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Partl. INTRODUCTION

Discrete or continuous?

, Quantities x; {

 (Continuous)
e Discrete

/

Population
models

T

Time <

~e Continuous realised as:
Quasli-continuous
(At adjusted to small enough)

.¢ (Discrete)



Population Models

Population models concern collections of discrete entities such as

atoms, molecules, genes, cells, humans, animals, plants etc. In

population models, the integer number of individuals/entities in a
population or sub-population is the main property of interest. The

processes with discrete entities develop over continuous time.

Population Models

/

Physics Biollogy Demography Epidemiology

Ecology | | Queuing systems Production

Etc.

Characteristics: e Discrete entities e Number of entities >0
e Dynamics over continuous time e Stochastic events
e Results as probability distribution functions




For complex systems analysis is seldom possible — then use
simulation!

SIMULATION = model experiment

Influence sysTEM | —SyStem behaviour
1)J 1)< ﬁ 3)
Output
Input data .| MODEL S

%

2) Experiments

1) Describing the system with a model (and input with corresp. data).
2) Performing the experiments.
3) Conclusions about how the system should behave. )




Different types of models

Stoch-
astic

Determi-
nistic

Statistical Dynamic &
models stochastic
models —
Algebraic Differential
models equ. models
(+-*1)
Static Dynamic

_ A

[ Many
biological,
medical,
agricultural,
etc. systems

\ belong here!



Types of dynamic & stochastic simulation

Stoch-
astic

Determi-
nistic

e Monte Carlo

simulation

(discrete event
approach)

e Discrete Event Simulation
e Poisson Simulation

« Markov Simulation
 (ARMA models etc.)

* e.g. Experiments on

a spreadsheet e Contin. System Simulation
- Quasi time-continuous approach
« Discrete-time approach
Static Dynamic

v Real systems develops continuously over time!

v" A time-discrete model = parameters become func. of the time-step!
v Randomness should be modelled — not just added!
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Could we use only DYNAMIC or only
STATISTC methods? (in e.g. epidemiology)

No! Stochastic variations excite the dynamics! And
dynamics changes the conditions for the stochastics!

No! We need statistical estimates (mean, variance, correlation,
confidence interval, hypothesis test etc.)

hkhk

e The same model should handle both dynamics and stochastics in an
Integrated way.

* Also stochastics must be modelled ! (You can’t just add random
noise! — See next frame!)

* Only for linear models the expected value of the stochastic model
equals the results of the deterministic one! (And even then there are
dangerous pitfalls!)
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Just adding noise ???

Ex: Radioactive decay with dx/dt=—ax+e(t) mmp Artefacts:

(where e(t) is Normal distributed white noise.) ¢ Non integer atoms!
e X never levels out!

e Variations don’t
decrease!

* New atoms may be
created!

e Number of atoms
may become negative!
* When a quantity x;
becomes negative —
equations including Xx;
Also stochastics may get mad and
must be modelled ! produce rubbish!
(You can’t just add | e Results depend on At!

random noise!) « The shorter At the more
energy in the noiseg




System, Conceptual Model and Realisations

Occam’s razor* B .
PURPOSE ) . oice 0
:"} model type™?

'SYSTEM | —
Studied |
' population i:}
, developing !
over time ,

I. Conceptualisation: Knowledge &

feasibility problems

CONCEPTUAL

MODEL
Knowledge
about structure,
mechanisms and
data

N—

/LN

Micro sim. model

Macro sim. model

State-based model

Statistical model

Analytical model

ARMA model

(X J ,

Il. Technical realisation

The Conceptual Model is our best understanding of the system from observations,
measurements., deductions, beliefs etc.

*) “A model should be made as simple as possible — but not simpler!”

**) You must know what you can do with different types of models. “If you only have 9
a hammer — every problem looks like a nail!”




Consistency - free from contradictio

r------=-- 1 Micro
'SYSTEM | |CONCEPTUAL M) | g [ Results
i Studied i MODE_L -.
' population :f""}';: I_Dopu!atlon of Macro
'developing 7 | Individuals. ‘ model =:§>Results§
L over time i (Stochastic state
\_________1 |transfers.) Markov|
B model | RESUIS
Consistent
results ?

Consistent results from stochastic micro-, macro- & Markov
models means that their results should have the same N
statistics (mainly: probability distribution functions).



How to deal with EVENTS -1

(This leads to fundamentally different approaches!)

Time-handling principles: (Event The intensity is here A EVENTS/time unit)

time  Uniform (random)

L% ¥ ¥ X X Y XX X XXX

: - N*U[O L]

||||I|||||||Ii|||||||||||||||||||I||IIII|||||||||I|||I||||||||||||||||I|IIIEI|||||I|||E|||I||||||||||||I||I|||I||||||||I||EI||||I|||I|I|I
- Ber[k h]

H H HE 0 B A "_" i Exp[x] A

Y Y Y Y Y Y

3events: levent 2events 3events Oevents 3+ev.

5 Po[A-At]

At

Basic stochastic mechanism

distribution over time

Bernoulli distribution for
a time fragment h

—> State based models
(e.g. a Markov model)

Exponential interevent
time distribution =
Discrete Event Sim. model

Poisson distribution
within a time-step At
= Poisson Simul. model
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How to deal with EVENTS -2

In the last frame we assumed that the intensity A was constant.

* However, it is enough If the intensity Is close to constant during
a time-step At. Then we can also handle A= A(t).

o Further, At must always be short compared with the rate of the
dynamic changes. So A=A(X;) or A=A(X); where X=(Xy, Xy, ..., X,)
are also feasible!

Thus: A=A(x,t) works in: Ber[A(x,t)-h], Exp[\A(x,t)] and
Po[A(x,t)-At] !
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Three consistent approaches - 1

e Discrete Event Simulation (DES)
— Micro description.
— Based on entities (e.g. individuals) that may be
unique In characteristics and behaviour.

e Poisson Simulation (PoS)
- Macro description. Similar entities are aggregated into
compartments (state variables). (A stochastic extension
of Continuous System Simulation.)
- Based on compartments and flows between
compartments

e Markov model

(The mathematical theory is exact when h—0.)
— Macro description — (individuals are not identifiable).
— Based on system states.
— Each and every situation and transition between
states must be described.

-

\

&

g.

all a12 a13- [l
dyq Aoy Aoy

dyg Ao A3
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Three consistent approaches - 2

Never use stochastic modelling if you don’t have to!
If you have to, then:

« Use DES when you need to describe unique entities that should be identifiable

« Use PoS when you can aggregate many entities into a number of compartments

 Never use Markov models for simulation — There is no case where this
technique is superior or even equally good.

(Markov theory has a great theoretical value in the field of Stochastic Processes.)

Gives huge models (unless one entity is studied, like in single channel models)
Slow execution

Bad mental visualisation

Very problematic to modify or extend.

Rigid to change (especially awkward for optimisation and model fitting

No way of adjusting size of the time-step

[llusory simple but full of pitfalls. Attracts people with little mathematical
understanding and often results in very bizarre results. - Etc.



Three consistent approaches - 3

Example: Compartments or Markov states ?

Represent just 10 entities in only 3 possible situations (compartments)!

Markov model: 66 states:

Poisson Simulation

X

Y

S

Z

(dx/dt=F -F, +F,-F

dy/dt=F

yx = Xy

ZX ~ ZX

-F, +F, -F

Xy ° yX

Yy " Yz

dz/dt= F -F, +F -F

XZ ° ZX

yz ~ zy

(The matrix has 66x66 transition probabilities)
(0,0,10) (1,0,9)

(0,1,9)
(0,2,8)
(0.3,7)
(0,4,6)
(0,5,5)
(0,6,4)
(0,7,3)
(0,8,2)
(0,9,1)
(0,10,0

(1,1,8)
(1,2,7)
(1,3,6)
(1,4,5)
(1,5,4)
(1,6,3)
(1,7,2)
(1,8;1)
(1,9,0)

(2,0,8)
(2,1,7)
(2,2,6)
(2,3,5)
(2,4,4)
(2,5,3)
(2,6,2)
2,7,1)
(2,8,0)

(3,0,7)
(3,1,6)
(3,2,5)
(3,3,4)
(3,4,3)
(3,5,2)
(3,6,1)
(3,7,0)

(4,0,6)
(4,1,5)
(4,2,4)
(4,3,3)
(4,4,2)
(4,5,1)
(4,6,0)

(5,0,5)
(5,1,4)
(5,2,3)
(5,3,2)
(5,4,1)
(5,5,0)

etc. until (9,1,0), (10,0,0)

This gives a matrix with 4356 transition probabilities!

X(0)=.., y(0)=.., z(0)=..

A state is a rather abstract concept (not very problem oriented)!

It will only create problems without giving any advantage! "




Three consistent approaches - 4

Example: A small system with n=100 entities that can be
In k=20 different conditions.

DES: A model with 100 entities — each entity separately
represented in an internal structure of 20 ‘states’ and rules
for change of conditions.

PoS: 20 compartments with flows between compartments.

Markov: (n+k-1 over k-1) states i.e (119 over 19) states ~
4900000000000000000000 states. The matrix Is the square
of this — and each of the matrix elements Is a transition
probability that must have a value. (Also for a very sparse
matrix- this is not fun! Try to visualise it! (Even with the
worlds fastest computer the time of the universe is not
enough even to assign transition probabilities to this
matrix!)

16



The importance of three consistent approaches - 5

A consistent
world of
power!!!

Micro simulation

for unique entities

(DES)

Theory of
stochastic
Processes:
analytical
solutions and
powerful results.

Especially
Queuing theory
for M/M/c (where
C=00) giVves
powerful
theorems!

I

Macro
simulation (PoS)

7 )

v

Markov simulation
(never use in simulation)

——————————————————————————————————————————

- If and only If:
‘1) All N, are large or |
. 2) The model is linear |

Deterministic macro
models (Ordinary diff.
equ’s or CSS) are more
accessible for analysis.

E.g. by setting dx,/dt=0.
Especially valuable for
parameter estimation &
optimisation for linear

models.
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Part II. Poisson Simulation (PoS)

Random distribution of events over time

|---X--X—X------- X===X=mmmmmm X===X===X === X~m==~ X-mmmmmmm X-=--- X--X--> time POP
LAt At | | ,
| : A i 5]) ||Events
L_H v - A - A v )

3events 2events 2events 3events 1event 5

&> Poisson distribution

(A(t) = Intensity = No. events/time unit)
(At = Length of interval)

THUS: Po[\(t)-At] is the stochastic description & numerical
realisation of the number of events during t to t+At.

18



The Poisson distribution

e The number of events that occur during a time interval At
when the events occur independently and one at a time with
an intensity A Is Poisson distributed. Xe Po[?»-At]

» Then: p, (k) = e*At.(L-At)K/ k! fork € {0, 1, .

0.3 0.18

— 0.16 —

s 2| o A=5.5

0.2 0.12
0.15 01

= 0.08 -

0.1 - 0.06
0.05 - | 004

0.02 I:
0 - I T T 0 I
1 2 3 4 5 3 4 5 7

|
6 7 8 9 10 1 6

(=Y
o

e Po[A(x,t)-At] has only one parameter A and E[X]=Var|[X]=A-At.

(At is not a model parameter! — At is the numerical step-size and should just be small fgough.)



Deterministic and stochastic representatlon

Deterministic
T @Q model
dx/dt = F1 - F2

© { F1 = input
| F2 = output

Stochastic
model

Differential equation systems are often modelled in terms of States and Flows.

Computers can’t handle infinitesimally small dx and dt.
Make it numerical with e.g. Euler’s method: (Ax/At = F1 - F2)

X(t+At) = x(t) + At-F1 - At-F2 X(t+At) = x(t) + At-F1 - At-F2
= input F1 = Po|At-input]/At ~
F2 = output F2 = Po|At-output]/At ~

) A Poisson distributed sample is
. 20
drawn for each time-step.




The general population equation in PoS

)

POP out

In
2 >

e The general (dynamic & stochastic) equation for
aggregated population models in numerical form:

AX:/At = PoO[At-f
where 1=1...k.

(X 1At - PO[ALFy 0 (X, D/AL

in,i

21



Three principles for Poisson Simulation

Poisson Simulation is a modeling method based on
stochastic difference equations where:

1.  The stochastics are (almost entirely) introduced In
the flow rates.
2. The stochastics are modeled by coupling the

parameters of the statistical distribution to other
quantities of the model.

3.  The stochastic is implemented so that the integration
step-size (At) is adjustable without rebuilding the
model. (Which is not the case for e.g. a Markov
model.)

22



Example 1: Radioactive decay

Study of x=100 radioactive atoms that decay with a
time constant of T=10 time units. (a=1/T=0.1)

Deterministic model PoS model

- X(t+HAL) = X(t) - AtF(t) [ x(t+At) = x(t) - At-F(t)
F=xa > F = Po[(x-a)-At]/At
 x(0)=100 - x(0)=100

- -
- -

Gives: X(t)=100-exp(-t*c) Gives a new stochastic solution
for each simulation

23



Example 1: Radioactive decay

[DETEHM]NISTIC [STGCH.&E'I'IC }
MODEL MODEL
4 F % Po FQ:: | r"ﬁ-«l
\% L‘K_,,,f_} -
:
X(t+AL) = X(t) - At-F X(t+At) = X(t) - At-F
F=a-X F=Po[At-a-x]/At

a=0.1, x(0)=100

24



Example 2: Lotka-Volterra model

Yolterra equations:
a=0.2, b=0.005 c=0.005, d=0.3, k=0.001
& Eh gives stat. values: ¥[=60, ¥ [0)=28
STATIONARY WALUES:
RABEBIT %=0 Y¥=0
Rk [ o]
' w=adk, Y=
ra [ (]

a=dit, Y=(a-kdd/c)/b

d [Here Foxes became extinct! ]

.
1

200
150

100 ___RABBIT

a0 e F

Conclusions: 1) Stochastics excites dynamics! (Even when started in equilibrium!)
2) A stochastic model may switch to another dynamic mode! 2



Why Poisson simulation?

Stochastics excite dynamics and dynamics change
the stochastic conditions.

The model may switch between modes (cfr. VVolterra).

Average from a stochastic model may differ largely from that

of a deterministic one.
Two deterministic models that behave exactly the same may behave
quite differently when stochastics are added.

If dynamics and stochastics are modelled separately, both the
statistic and the dynamic estimates become wrong!

Even when they give the same results in average — PoS provides
statistical estimates to the results (variations, C.1., correlations etc.)

Dynamics and stochastics must be treated together in a correct way
when both aspects are important !!! 26



Part I11. Statistical tools

Contents:
A. Statistical estimates of
outcomes.
B. Parameter estimation &
resampling (for linear
models)

un]

[ S |
£ & J

SCHEDULE

TIDSAXEL

3

—_——— coop‘r HA!TQ
ENT] o=
TIES INTER-
RUFTS SLLHP RAPPORT-
GENERATOR
PRIORITY

orox
4
.
-

AKTIVITET BIN

A deterministic model is run once.
e A stochastic model must be executed many times and the

results should be collected and transferred into statlstlcal
estimates.



A. Statistical estimates of outputs

— Mean

Variance
Confidence interval
Min, Max
Percentiles
correlations

B. Statistical estimates of model parameters
(by resampling) — Unbiased method for linear models.
— Mean
Variance
Confidence interval
Min, Max
Percentiles

Statistics i1s so much easier, direct and more flexible in simulation than in statistical
theory!

For example just make, say,10 000 runs and take the range of e.g. 9 500 of the them
=95% C.I.

The model is usually so complicated that a wise statistician wouldn’t even try — and
an unwise one would start to simplify it beyond any sense!

It is a fact that the mathematically and statistically most studied disease: Morbus
Simplicitus is not yet discovered by the medical profession! (See Frame 50.)8



A. Statistic estimates of outcome

Ex: Lanchester’s model of warfare. Force 1 (x1 entities) with
hitting power a and Force 2 (X2 entities) with hitting power b in combat, fighting
to one force is wiped out. e Will the stronger force always win? e How many
will survive in the winning force? e How long does the fight take?

Xm/dt _ b X2 1 w2 *1 Pao A2 Po
{ dx2/dt = -a-x1 x1(0)=5
i | x2(0)=3
Mathematical solution for a=b=0.1
a=b and x1(0)=5 &
x2(0)=3:

. b
dx1/dx2=x2/x1

[x1dx1 = [x2 dx2
x120..T = x2?|0..T

_ o ] Results:
x1(0)=5 and x2(0)=3 gives \ xl(T) 4 =X

because of x2(T)=0: x2 (T)=0
x12(T)-x12(0)=—x22(0)

Why x1(T)=4 when all x2 | © : 0
are killed.

1 1=




Wanda — StocRes: Calculating statistical estimates.
_Iolx

Select File | IC:"-,F"ngram"-,MichSDﬁ Office’\W'ord_Filer\Methods&Tools\Lanchest.sim

Frob.-Lewel Percentile —

Fesult%arable £ 1-sided
I Add | Del* | Eack*l & paidod 1-o |95 IEEI—"/.;
o E[Xl[T]¢4|\ Stocastic Results: Help C.I. A |1.95|:|4

Mame Average |Std.Dev. |C|:|nf. Int. |Min |Max |Percenti|e |*
x1_Po 3463000 1653289 | 3.360507- 3565493 ~347E-18 5000000 | 4.000000
e Sometimes x2 PO 0232000 0694736 | 0.188931- 0.275069 “347E-18 3.000000 @ -3.47E-18
%v Win_x] 08B4000 0320385 | 0.864138- 0.903862 0 1000000 1.000000
x2 will win! Batle_Time 7751216 5438783  7.414048- 5.038384 0422000  39.03000  6.415000

- =end -

Mo =kip Cn ; ] y
time also No. fion seed " | Sen " T | cont | Reset| (B ] rStEa:SSn_ﬂﬂt
differs froma ... '

. e . done |1DDD Halt Break | Help | _
deterministic
. —Mean & Cl. Difference (tequires exactly two *marked wariables))
solution! Calc | | | | Help
— Display by marking exactly one variable by a®* mend to MNotepad or a Textile —
Read more * Unsorted Histogram *) | Scatter Flot (=) | To Motepad Select File
" Sorted (on*)

about =]

Lanchester’s ‘ _>I;I

model at

Frame 44, 2004,0819-141441 Exec. Time:|[51.76 min.  |DT-0.002, END when (1= orx2=0) 30




Histograms and scatter plot (pdf)

. StocRes “hIEEEEN, =10l . StocRes - Histogram o [=]
40 40 100 100
30 - 30 80 + &80
60 - 60
20 - 20
40 40
10 4 - 10
1 M N -
0 - - O o4 — — |
(| (mig]
-3.47E-18 *1_Po E.00E+00 -3.47E-18 =2_Po 3.00E+00
Mo, Fits:l 100 Mo, Fits:l 100
2004,09.2%-10,16,30 Close 2004.08,25% - 10,1630 Close

w. StocRes - Histogram -0 x|
m. StocRes - Scatter Plot — |I:I | > |
X 3.00E-+00
N X X
a0 a0 x X
XX X X XX XX
40 Al X X
XX XX
X X xx x%
3 30 XXX =2 Po
x> x X x x
20 7 20 X X Txx x X X X
X X
10 10 X X X X X X X
X XX X
o4 || | g X X X
=11 . . . N -3.47E-18
9 50E-01 Battle_Time 2.74E+01 —3A7EAE =1_Po 5.00E-+00
— Framel
CDrr.CDef.I—U.EB‘I <] — Arounc
Mo, Fits:l 100 _ Anserage
Mo, Fits: |1 ao = Include
2004.09.28-10,16.30 Close 2004,09.28 - 10.16.30 Drigo




B. Parameter estimation

Simulation
program
System response
Input (usually data)
| SYSTEM OPTIMISER
+ X Difference Receives the
C) : Mez(t)dt mm) | accumulated
| e(t) error.
» MODEL Model Sends a new set
— Odel response of parameter
T TT values for next
Parameters L2l

W

Model fitting is about finding that model whose
behavior maximally fits the system’s. 32




Ex: Logistic growth model. The number of animals, x(t), will

breed (+b-X) and be reduced by inter-species competition
(-c-x2). e How will the number of animals develop?

<

F1=Db-X
F2 =c-x?

~

F1

CAX(t+ AL) = AX(1) + At-(F1-F2)

> F1 = Po[b-x-At]/At
F2 = Po[c-x2-At]/At

b=0.1, c=0.0003 , x(0) = 100

This model is not linear. But the relatively large number of entities make the 33
deterministic and stochastic solutions close to equal in average!



Fitting the deterministic logistic model to system data

File: PEstLogA. sim

Mumber of cells counted fram the system.

Time} oo 1 2 3 4 & B 7 & 9 10 11 12

sveT]l20 kO 90 18 42 52 81 88 Y SR 93
_

13 14 15 16 17 18 19 20
111 100 85 104 87 57 108 97 109 83

2.00 SV STEM
Birt

POF

Comp

0.025

10 830,

The difference between =¥ STEM and model (FOP) is calculated and

squared. At each time step this squared errar (DIFZ) is cumulated into %
twhich was empty at stant of simulation). % therefare gives a measure of
how well SYSTEM and MODEL fit. WWe want to find that combination of
the parameters b and c that minimizes V.




PowerOpt: An optimiser used for model fitting

¥4 PowerOpt 1.1 _ o] x|

Select File II:: YLEIFPowerpaoint_FilersPaoS_SemPE ztlogB. zim

— Enter Parameters b aw or Min Errar Type
Faram.Mame  StartValue  Init. Step i+ Minimize v Abzolute
| | ™ Maximize " Relative

Add | Del | Back ™ | ™ E-format

Enter Req. 0.0
Error

& Actual Epor | 0.005743

Farameter | Best%Walue Span

b 055330 0000505
= 0005700 6.50E-06

Enter bdam [ter. 100

Mo, lterations 27

Mo, Simulations |55

Time Uzed |4.?B S,

— Objective Function

Best Value | 454 1113

Heszet Frint

2009-02-03 16:43: 46
Comrment: | Halt | Ereal: Help

It took 4.8 seconds to find the optimal set: a=0.86 & b=0.0087 _

5



Best fit of parameters b & ¢ - V is minimised!

File: PEstLogB.sim

4]

.86 Sy STEM

0.0057

454

36



Variations around the best fit model!

File: PEstLogC. sim.

0.56

0. 00?7

(Note: The logistic model is not linear! We have
here fitted the deterministic model to data.)

12305

* By running the Poisson model N times we get the variations
around an average (“Resampling”).

* If we want to estimate the variations in the parameters b and c
we fit b and c to each of the N stochastic curves.

* From these N estimates of b & C we get their variations.

37



Wanda — ParmEst  (Linear models only)
Fitting, Resampling and Statistics of the logistic model.

i, ParmEst _|EI|E|
Select File | | C:\ProgrambMicrosoft Visual StudictWBI8WbE_FileshParmE st?\Logistic2 ~ 2001-06-02 134078

— Determiniztic Model [=1] Stochastic Model [=2)
Faram.Mame  Start Walue it Step Faram.Mame Seed Name _Seed ] SEEE

| | | | |Seed 1357 072417

Errar Type & Break Cond.
&dd | Dl * | Eack“l No. F. Est IED % Ahzolute 0 Relative

Act P Est. o0 Enter Req. Err-:nr|1E-3
Parameter | Best'alue | Span * | Parameter | Value

|n.nnna15
b 0123411 | 2.30E-0F b2 011635 | | “etual Enar
c 0.000353 132609 ¢ |[e2 0.000342 Enter Max lter. |1nn
Mo Iter. |33
Mao. Buns IEE

— - Mame: Yalue Ohject Functions -

1: |y' | 11220.1R Phase: | Heset| FEnnt [~ E-format

5. 2 Status

w2 | 19563.88 Halt | Break | Help T —
— Prob.-Level :

{ 1-sided 1 Z-zided 1o |95 % &l1.9604  HelpLCl. Quantile |50 3
M ame | verage | StdDev. | Conf Int, | Min | Max | Quantle | Bias

b 0117276 | 0015181 | 0110621 - 012393 0.031003 | 0155733 07116822 0000921
= 0.000343 | 443E-05 | 0.000328 - 0.000363 0.000258 | 0000445 @ 0.000352  6.EEE-06

Tot. Runs |1 466 % nzarted Tao Motepad

- Histogram (%] | Scatter Plat =] | . —_—
Exec. Time Uszed IEl.E'El i, Sorted [on 7] To File 38




Parameterisation

We have studied dynamic
models of the form:
dx/dt=f(x,t).

To make the example
simple we now study a
model of type dx/dt=f(t)
and chose among the
polynomial models:

0) F=a

The number of publications at the technical faculty in
Uppsala in 1973-81.

No. publications

150

=
o
o

a1
o

0

1972

All data

1974 1976 1978 1980

Year

1982

& Qy

Note: This
separation of
data is not
optimal — but is
used to make
some ideas very
clear!

1) F=atb-t
2) F=atb-t+ct?
3) F=a+b-t+c-t>+d-t?

for best fit to our
observed data.

No. pubications

150

=
o
o

al
o

0

Data for MODEL FITTING

150

p
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The best least square fit to data using the four polynomial models:

Y=a
e2=971
150
- *»
0 4 =————————————
-

e

0

1965 1970 1975 1830 1935 1990

Y=a+bt
e2=366
160
100 -
a0 -
0

1965 1970 1975 1980 1985 1990

Y=a+btt+ct2
e2=245
150
100 -
50 A
0

19685 1970 1975 1980 1985 1990

Y=a+bt+ct2+dt3
e2=0

150

100 4

a0

0

1965 1970 1975 1980 1985F 1990

1. Which model
IS the best?

2. Interpret the
models! What
would they
Imply if they
are correct?
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Test the fitted models to Independent data:

Y=2a
e2=1535
140
-
100 +=====---- ‘---‘: ..........
* -
71 Sy
0

1965 1970 1975 1930 1935 1000

Y=a+bt
e2=633

150

100 -

A0

0

1965 1970 1975 1980 1925 1940

Y=at+bt+ct2
e2=1638
140
100 4
a0 1
1]

1985 1970 1975 1930 1925 449Q0

Y=atbttct2+dt3
e2=5596

1460

100 -

a0 -

I:l 1 1 1 1
1965 1970 1975 1980 1935 1900

Well! What
model do you
now prefer??

The model
should capture
the nature of the
system!

Do not model
the random
errors!
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You can always make a best fit to whatever model!

The Significant Correlation Between the Average Annual Age-Specific
Incidence Rates of Malignant Melanoma and the Topography of the
Norwegian West Coast. (O.H. lversen, J.I.R. 1978.)
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FIGURE 4. Incidence of malignant melanoma in Norway. Stolen from FIGURE 5. This figure shows the correlation between the Norwegian
Knut Magnus (1975). coast and the incidence of malignant melanoma,



Part IV. The danger of routine-like modelling
- bad, worse and catastrophic examples

1. Noise must not just be added or multiplied to a
deterministic model. — See artefacts at Frame 8.

2. Deterministic and stochastic models may behave very
different — also in average! — See Volterra at Frame 25,
Lanchester’s model of warfare at Frame 29+ & 44, and the
SIR model at Frame 45-49.

3. Wrong sojourn-time distribution for a stage.

(A stage Is something different from a state or state
variable (compartment)) — See Green’s hypothesis at
Frame 51. 43



2) Lanchester’s model revisited (See Frame 29)

The model with Force 1 (x, entities) and Force 2 (X, entities) Is linear and of the form:
dx/dt = Ax. Why don’t we get the same average for the deterministic and stochastic

cases? W1
P -*_:‘_H:?:;h =
F1[3 ) (o F2
.y e _.;L
v e
I:."'_.‘-:I . - .:"'_ |
-~ -.\__&x

i
dC} \_’f’ﬁ

AX,(t+AL) = x,(t) - At-b-x,
AX,(T+AL) = X,(1) - At-a-X,

AX, (T+AL) = X,(1) —.Po[At-b-xz]
AX,(t+AL) = X,(t) — Po[At-a-X,]

* For the deterministic model x, and X, can take any values: -co < X; < co.
Then negative soldiers will start to generate more enemies!

* The stochastic population model can only (correctly) permit: 0 < x; < oo.

Deterministic model result.

Lanchester’s model is an example of a simple linear model.

Still, there exists no simulation time for which: E[Stoch. model results] =
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Example: A Conceptual SIR model

The classical SIR model (~ Kermack & McKendrick, 1927):

A population consisting of individuals is affected by an infectious disease. The
population is homogeneous, i.e. there are no differences between individuals
due to age, sex, behaviour etc.

The disease has the three consecutive stages S—>I—R. [Susceptible, Infectious
& Recovered (Removed)]. The assumption is that every individual meets
every other under equal conditions over time. Furthermore it is assumed
that:

e An event is statistically independent of all other events at that point in time.

e The probability of a Susceptible individual being infected by an Infectious
individual is p per time unit.

e The mean time an individual resides in stage I is T time units.

The conceptual model is thus a stochastic model of discrete individuals
operating in continuous time.
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The macro SIR model for simulation

(S(t+At) = S(t) - At-F,(t) (S(0)=1000
I(t+AL) = 1(t) + ALF, (1) - At-F(t) [1(0)=1
4 R(t+At) = R(t) + At-F,(t) 'R(0)=0
-, (t) = Po[At-S(t)-1(t)]/At * Note that S+I+R =1001 is
)= POALITYA e
deterministic approach!

S F1 | F2 R
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Stochastic and deterministic SIR models

dS/dt = -p*S”I
di/dt = p*S*I - IIT

dR/dt=I/T
Susceptible . Infective  mep FECOVEred 500+
— 400+
=t 6 o
P e 5 00
__ z
‘ ’ 2 200
o
H T 100
0.0003 400 0H— i i i :
1] 50 100 140 200
Time
Susceptible_ | ¢ Infective_  pep  Recovered_ 50
= L~
|4EID-
31811 | | @ 30
r r ]
g 200
L~ L &
H T 1004
D T T T 1
1] a0 100 140 200
Time
Al

The stochastic and deterministic SIR model create very
different results and conclusions!!! 4



Results

Probability distribution functions (pdf) over the number of
Infected individuals in different replications
0.74
|

0.05
Deterministic
result

Relative frequency

0-9 50-59 100- 150- 200- 250- 300- 350- 400- 450- 500- 550-
109 159 209 259 309 359 409 459 509 559

Interval

Comparison of the pdf of the number of susceptible individuals becoming
Infected during the epidemic from 10 000 replications of the stochastic
model and the result of a deterministic model. 48



Results

Results obtained using the stochastic model from 10 000
replications and one from a deterministic model.

Av. # infected | Min & Av. length |Min &
(95% C.1.) Max of epidemic | Max
(95% C.1.)

Stoch. 54.5 0 & 560 21.9 0.1& 2234
Macro (52.1- 56.9) (21.1- 22.6)
model
Determ. 318.3 318.5 00 00
Macro (207.4 for 1
model case left)
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3) Feasible model structures

0.8+
0.6+
0.051 0.44

0.2+

AT

t . t i OOl ey t t i

0 5 10 15 20 0 5 10 15 20
Tirne Time

0.0o

Feasible and unfeasible representations of sojourn time in a stage:

Most processes in real life require a finite time. For e.g. biological/medical
processes a finite time is needed for digesting, transportation of nutrients,
defeating a disease, developing a cancer, growing an embryo, etc. For such a
process a first order process is biologically unfeasible because it means that
the probability of performing the process in almost zero time, i.e. finishing it
within (0,g), is larger than finishing it in any other time interval (t,t+¢) of
length «.

01h) o Figure a) I'(a,3) distribution

= = of sojourn times for a=1, 2, 3,
5 and 10 with the same overall
time constant 3=10 time units.
b) The cumulated output from
these distributions.

”Morbus
+ Simplicitus”

v

Nor is a second order delay feasible because there exists a finite probability to

accomplish the task in zero time (0,g). A biologically feasible model,
therefore, must be of order three or more.

Only a few non-biological processes, like radioactive decay, may be
accurately modelled with a single compartment.

50



Example: G. H. Green’s hypothesis: Cervical cancer doesn’t develop from cancer in situ?

A medical professor in Auckland, New Zealand, followed during the 1960s a large number of women with
cancer in situ of the cervix uteri by frequent smear tests to see if they progressed into invasive cancer.

75 patients, who showed persistent cancer in situ, were followed up for in average 53 months. None of them
developed invasive cancer. To test the Null hypothesis that *‘Cancer in situ causes cancer’ a Markov model,
equivalent with the PoS model below was built:

_| EXPDISTRFCN
~ ot ph? CUM_of_Cancers
Com| ﬁl . .
. %F) Of 10 000 replications only Deterministic results of the two
Mo _Cases  rogr_Fracton - 3.24% gave "No cancers’. Since | models (which both are linear!).
- 015 the model disagreed with data
T (zero out of 75 got cancer) the 4- -
Morbus | 12.00 model telling so was rejected at | =
Simplicitus! more than 95% significance level] ..
— CUM_of_Cancers
... instead of the feasible model: i 47— - Cum3_of Cancers
o
3-Erlang distrib_fecn 0 ——r -
o 1 2 K] 4 5
&t Progression_ N T ' ' CUMS_af_Cancers Time
f.' Comgp EI Comp2 EI Comp3 EI
= o F1 F2 F3
NoCases  Progr_Fraction W Of 10 000 replications 34.14% gave ‘No cancers’. No
75.00 0.15 = conclusions could then be drawn even at 70%
12.00 significance level.

The professor, believing his exponential model, questioned the need for any treatment at all of
cancer in situ. [Green, 1970]. This resulted later on in a large number of cancers and deaths!
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The steps in a PROJECT

! Problem awareness |
________ N o

Problem definition

Modelling

|
Validation

¥
Problem solving

)
Result evaluation

Result presentation

|: Implementation ]
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