,7)
(2,2,6)
(2,3,5)
(2,4,4)
(2,5,3)
(2,6,2)
(2,7,1)
(2,8,0)

(3,0,7)
(3,1,6)
(3,2,5)
(3,3,4)
(3,4,3)
(3,5,2)
(3,6,1)
(3,7,0)

(4,0,6)
(4,1,5)
(4,2,4)
(4,3,3)
(4,4,2)
(4,5,1)
(4,6,0)

(5,0,5)
(5,1,4)
(5,2,3)
(5,3,2)
(5,4,1)
(5,5,0)
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Three consistent approaches - 4
• Example:

 
A small system with n=100 entities that can be 

in k=20 different conditions.
• DES:

 
A model with 100 entities – each entity separately 

represented in an internal structure of 20 ‘states’ and rules 
for change of conditions.

• PoS:
 

20 compartments with  flows between compartments.
• Markov:

 
(n+k-1 over k-1) states i.e (119 over 19) states ≈

 4900000000000000000000 states. The matrix is the square 
of this – and each of the matrix elements is a transition 
probability that must have a value. (Also for a very sparse 
matrix- this is not fun! Try to visualise it! (Even with the 
worlds fastest computer the time of the universe is not 
enough even to assign transition probabilities to this 
matrix!)
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The importance of three consistent approaches - 5

Theory of 
stochastic 
processes: 
analytical 
solutions and 
powerful results.

Especially 
Queuing theory 
for M/M/c (where 
c=∞) gives 
powerful 
theorems!

Markov simulation
(never use in simulation)

Macro 
simulation (PoS)

Micro simulation 
for unique entities 
(DES)

Deterministic macro 
models (Ordinary diff. 
equ’s or CSS) are more 
accessible for analysis. 

E.g. by setting dxi /dt=0.
Especially valuable for 
parameter estimation & 
optimisation for linear 
models.

A consistent 
world of 
power!!!

If and only if:   
1) All Ni are large or 
2) The model is linear
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Part II. Poisson Simulation (PoS)

Random distribution of events over time
|---x--x—x-------x---x-------x---x---x---x-----x--------x-----x--x--> time

Δt

 

Δt

3 events 2 events 2 events 3 events 1 event 

Poisson distribution
(λ(t)

 

= Intensity = No. events/time unit)
(Δt

 

= Length of interval)

THUS: Po[λ(t)⋅Δt]  is the stochastic description & numerical 
realisation of the number of events during t to t+Δt.
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The Poisson distribution
• The number of events that occur during a time interval Δt 

when the events occur independently and one at a time with 
an intensity λ

 
is Poisson distributed.  X∈Po[λ⋅Δt]

• Then: px (k) = e-λ⋅Δt ⋅(λ⋅Δt)k / k!    for k ∈
 

{0, 1, ...}.

• Po[λ(x,t)⋅Δt] has only one parameter λ
 

and E[X]=Var[X]=λ⋅Δt.
(Δt is not a model parameter! – Δt is the numerical step-size and should just be small enough.)

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4 5 6 7 8 9 10
0

0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0 1 2 3 4 5 6 7 8 9 10

λ=2 λ=5.5
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Deterministic and stochastic representation

Differential equation systems are often modelled in terms of  States and Flows.

F1 F2
x

Deterministic 
model

dx/dt = F1 - F2
F1 = input
F2 = output

x(t+Δt) = x(t) + Δt⋅F1 - Δt⋅F2
F1 = input
F2 = output

Computers can’t handle infinitesimally small dx and dt.
Make it numerical with e.g. Euler’s method: (Δx/Δt = F1 - F2)

x(t+Δt) = x(t) + Δt⋅F1 - Δt⋅F2
F1 = Po[Δt⋅input]/Δt

 

*

F2 = Po[Δt⋅output]/Δt

 

*

*) A Poisson distributed sample is
drawn for each time-step.

Stochastic 
model
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The general population equation in PoS

• The general (dynamic & stochastic) equation for 
aggregated population models in numerical form:

Δxi /Δt = Po[Δt⋅fin,i (x,t)]/Δt - Po[Δt⋅fout,i (x,t)]/Δt
where i=1…k.
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Three principles for Poisson Simulation
Poisson Simulation is a modeling method based on 

stochastic difference equations where:

1. The stochastics are (almost entirely) introduced in 
the flow rates.

2. The stochastics are modeled by coupling the 
parameters of the statistical distribution to other 
quantities of the model. 

3. The stochastic is implemented so that the integration 
step-size (Δt) is adjustable without rebuilding the 
model. (Which is not the case for e.g. a Markov 
model.)
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Example 1:  Radioactive decay
Study of x=100 radioactive atoms that decay with a 

time constant of T=10 time units. (a=1/T=0.1) 

Deterministic model PoS model

x(t+Δt) = x(t) - Δt⋅F(t) x(t+Δt) = x(t) - Δt⋅F(t) 
F = x⋅a F = Po[(x⋅a)⋅Δt]/Δt
x(0)=100                             x(0)=100

Gives: x(t)=100⋅exp(-t*c) Gives a new stochastic solution 
for each simulation
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Example 1:
 

Radioactive decay

x(t+Δt) = x(t) - Δt⋅F
F=a⋅x

x(t+Δt) = x(t) - Δt⋅F
F=Po[Δt⋅a⋅x]/Δt

a=0.1,  x(0)=100
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Example 2:
 

Lotka-Volterra model

Conclusions:

 

1) Stochastics excites dynamics! (Even when started in equilibrium!) 
2) A stochastic model may switch to another dynamic mode!
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Why Poisson simulation?
• Stochastics excite dynamics and dynamics change

the stochastic conditions.
• The model may switch between modes (cfr. Volterra).
• Average from a stochastic model may differ largely from that

of a deterministic one.
• Two deterministic models that behave exactly the same may behave 

quite differently when stochastics are added.
• If dynamics and stochastics are modelled separately, both the 

statistic and the dynamic estimates become wrong!
• Even when they give the same results in average – PoS provides 

statistical estimates to the results (variations, C.I., correlations etc.)

Dynamics and stochastics must be treated together in a correct way 
when both aspects are important !!!
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Part III. Statistical tools
Contents:

A.

 

Statistical estimates of 
outcomes.
B.

 

Parameter estimation & 
resampling (for linear 
models)

• A deterministic model is run once.
• A stochastic model must be executed many times and the 

results should be collected and transferred into statistical
estimates.
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A.   Statistical estimates of outputs
– Mean
– Variance
– Confidence interval
– Min, Max
– Percentiles
– correlations

B. Statistical estimates of model parameters
(by resampling) – Unbiased method for linear models.

– Mean
– Variance
– Confidence interval
– Min, Max
– Percentiles

Statistics is so much easier, direct and more flexible in simulation than in statistical 
theory!

For example just make, say,10 000 runs and take the range of e.g. 9 500 of the them 
⇒ 95% C.I. 

The model is usually so complicated that a wise statistician wouldn’t even try – and 
an unwise one would start to simplify it beyond any sense!

It is a fact that the mathematically and statistically most studied disease: Morbus 
Simplicitus is not yet discovered by the medical profession!  (See Frame 50.) 
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A.   Statistic estimates of outcome
Ex: Lanchester’s model of warfare. Force 1 (x1 entities) with 
hitting power a and Force 2 (x2 entities) with hitting power b in combat, fighting 
to one force is wiped out.  •

 

Will the stronger force always win?    •

 

How many 
will survive in the winning force?   •

 

How long does the fight take?

x1(0)=5
x2(0)=3
a=b=0.1

Results:
x1(T)=4 
x2(T)=0

dx1/dt = -b⋅x2
dx2/dt = -a⋅x1

Mathematical solution for 
a=b and x1(0)=5 & 
x2(0)=3:

dx1/dx2=x2/x1

∫x1dx1 = ∫x2 dx2

x12|0..T = x22|0..T

x1(0)=5 and x2(0)=3 gives 
because of x2(T)=0:

x12(T)-x12(0)=–x22(0)

Why x1(T)=4 when all x2 
are killed.
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Wanda – StocRes:  Calculating statistical estimates.

_Po
_Po

• E[x1[T]≠4!

• Sometimes 
x2 will win!

• The battle 
time also 
differs from a 
deterministic 
solution!

Read more 
about 
Lanchester’s 
model at 
Frame 44.
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Histograms and scatter plot
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B. Parameter estimation

Model fitting is about finding that model whose 
behavior maximally fits the system’s.

OPTIMISER

Receives the 
accumulated 
error.

Sends a new set 
of parameter 
values for next 
run.

Input
System response 
(usually data)

Model response

Simulation 
program

-
+

SYSTEM

MODEL

Difference
∫e2(t)dte(t)

Parameters

...
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Ex: Logistic growth model. The number of animals, x(t), will 
breed (+b⋅x) and be reduced by inter-species competition   
(-c⋅x2).  •

 
How will the number of animals develop?

Δx(t+ Δt) = Δx(t) + Δt⋅(F1-F2)
F1 = b⋅x F1 = Po[b⋅x⋅Δt]/Δt
F2 = c⋅x2   F2 = Po[c⋅x2⋅Δt]/Δt

b=0.1, c=0.0003  , x(0) = 100
This model is not linear. But the relatively large number of entities make the 
deterministic and stochastic solutions close to equal in average!
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Fitting the deterministic logistic model to system data
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PowerOpt: An optimiser used for model fitting

It took 4.8 seconds to find the optimal set: a=0.86 & b=0.0087
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Best fit of parameters b & c
 

-
 

V is minimised!
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Variations around the best fit model!

• By running the Poisson model N times we get the variations 
around an average (“Resampling”).
• If we want to estimate the variations in the parameters b and c

we fit b and c to each of the N stochastic curves. 
• From these N estimates of b & c we get their variations.

(Note: The logistic model is not linear! We have 
here fitted the deterministic model to data.)
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Wanda – ParmEst    (Linear models only)
Fitting, Resampling and Statistics of the logistic model.
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Parameterisation
We have studied dynamic 
models of the form: 
dx/dt=f(x,t).

To make the example 
simple we now study a 
model of type dx/dt=f(t) 
and chose among the 
polynomial models:

0)  F=a

1)  F=a+b⋅t

2)  F= a+b⋅t+c⋅t2

3)  F=a+b⋅t+c⋅t2+d⋅t3

for best fit to our 
observed data.

Note:

 

This 
separation of 
data is not 
optimal – but is 
used to make 
some ideas very 
clear!

All data
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The number of publications at the technical faculty in 
Uppsala in 1973-81.
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The best least square fit to data using the four polynomial models:

1. Which model 
is the best?

2. Interpret the 
models! What 
would they 
imply if they 
are correct?

e2=971 e2=366

e2=245 e2=0
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Test the fitted models to independent data:

Well! What 
model do you 
now prefer??

The model 
should capture 
the nature of the 
system! 

Do not model 
the random 
errors!

e2=1535 e2=633

e2=1638 e2=5596



42

The Significant Correlation Between the Average Annual Age-Specific 
Incidence Rates of Malignant Melanoma and the Topography of the 
Norwegian West Coast. (O.H. Iversen, J.I.R. 1978.)

You can always make a best fit to whatever model!
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Part IV.
 

The danger of routine-like modelling 
- bad, worse and catastrophic examples

1. Noise must not just be added or multiplied to a 
deterministic model. – See artefacts at Frame 8.

2. Deterministic and stochastic models may behave very 
different – also in average! – See Volterra at Frame 25, 
Lanchester’s model of warfare at Frame 29+ & 44, and the 
SIR model at Frame 45-49.

3. Wrong sojourn-time distribution for a stage.
(A stage is something different from a state or state 
variable (compartment)) – See Green’s hypothesis at 
Frame 51.
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2) Lanchester’s model revisited (See Frame 29)

Lanchester’s model is an example of a simple linear model.

Still, there exists no simulation time for which: E[Stoch. model results] = 
Deterministic model result. 

The model with Force 1 (x1 entities) and Force 2 (x2 entities) is linear and of the form: 
dx/dt = Ax. Why don’t we get the same average for the deterministic and stochastic 
cases?

Δx1 (t+Δt) = x1 (t) - Δt⋅b⋅x2

Δx2 (t+Δt) = x2 (t) - Δt⋅a⋅x1

Δx1 (t+Δt) = x1 (t) – Po[Δt⋅b⋅x2 ]
Δx2 (t+Δt) = x2 (t) – Po[Δt⋅a⋅x1 ]

• For the deterministic model x1 and x2 can take any values: -∞

 

<

 

xi < ∞.    
Then negative soldiers will start to generate more enemies!

• The stochastic population model can only (correctly) permit: 0 ≤

 

xi < ∞. 
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Example:  A Conceptual SIR model
The classical SIR model (~ Kermack & McKendrick, 1927):
A population consisting of individuals is affected by an infectious disease. The 

population is homogeneous, i.e. there are no differences between individuals 
due to age, sex, behaviour etc.

The disease has the three consecutive stages S→I→R. [Susceptible, Infectious 
& Recovered (Removed)]. The assumption is that every individual meets 
every other under equal conditions over time. Furthermore it is assumed 
that:

•

 
An event is statistically independent of all other events at that point in time.

•

 
The probability of a Susceptible individual being infected by an Infectious 
individual is p per time unit.

•

 
The mean time an individual resides in stage I

 
is T time units.

The conceptual model is thus a stochastic model of discrete individuals 
operating in continuous time.
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The macro SIR model for simulation

S(t+Δt) = S(t) - Δt⋅F1 (t) S(0)=1000
I(t+Δt) = I(t) + Δt⋅F1 (t) - Δt⋅F2 (t) I(0)=1
R(t+Δt) = R(t) + Δt⋅F2 (t) R(0)=0
F1 (t) ≈

 
Po[Δt⋅S(t)⋅I(t)]/Δt  *

F2 (t) = Po[Δt⋅I(t)/T]/Δt

*) or F1 (t) = Po[Δt⋅S(t)⋅(1-(1-p)Δt⋅I(t))]/Δt   to be exact.

Note that S+I+R =1001 is 
rather large! But I=1 will 
still cause problems in a 
deterministic approach!
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Stochastic and deterministic SIR models

The stochastic and deterministic SIR model create very 
different results and conclusions!!!
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Results
Probability distribution functions (pdf) over the number of 
infected individuals in different replications

Comparison of the pdf of the number of susceptible individuals becoming 
infected during the epidemic from 10 000 replications of the   stochastic 
model and the result of a deterministic model.
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Results

Av. # infected
(95% C.I.)

Min & 
Max

Av. length 
of epidemic
(95% C.I.)

Min & 
Max

Stoch. 
Macro 
model

54.5
(52.1– 56.9)

0 & 560 21.9
(21.1– 22.6)

0.1 & 223.4

Determ. 
Macro
model

318.3 318.5 ∞
(207.4 for 1 

case left)

∞

Results obtained using the stochastic model from 10 000 
replications and one from a deterministic model.
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3) Feasible model structures
Figure a) Γ(α,β) distribution 
of sojourn times for α=1, 2, 3, 
5 and 10 with the same overall 
time constant β=10 time units. 
b) The cumulated output from 
these distributions.

Feasible and unfeasible representations of sojourn time in a stage:

Most processes in real life require a finite time. For e.g. biological/medical 
processes a finite time is needed for digesting, transportation of nutrients, 
defeating a disease, developing a cancer, growing an embryo, etc. For such a 
process a first order process is biologically unfeasible because it means that 
the probability of performing the process in almost zero time, i.e. finishing it 
within (0,ε), is larger than finishing it in any other time interval (t,t+ε) of 
length ε. 

Nor is a second order delay feasible because there exists a finite probability to 
accomplish the task in zero time (0,ε). A biologically feasible model, 
therefore, must be of order three or more. 

Only a few non-biological processes, like radioactive decay, may be 
accurately modelled with a single compartment.

ε

”Morbus 
Simplicitus”
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The professor, believing his exponential model, questioned the need for any treatment at all of 
cancer in situ. [Green, 1970]. This resulted later on in a large number of cancers and deaths!

Example: G. H. Green’s hypothesis: Cervical cancer doesn’t develop from cancer in situ?
A medical professor in Auckland, New Zealand, followed during the 1960s a large number of women with 
cancer in situ of the cervix uteri by frequent smear tests to see if they progressed into invasive cancer. 
75 patients, who showed persistent cancer in situ, were followed up for in average 53 months. None of them 
developed invasive cancer. To test the Null hypothesis that ‘Cancer in situ causes cancer’ a Markov model, 
equivalent with the PoS model below was built:

… instead of the feasible model:

Deterministic results of the two 
models (which both are linear!).

Of 10 000 replications only 
3.24% gave ‘No cancers’. Since 
the model disagreed with data 
(zero out of 75 got cancer) the 
model telling so was rejected at 
more than 95% significance level.  

Of 10 000 replications 34.14% gave ‘No cancers’. No 
conclusions could then be drawn even at 70%  
significance level.

Morbus 
Simplicitus!
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The steps in a  PROJECT

Problem awareness

Problem definition

Modelling

Validation

Problem solving

Result evaluation 

Result presentation 

Implementation
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