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Abstract 
   Markov Simulation and the more recent Poisson Simulation are two fully consistent ways of 
modelling, applicable to the same types of problems.  
   A Markov model is based on a detailed description of every situation, called state, that a 
system can be in and every possible transition between these states. This approach allows 
powerful analysis and makes Markov models a fundamental part of the theory of stochastic 
processes. However, Markov models are also frequently used for simulation. Here the detailed 
description gives huge, inflexible models, slow execution and problems with model fitting 
and validation because the natural parameters are spread out as parts of the transition 
probabilities. These problems are effectively eliminated in Poisson Simulation, where the 
model is based on a small number of state variables (compartments) and where each 
parameter is explicitly represented only once. 
   This paper first presents Markov Simulation and Poisson Simulation and demonstrates how 
these fully consistent methods are related. Then a systematic scrutiny of the merits and 
demerits of using Markov Simulation and Poisson Simulation in a modelling project reveals 
that Poisson Simulation is superior to Markov Simulation in every phase of the project and 
can handle considerably larger and more complex models. The power of Poisson Simulation 
also extends far outside the field of Markov models. 
   A number of illustrative examples are included to demonstrate the differences and 
advantages of using Poisson Simulation instead of Markov Simulation. 
 
Keywords: Markov Simulation, Poisson Simulation, state-based modelling, stochastic 
compartment modelling, stochastic process, tau-leap simulation 
 
 
1. Introduction 
 
   Markov models are a fundamental part of the theory of stochastic processes [1-4] and are 
also frequently used for simulation [4-8 and references therein]. This paper focuses only on 
the latter aspect. Poisson Simulation [9], sometimes denoted tau-leap simulation [10], is a 
more recent method for model building and simulation that facilitates construction, model 
fitting, execution, validation, modification and analysis of a stochastic and dynamic model. 
   Both Markov Simulation and Poisson Simulation models are based on the Poisson process 
and are applicable to the same types of problems. Both model types generate discrete-valued 
stochastic processes in continuous or ‘almost continuous’ time. The two approaches are fully 
consistent and produce consistent results. 
   However, Markov Simulation is based on a detailed mathematical description where every 
possible situation, called state, the system can take and every possible transition between the 
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states are explicitly represented. This makes a Markov model huge, except for very simple 
cases. Poisson Simulation, on the other hand, is developed in the opposite direction. Here the 
state space is aggregated into a small number of state variables (compartments) that can hold 
any number of entities. In addition, the transitions are aggregated over time into flows that can 
transfer many entities per time-step. 
   Furthermore, Poisson Simulation is designed so that natural parameters (such as risk, 
fertility, interest rate, sojourn time, etc.) of a system under study are explicitly represented 
once for each parameter instead of being implicitly dispersed into the transition probability 
elements. The aggregations over state space and time give a transparent, comprehensive, 
flexible and rapidly executable model, and the explicit representation of the model parameters 
simplifies model fitting, validation, sensitivity analysis and optimisation.  
   The main purpose of this paper is to identify and compare the merits and demerits of 
Markov Simulation and Poisson Simulation as they appear during each phase of a modelling 
and simulation project (from Problem recognition and Problem definition via Model building, 
Validation and Analysis to Result evaluation and Result presentation) [11-14]. In particular, 
issues about transparency, model size, model fitting, risk of over-parameterisation, flexibility 
to modify the model and execution time are examined. 
   Before performing this comparison, it is necessary to first present the Markov and Poisson 
Simulation models and to demonstrate the structural relationship between a Markov model 
and a Poisson Simulation model, so it becomes clear why these types of models produce 
consistent results.   
   This study is restricted to simulation of stochastic processes with discrete states in 
continuous-time. To avoid making the presentation larger and more detailed than necessary, 
no distinction is made between the continuous-time of the system under study and the ‘almost 
continuous-time’ using sufficiently small time-steps in the numerical models. Therefore, both 
the denotations x(t) and xt are used when appropriate. Here discrete-time Markov models are 
often treated because they produce the same results as continuous-time Markov models when 
the time-step is sufficiently small. Jump Markov processes, where time jumps from one event 
to the next event, are also discussed. Furthermore, a Poisson Simulation model is sometimes 
presented in a compact differential form but implemented numerically by difference 
equations.1  
   The paper is organised as follows. Section 2 provides a brief introduction to how models 
can be represented in different ways. Section 3 describes the Markov model and its state 
concept, and presents possible ways to design a Markov model according to different time 
handling methods. At the end of Section 3, a way of separating the Markov transition matrix 
into two parts – one for increments and one for decrements – is presented. The purpose of this 
construction is to demonstrate a very simplified updating scheme that is used in Poisson 
Simulation. In Section 4, Poisson Simulation is introduced. Sections 5 and 6 are the central 
parts of this paper. Section 5 compares the merits and demerits of Markov Simulation and 
Poisson Simulation from the perspective of performing every phase of a full modelling and 
simulation project, while Section 6 shows that Poisson Simulation can handle stochastic 
processes far outside the field of Markov models. Finally, a discussion and summary of 
conclusions are presented in Section 7. 
 
 
                                                 
1 As a consequence of using differential equations the exponential distribution is dealt with, but for a difference 
equation the corresponding discrete distribution is geometric, although it approaches the exponential distribution 
for sufficiently small time-steps. So, for the sake of simplicity, this paper refers to exponential distributions also 
in the case of models with almost continuous-time.  
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2. Representation of a stochastic model based on compartments or states 
 
When objectives and boundaries of what to include and exclude are defined for a system 
under study we have a conceptual model. The next step is to select a proper representation for 
the realisation of an executable simulation model [15]. 
 
The conceptual model can be implemented as a simulation model in three generic ways based 
on what the basic component of the model represents. These basic components can be 
compartments2, states or entities. This leads to fundamentally different structures of 
Compartment-based models, State-based models or Entity-based models. The choice of 
representation also has a profound impact on the concepts, mechanisms, size, flexibility, etc. 
of the model and the study (project) where the model is a central part. 
 
To grasp the idea of different representations and their consequences, Figure 1 illustrates a 
conceptual model where boundaries of what should be included or excluded in the model are 
defined so that the objectives of the study can be fulfilled. This figure is based on a simple 
example in the form of an epidemic SIR model for a population of 1000 individuals, where 
each individual is in one of the stages Susceptible, Infectious or Recovered (meaning 
immune). However, a conceptual model cannot be executed. 
   The next step is to decide the representation of an executable simulation model [15]. It may 
be based on: a) compartments for the stages ‘Susceptible’, ‘Infectious’ and ‘Recovered’ 
holding the numbers of indistinguishable entities, or b) states describing all situations the 
entire system can be in. The third option of basing the model on n=1000 entities (individuals); 
each with the attribute stage set to ‘S’, ‘I’ or ‘R’, is not included in the figure since it is 
outside the scope of this paper, but it is briefly commented on below. 
   The choice of representation decides the main structure of the simulation model, which in 
principle is a device to update the representation over time. 
 
 
 
 
 

                                                 
2 The term ‘compartment’ is here preferred to ‘state variable’ to avoid the word ‘state’ in two different meanings. 
‘State’ in ‘state variable’ refers to the content of a single compartment while state=situation refers to the whole 
system, i.e. a state is a tuple of compartment values. The term ‘state variable’ referring to the content of a 
compartment is, however, a standard concept and is also used in the text.  
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Focus on: b) situations a) dimensions 
    of change 

   Compartment representation                       State representation 

  Susc. Infect. Recov. 
        p00   p01  …  p0m   …  p
        p10   p11  …  p1m   …  p
          …   …  …   …  …   … 
P =  pm0  pm1  …  pmm   …  p
         …   …   …   …   …   … 
        ps0   ps1  …  psm   …   pss

0s 

1s 

ms 

 

Compartment-based model structure State-based model structure 

 
   

 

Conceptual model 
(n=1000 individuals in k= 3 categories) 

 
 
 

  Susceptible       Infectious          Recovered 

Present state 

# Susc. # Infect. # Recov. 
837 7 156 

State No.  Combination 
0 (1000, 0, 0) 
1 (999, 1, 0) 
2 (999, 0, 1) 
3 (998, 2, 0) 
4 (998, 1, 1) 
5 (998, 0, 2) 
6 (997, 3, 0) 
... ... 

13 522 (837, 7, 156) 
... ... 

501 499 (0, 1, 999) 
501 500 (0, 0, 1000) 

Figure 1. The conceptual SIR model with 1000 individuals can be represented by: a) 
Compartments or b) States as the fundamental components. The choice of representation has 
a profound impact on the structure of the simulation model. 
 
 
   Compartment-based models include stochastic compartment models, stochastic differential 
or difference equation systems, etc. For compartment-based simulation models, the changes 
take place by flows into, between or out of the compartments that change their contents, 
illustrated by arrows in Figure 1. In the following the focus is on Poisson Simulation, which is 
presented in Section 4. 
 
   State-based models include Markov chain models, continuous-time Markov models, semi-
Markov models, generalised semi-Markov process models, chain-binomial models, etc. For 
Markov models the state of the system is updated over time by conditional transition 
probabilities, usually ordered in the form of a square transition matrix, illustrated by P in 
Figure 1. Simulation by Markov models is described in Section 3. 
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Comment: Entity-based models include micro-Simulation, Discrete Event Simulation, 
Individual-based Modelling, Agent-based Modelling, etc. In this type of model the entities 
(with imbedded attributes) interact with each other and with the environment in accordance 
with logical and probabilistic rules, resulting in the attributes of the entities changing over 
time. Entity-based models can be implemented as: records with attribute fields (e.g. in an n×k 
matrix where the n rows represent the n entities and the columns their attributes), as objects or 
even as agents. 
   However, entity-based models are beyond the scope of this paper and are mentioned here 
only to clarify the difference between entity-based and state-based models. The 
misunderstanding sometimes arises that any model that can be designed in the form of a 
matrix can be called a state-based (or Markov) model.  
   For example, the conceptual epidemic model in Figure 1 can also be represented by n=1000 
entities where each entity can take the attribute values: ‘Susceptible’, ‘Infectious’ or 
‘Recovered’. This can e.g. be modelled and simulated using a 1000×3 matrix where the rows 
represent the individuals and one of the columns holds the current value (=1) of the attribute 
for each individual. Such a model is based on individual entities and is not a Markov model. 
 
A key concept to stochastic processes is the state space. In Figure 1 the 501501 states 
comprise the state space representing every situation the system can be in. The conceptual 
model of Figure 1, represented by only three compartments, can also be in 501501 different 
situations represented by the combination (c1, c2, c3), where ci is the value of compartment i. 
 
To understand the relationship and difference between a compartment model (e.g. a Poisson 
Simulation model) and a state-based model (e.g. a Markov model) is to realise that the same 
discrete-valued state space can be represented in k dimensions (c1, c2, ..., ck) or mapped onto a 
finite (or countable infinite) set of states S. Thus, the model can be based on either k state 
variables (compartments), one for each dimension, or on states (k-tuples of coordinate values 
(c1, c2, ..., ck)). Since k compartments together can represent any state of the system, a 
compartment model is aggregated dimension-wise into a very compact form, while the state-
based model must consider every possible transition between pairs of states and therefore 
often becomes huge. 
 
When the model in Figure 1 is closed in the meaning that no entities can enter or leave the 
model (c1+ c2+ c3=n), the degrees of freedom becomes d = k-1 = 2 so the state space lies in 
an oblique plane in the space spanned by the dimensions c1, c2 and c3. If entities could leave 
the model, the state space would be restricted by the oblique plane and the planes formed by 
the coordinate axes, so we would have d = 3 degrees of freedom. Furthermore, if entities 
could also enter the model, then the 3-dimensional state space would be unlimited.3 
 
In a compartment model k-1 (or k if the total number of entities can vary) compartments are 
sufficient. The evolution then takes place because of flows into, out of or between 
compartments. When the system is realised as a state-based model, the evolution takes place 
by transitions between states. The evolution mechanism can then be assembled in an 
(s+1)×(s+1) transition matrix, P, of transition probabilities pij (where the first index 
(i=0,1,2,...s) represents the present state and the second index (j=0,1,2,...s) represents the next 
state of the system). 
                                                 
3 This last case causes no problems for a compartment model since a state variable can take any value. In a state-
based model the set of states needed would, in principle, be unlimited. However, a given initial condition, upper 
growth rate limit and a limited time period for the process will set an upper limit for the required number of 
states. 
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For both the compartment and the state-based models, a specification of the initial state (c10, 
c20, c30) is needed. In the compartment model of Figure 1, c10 is placed in ‘Susceptible’, c20 in 
‘Infectious’ and c30 in ‘Recovered’. The compartments are then updated by the flows between 
the compartments. In the state-based model (Figure 1), a state vector p of size s+1 is 
initialised to an initial state by setting initial state (c10, c20, c30) to one and the other states to 
zero. This state vector, p, is then updated over time by the transition matrix P. Since the 
model is stochastic, the elements of the state vector represent the absolute probabilities of 
being in the s+1 states. 
 
By simulating corresponding stochastic compartment and state-based models a large number 
of times starting in the same initial state, the stochastic processes generated by the two kinds 
of models will be consistent [15]. 
 
 
 
3. Markov Simulation 
 
3.1. Theoretical aspects of a Markov process 
 
A stochastic process is a sequence of stochastic variables, separated by an index t and defined 
on a sample space Ω. The process is denoted by {X(t,ω), t∈T, ω∈Ω}. If t is fixed, a stochastic 
variable is obtained, while if ω is fixed a replication/trajectory is obtained.  
 
The classification of stochastic processes depends on three things: 1) the state space 
(discrete/continuous), 2) the index (time) parameter (discrete/continuous) and 3) the statistical 
dependence among the stochastic variables X(t) for different values of the index parameter t. 
The complete joint distribution function among the stochastic variables must in some way be 
(explicitly or implicitly) specified. 
 
A Markov process is a stochastic process that complies with the Markov property. 
 
Definition: A discrete-valued stochastic process {X(t): t∈[0,∞)} is a Markov process if, for 
any t0 < t1 < ... ti < ti+1 and any discrete states x0, x1,...,xi, ,xi+1, 
 
   Pr[X(ti+1)=xi+1 | X(ti)=xi, X(ti-1)=xi-1,..., X(t0)=x0] = Pr[X(ti+1)=xi+1 | X(ti)=xi].               (1) 
 
Thus, if the process at present time (ti) is in state xi then the conditional probability of being in 
state xi+1 at ti+1 is independent of the past states x0, x1, ..., xi-1.  
 
An important part of the definition is that the process is defined in terms of states (rather than 
in terms of e.g. state variables as used in compartment modelling or in terms of entities as 
used in e.g. Discrete Event Simulation), and that the state space can be mapped onto a finite 
(or countable infinite) set of positive integers.  
 
The Markov property (1) is often referred to as memorylessness. However, this is not a 
serious restriction because when a process is dependent on both the present and the past m 
states (the system has a memory of the past), i.e. when Pr[X(ti+1) = xi+1 | X(ti)=xi, X(ti-1) = xi-

1,..., X(t0)=x0] = Pr[X(ti+1) = xi+1 | X(ti)=xi, X(ti-1)=xi-1,..., X(ti-m)=xi-m], it is possible to 
reconstruct the process as a Markov process {Yn} from {Xn} where Yn = (Xi , Xi-1,..., Xi-m) is an 
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ordered m+1-tuple of X values. So this can be accomplished by extending the state space from 
S to Sm+1. 
 
Furthermore, the Markov property is not exclusive to Markov models. It is found when 
integrating from present time t1 to future time t2 in e.g. x(t2) = x(t1) + ∫ f(x(s))ds where the past 
(before time t1) is not included, or in a compartment model dx(t)/dt=f(x,t) numerically 
updated by e.g. the Euler scheme: x(t+Δt) = x(t) + Δt⋅f(x(t)). 
 
A Markov model is stationary with respect to time if the transition probabilities pij are 
independent of time. We will let this be the case until Section 6. 
 
Discrete and continuous-time modelling 
When modelling a system, one can choose between a continuous-time model where an event 
may occur at any point in time ti, as in equation (1), or a discrete-time model where the actual 
state may only change at equally spaced points t=0, 1, 2, ... in time. In this latter case there is 
an implicit step-size involved, i.e. the time unit used. 
 
In the discrete-time case time is advanced in time-steps of equal length. The step-size may 
then be so short (h) that zero or at most one event will happen during the time-step with 
almost certainty (Bernoulli time handling), or it may be relatively longer (Δt), allowing 
several events to happen, but not so long that the dynamics of the model are considerably 
changed during a time-step (Poisson time handling).  
   The transition matrix P of conditional transition probabilities pij gives the probability of 
going to state j at time tj on condition that it is in state i at time ti. The state vector p of 
absolute probabilities will then be updated by the transition matrix according to:  
 

p(1) = p(0)P, 
 
and by iteration over n time-steps by p(n) = p(0)Pn. In the discrete-time case the time in a state 
is geometrically distributed.  
   Although the process is implemented in discrete-time, the time-step is chosen small enough  
to resemble the corresponding continuous-time process (‘almost continuous-time’). When 
h→0 (or Δt→0) the discrete-time case approaches the continuous-time case and the 
geometrical distribution approaches the exponential distribution. 
 
In the continuous-time case the model must handle any point in time, especially the times for 
the events t=t1, t2, ... . The transition matrix P then has to be adjusted to update the state 
vector to any point in time. This can be performed by the Kolmogorov (forward) differential 
equation dP/dt = PQ, where the intensity matrix Q is composed of intensities qij (measured as 
number of events per unit time for transitions from state i to state j). The Kolmogorov 
equation gives: P(t) = eQt. The P(t) matrix is then used to update the state vector p to time t: 
 

p(t) = p(0)P(t), 
 
 The use of the matrix exponential function is a consequence of the time in a state being 
exponentially distributed in the continuous-time case. 
 
The theory of discrete-time and continuous-time Markov processes is fundamental for e.g. 
stochastic processes and queuing theory and the theoretical results are important in many 
sciences. The strength of the theory originates from the decomposition into states that are 
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expressed in statistical terms and analysed by matrix algebra. However, the mathematical 
aspects are beyond the scope of this paper – except when they are necessary for understanding  
simulation of Markov models.  
 
When it comes to simulation of a Markov model, decomposition into states is no longer a 
necessary prerequisite, nor is it an asset. A stochastic compartment model, e.g. a Poisson 
Simulation model, is an option. 
 
3.2. Single and multiple entity models 
 
In textbooks, Markov theory is usually taught by trivial examples such as: ‘a single entity 
makes a choice conditional to a current situation’. For example the entity chooses the brand of 
a new car conditional on the brand of the current one. Hereby, the focus remains on the basic 
concepts of Markov theory. However, such single-entity models have a state-space consisting 
of two states per dimension (0 and 1) where the state of the entity is defined by the k-tuple (c1, 
c2, ...ck) consisting of one ci=1 and the other equal to zero. The number of states then becomes 
the same as the number of compartments in a compartment model. The compartment or state 
is occupied or not.  
 
For this single-entity case there is little need for simulation, so we will focus on models with 
many (n) entities. We will sometimes refer to models with many entities as population 
models.4  
 
However, there is a special case where the n entities are non-interacting. For example, when 
modelling the development of a non-contagious disease such as cancer, the decay of 
radioactive atoms or the risk of neutrons from a radioactive source penetrating a lead shield, 
the entities are non-interacting. In such cases a single-entity Markov model can be used to 
repeatedly simulate the cancer patients or neutrons one-by-one, resulting in n Markov 
simulations to perform one experiment. The results of the n simulations are then super-
positioned to a common time axis. This case is briefly discussed in Section 5.3.1. 
 
3.3. The ideas behind simulation of a Markov model 
 
Note that the analysis sketched above updates the complete state vector constituting the 
probability distribution function (p.d.f.) of being in a certain state at time t. There are, 
however, a number of numerical considerations that make analysis so intractable and 
computer-intensive that simulation of the model is preferred – even though many replications 
are then needed to approximate the p.d.f. of the state vector. 
 
In this paper we use the term replication for one simulation of a stochastic simulation model 
(fixed ω for the replication of a stochastic process {X(t,ω), t∈T, ω∈Ω}) to generate a 
sequence of states over time. 

                                                 
4 The terms ‘entity’ or ‘population’ are not part of the Markov property definition, which only refers to states. 
However, ‘entity’ or ‘population’ are underlying concepts of the system at study that after a modelling process 
are replaced by the more abstract term state in a Markov model. 
   When the Markov model describes events or decisions, in a real system at study these are related to some kind 
of entity. Here we use the term ‘population’ which may consist of several or a single entity. Simulation is mainly 
about the non-trivial examples where there are many entities involved. The term ‘population’ is then very useful 
to make the discussion more concrete. 
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   If the simulation model is based on a transition matrix where every state and transition are 
explicitly represented, we talk about Markov simulation. If the model is based instead on 
individual entities or on the number of entities in compartments it will not be defined as a 
Markov simulation model, even though the model may be expressed as a matrix.  
 
The Markov model can be designed and simulated in different ways depending on the time 
handling approach chosen. The choice of time handling has profound impacts on the form of 
the transition matrix, how simple it is to construct, the way to calculate or simulate the 
development over time and the speed of the execution. The three ways of handling time in 
simulation of a Markov model originate from the definition of the Poisson process and its 
properties. 
 
The Poisson process 
To understand the design of Markov models, it is necessary to discuss how time can be 
handled. The natural starting point for this discussion is to consider state changing events in a 
stationary process. 
 
Definition: A stationary Poisson process is defined in the following way: 
Let X(t), t≥0 be the number of times an event occurs in the time interval (0, t). If the stochastic 
process {X(t), t≥0} has the properties: 
• The process has independent increments, 
• Pr[an event occurs exactly once in the interval (t, t+h)] = λ⋅h+o(h), 
• Pr[an event occurs more than once in the interval (t, t+h)] = o(h), 
then the process is a stationary Poisson process with intensity λ. 
  
A stationary Poisson process (constant intensity λ) has a number of useful properties [16]: 
Property 1: For a Poisson process with intensity λ the time between consecutive events is 
exponentially distributed with expected value 1/λ.    
Property 2: If X∈Po(m1) and Y∈Po(m2), where X and Y are independent processes, then the 
next event originates from the X process with probability m1/(m1+m2) and from the Y process 
with probability m2/(m1+m2).     
Property 3: The number of events during a time interval (t1, t2) is Poisson-distributed, i.e. X(t1, 
t2) ∈Po(λ⋅(t2 - t1)). In particular, for a time-step of length Δt we have X(t, t+Δt) ∈ Po(λ⋅Δt).  
 
In Section 3.4, Bernoulli time handling is presented. This approach is based directly on the 
definition of the Poisson process and gives a simple model that, however, is inefficient for 
simulation. In Section 3.5, exponential time handling is introduced. This approach is based on 
Properties 1 and 2 of the Poisson process above. Here the actual state is fixed between events, 
which allows a description where time jumps with irregular step-size from one event to the 
next. Since the time between events is exponentially distributed, we refer to this as 
exponential time handling. The transition matrix is then used to update the state at the time for 
each event occurring. In Section 3.6, Poisson time handling is introduced. The basis for this 
approach is Property 3 of the Poisson process above. Section 3.7 demonstrates how the 
transition elements in a Markov model are related to the terms of a Poisson distribution. This 
approach is extremely complicated but illustrative. It is included here only because it forms a 
bridge to Poisson Simulation. 
 
3.4. Bernoulli time handling 
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According to the definition of the stationary Poisson process, the probability of an event 
occurring during a very short time interval is proportional to the length of the interval. When 
the time increment is a very small time-step (h), time is updated as: time:=time+h. A 
sequence of events can then be located by a sequence of points in time where single events 
that may happen are handled at the time increments.  
   In a numerical context the Bernoulli distribution with probability λ⋅h is used to decide 
whether an event will happen during (t, t+h). For example, by introducing a stochastic 
variable X that accumulates the number of events, the second condition in the Poisson process 
definition can be reformulated in Markov terms as Pr[X(t+h)=i+1|X(t)=i] = λ⋅h. 
   A good property of the Bernoulli approach is that the transition matrix is sparse compared 
with when many events may happen during the time-step. However, the Bernoulli method is a 
very inefficient way of handling time, because if several events occur during (t, t+h) the 
model only captures one of them. Therefore, h has to be so short that it guarantees that more 
than one event almost never occurs during an interval (t, t+h). This requires that λ⋅h<<1. The 
very short time-step implies that the number of time-steps of a replication will be large and 
that the vast majority of them will be empty.  
 
Example 1: A birth-death model [17] 
Let us consider a ‘birth-death’ Markov model where the actual state can only be updated by –
1, 0 or +1 entity per time-step. It is therefore sufficient to only consider transitions between 
‘neighbouring’ states. In this example we let the state space of all possible states be limited to 
0, 1, 2… s-1, s. Directly applying the Poisson process definition results in the following 
Markov model with the ‘from’ states denoted in a column to the left and the ‘to’ states 
denoted above the transition matrix and where the matrix elements are transition probabilities: 
 
             0         1             2       ...     s-1              s 
    0       1-p01  p01          0        …      0                0 
    1       p10  1-p10-p12    p12      …      0                0 
    2       0       p21     1-p21-p23  …      0                0 
   ...      …      …            …      …      …             …                 
   s-1     0        0             0       … 1-ps-1s-2-ps-1s  ps-1s 
    s       0        0             0       …     pss-1         1-pss-1  
 
The diagonal element of the state transition matrix will then be 1- Σj≠i pij so that the rows add 
up to unity.  ▄ 
 
3.5. Exponential time handling 
 
A continuous-time Markov process may change its state because of an event at any point in 
time t=t0, t1, t2, .... Between these event points the process remains in a state. The process can 
therefore be generated by answering the two questions: A) When will the next event occur? 
and B) Where (to which new state) will the process go? These two questions are answered, in 
probability terms, by Properties 1 and 2 of the Poisson process in Section 3.3 above. 
 
Because this approach makes use of that the time intervals between events for a stationary 
Markov process are exponentially distributed, it is referred to as an exponential time handling 
approach. (Because the process jumps from event to event it is usually called a jump Markov 
process [2,4].) 
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Although the Markov process is in principle continuous-time, it can also be regarded as a 
sequence of events numbered: 0,1,2, ... (detached from time) and treated by a discrete-time 
transition matrix P. The timing of the events at t=t0, t1, t2, ... is then handled separately.  
 
The size of the transition matrix is of course still (s+1)×(s+1) and the matrix is sparse since 
the transition probabilities pij are non-zero only for states one event apart.  
 
The exponential time handling approach has a number of advantages. 
 

• First, the matrix has a simpler structure than for the Bernoulli time handling approach.  
• Second, since an event happens at the end of the interval, a ‘new’ state is always 

reached, which significantly speeds up the simulation compared with using a short 
fixed time-step h.  

• Third, a new state also means that the diagonal elements pii of the transition matrix, 
representing the probability of the system remaining in the state, are therefore equal to 
zero.5  

• Fourth, when the diagonal elements are all zero (or one), all the elements of a row are 
proportional to the probabilities (or intensities) of the respective transitions. The 
transition probabilities of rows then only have to be scaled so that they add up to unity 
(without involving a time-step). This also makes the transition matrix easier to 
construct.  

• Fifth, the problem of finding an appropriate step-size is eliminated. 
• Sixth, the time of an event is exact rather than confined within a short interval. 

 
A disadvantage is that the transition matrix only gives the sequence of transitions so the 
timing of the events has to be calculated separately [2]. 
 
Technically, the questions when and where does the next event occur are implemented in the 
following way. 
 
When the system is in state i there may be several types of independent events taking the 
system to state j1, j2, ...,jm with intensities λij1, λij2, ... , λijm. The total intensity of any event 
occurring is then λi = λij1+λij2+...+ λijm. The next event will occur (according to Property 1 of 
the Poisson process in Section 3.3) at a time drawn from an exponential probability 
distribution function given by λiexp(-λit) where t≥0. Thus, by drawing a number from an 
exponential random number generator Expo[1/λi], the next event is scheduled at time := time 
+ Expo[1/λi].  
 
It now remains to be decided to which new state j1, j2, ...,jm the process will go. (This is 
answered by Property 2 of the Poisson process in Section 3.3.) Since the probabilities of the 
candidates are proportional to their intensities λij1, λij2, ... , λijm the respective transition 
probabilities will be pij = pij/Σpij, where the sum is taken over j1, j2, ...,jm. We also see that 
the row of transition probabilities adds up to one. So by dividing a unit length interval into 
sections proportional to the transition probabilities pij of the ith row, a uniform generator for 
random numbers between zero and one can be used to decide where the process will go. 
 
                                                 
5 Except for an absorbing state. Then, the corresponding diagonal element is equal to one, preventing any 
further events from happening. 
 

 11



Thus, each new event requires two calls to random number generators: One exponential to 
decide when the event will occur and one uniform (plus sorting logics) to decide the new 
state. The exponential Markov approach is best demonstrated by a simple example. 
 
Example 2: Ehrenfest’s diffusion model [18] 
In two boxes, A and B, there are a total number of, say, 4 molecules (to make it very simple). 
The state of the system is defined as the number of molecules in box A. The expected sojourn 
time for each molecule in box A is TA=1/α time units and the expected sojourn time in box B 
is TB=1/β time units (both exponentially distributed, with α and β the intensities of a single 
molecule leaving box A and box B, respectively). An event occurs when one of the molecules 
switches to the other box. Now we want to study the distribution of molecules in the boxes 
over time. Neglecting time, the following transition matrix is constructed. 
 
            0      1        2        3        4 
      0     0      1        0        0        0 
      1  α/(α+3β)  0    3β/(α+3β)    0        0 
P =   2     0 2α/(2α+2β)    0    2β/(2α+2β)   0 
      3     0      0    3α/(3α+β)    0    β/(3α+β) 
      4     0      0        0        1        0 
 
Here, the ‘from-states’, describing the number of molecules in box A, are shown to the left of 
the transition matrix, and the ‘to-states’ are shown above it. After scaling by dividing each 
intensity of a row by its row-sum, each row of transition probabilities adds up to unity. Note 
that the diagonal elements are all zero and that no time-step is involved in the matrix 
elements.  
 
This model will correctly handle the sequence of events, but not the timing. If α <β and all 
particles are in box A, the expected time to the next event is longer than when they all are in 
box B. This means that the expected time intervals between events are not equally distributed 
among the states.  
 
However, time can be calculated separately by drawing random numbers from the table below 
for the sojourn time of the state being visited. The arguments in this table are just the expected 
times to the next event. For example when the system is in state 1 with one molecule in box A 
and three in box B, the intensity of the molecule in box A is λA=1/TA=α per time unit and the 
intensity of each of the three molecules in box B is λB=1/TB=β per time unit. The sum of 
these four intensities is therefore λ=λA+3λB =α +3β causing the expected time to the next 
event to be Expo[1/λ] = Expo[1/(α+3β)]. 
 
             0    Expo[1/4β] 
Time to next 1    Expo[1/(α+3β)] 
event when   2 =  Expo[1/(2α+2β)] 
in state:    3    Expo[1/(3α+β)] 
             4    Expo[1/4α]        
 
To obtain the time the system spends in each state, the occurrence of a state (from the 
transition matrix) is weighted by the actual time it spends in the state (from the Time-to-next-
event table).  ▄ 
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This event-driven approach gives a simpler construction of the transition matrix, without the 
need to find an appropriate time-step, and is considerably more efficient for a numerical 
solution than the Bernoulli time handling approach. It is usually the most efficient approach 
for Markov simulation. 
 
3.6. Poisson time handling 
 
In the Poisson time handling approach time is advanced in time-steps of equal size, as it is in 
the Bernoulli approach. However, here the restriction of the time-step being so short that at 
most one event may happen is relaxed. This means that the present state i may be transferred 
to a next state j several events away, so the transition matrix becomes dense. To stress that the 
step-size may now be considerable, we denote it Δt instead of h. 
 
For pedagogic reasons the presentation below begins with a simple, strictly decreasing 
system. Thereafter a strictly increasing system is presented, and finally a system that can both 
increase and decrease is composed. To make it easier to grasp, the presentation is based on 
concrete examples.  
 
Example 3: Radioactive decay  
Consider s radioactive atoms that decay with a time constant of T time units. Now, the 
transition matrix should handle any number of decays during a time-step. This is 
accomplished by assigning the transition elements of lower left triangle non-zero 
probabilities. According to Property 3 of the Poisson process (see Section 3.3), the number of 
events during an interval (t, t+Δt), for a process with intensity λ, is Poisson distributed with 
the expected value Δt⋅λ as the argument, so the number of events during Δt is Po(Δt⋅λ) 
distributed. Thus the probabilities for k=0, 1, 2, ... events during Δt are: p(k)=e-Δt⋅λ(Δt⋅λ)k/k!. 
In the present example the decaying intensity for i remaining radioactive atoms is λ=i/T. The 
matrix element bij (where j≤ i), representing d=i-j decays during Δt, is then: 

 
    bij=p(i-j)=e- i⋅Δt /T⋅(Δt⋅i/T)i-j/(i-j)!    (2) 
 

The i first matrix elements of the ith row are then the i first terms in the Poisson distribution 
Po(Δt⋅i/T) (in reverse order), and the diagonal element is one minus the sum of these row 
elements. (In this particular example it suits perfectly that the Poisson series is truncated after 
i+1 terms, since there are no more than i atoms that can decay.) Implementing this gives: 

 
              0       1        2        ....      s-1          s           
   0       1         0        0         …        0           0 
   1       b10    1-b10     0         …       0           0 
   2       b20      b21  1-b20-b21  …       0           0 (B matrix) 
  ...         …    …        …        …    …             …     
 s-1      bs-10    bs-11   bs-12     …  1-Σbs-1j            0 
  s        bs0      bs1      bs2       …     bss-1      1-Σbsj 

 
Note that for this approach it is sufficient that Δt<<T (independently of s), while for the 
Bernoulli approach we would need h⋅λ<<1; where λ=s/T implying h<<T/s. Thus the time-
step can be increased by a factor s compared with what would be required for the Bernoulli 
approach.  ▄ 
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Comment: A major problem with Markov models is parameterisation. In the example of 
radioactive decay above, the single natural parameter of the problem – the time constant T – is 
not explicitly defined once in the Markov model but is included in all the non-zero transition 
elements. Note also that the time-step Δt is included in all non-zero elements of the model. 
This makes it problematic to find an appropriate step-size since it involves changing the 
values in all the non-zero elements of the transition matrix. 
 
Next consider an example of exponential growth.  
 
Example 4: Exponential growth 
In this example a Markov model is considered for an increasing number of entities, e.g. 
growth of a population, arrivals of entities, etc. The arguments are parallel to that of Example 
3, but here the probability elements aij (where i≤ j) occupy the upper right triangle of the 
transition matrix, so that several events (births, arrivals, etc.) can occur during a time-step. 
The following transition matrix is obtained: 
 
                         0          1         2      ....     s-1          s 

   0      1-Σa0j    a01     a02      ….     a0s-1        a0s 
   1         0       1-Σa1j  a12      ….     a1s-1        a1s 
   2         0          0    1-Σa2j    ….      a2s-1        a2s (A matrix) 
  ...         …    …      …           …    …              …     
s-1        0           0       0        …. 1-Σas-1s-j     as-1s 
  s         0           0       0        ….      0               1 

 
Again, the elements aij are terms in a Poisson(Δt⋅λ) distribution where λ=i/Ta. 
    
However, this growth example is more complex than the previous one. The problem is the 
unknown maximal number of entities and thus the size of the state vector and the transition 
matrix. The last example started with s entities that could decrease so the possible states were 
{0, 1, ... , s-1, s}. In this example concerning growth, it cannot be known a priori how many 
entities there will be after a full simulation. Furthermore, one has to dimension for the worst 
case that might appear when studying the model by performing say 10 000 replications.  ▄ 
 
Example 5: Both increase and decrease  
Many systems contain both growth and decline mechanisms, e.g. a population changing 
because of births and deaths, number of people in a certain stage of a disease, number of 
intermediate isotopes in a sequence of radioactive decay, number of entities in a queuing 
system, etc. In this case the whole matrix becomes filled with non-zero probabilities.  
 
 

              0          1       2       ...      s-1          s 
   0      1-Σc0j    c01     c02      …     c0s-1        c0s 
   1       c10     1-Σc1j   c12       …    c1s-1        c1s 
   2       c20        c21   1-Σc2j     …    c2s-1        c2s (C matrix) 
  ...        …       …       …       …    …             …     
s-1     cs-10     cs-11     cs-12     …  1-Σcs-1j        cs-1s 
  s       cs0       cs1       cs2       …    css-1        1-Σcsj 
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However, the transition matrix C is composed of the A and B matrices in a very complex way. 
It is not the elements of A and B that are to be plugged into the positions of the C matrix. 
Instead, it is the transition from State i to State j (an index updating by j-i entities) in the C 
matrix that should be the same as the combined effects of State i to State j1 in the A matrix 
(updating by adding j1-i entities) and from State i to State j2 in the B matrix (updating by 
subtracting i-j2 entities). The updating by j-i entities in the C matrix should thus correspond to 
the total updating from the A and B matrices with (j1-i) – (i-j2) entities. Each element cij in 
the C matrix is therefore a function of Poisson terms from the ith row of the A and B matrices. 
For example the element cij is composed of all combinations changing the number of elements 
from i to j entities; i.e. {j-i in & 0 out, j-i+1 in & 1 out, j-i+2 in & 2 out, etc.}. Furthermore, 
the Poisson terms in aij and bij may already be complicated functions because of non-linear or 
time-dependent conditions according to λa=λa(f(i(t),t,Δt) and λb=λb(g(i(t),t,Δt). So in practice 
it is very problematic to theoretically derive the elements even in simple cases.  ▄ 
 
3.7. Relationship between a Markov model and a corresponding Poisson Simulation model 
 
In order to see the parallels between a Markov and a Poisson Simulation model at a later 
stage, the increase and decrease matrices are here kept separate. This means that matrix A is 
used to update increments, e.g. the number of entities from arrivals during (t, t+Δt). If the 
entities increase from i to j1 only because of arrivals, then this is obtained by entering the ith 
row of the A matrix and finding the aij1 element so the column index becomes j1.  
 
In the same way decrements are handled by the B matrix. If the entities decrease from i to j2 
only because of departures, then matrix B is used to update the departures from the index row 
i to the column with index j2. The total update then is from i entities to (j1-i) – (i-j2) entities. 
The new number of entities therefore becomes: i(t+Δt) = i(t) + (j1(t)-i(t)) – (i(t)-j2(t)). This is 
the familiar Euler updating scheme! 
 
Figure 2 illustrates the updating sequence during execution of the Markov model. 

 
Figure 2. The number of entities i is increased by Inflow of entities and decreased by Outflow 
of entities according to: i(t+Δt) = i(t) + (j1(t)-i(t)) – (i(t)-j2(t)).  
 
 

 a00  a01 ...   a0j1  ...  a0s 
  0   a11 ...   a1j1  ...  a1s 
 ...   ...   ...   ...    ...  ... 
  0   0    ...   aij1   ...  ajs 

  ...   ...   ...   ...    ...  ... 
  0   0    ...   0     ...  ass 

Increase by 
j1-i entities 

b00   0    ...  0    ...   0 
b10   b11  ...  0    ...   0 
 ...    ...   ...   ...  ...   ... 
 bi0   bi1  ...  bij2 ...   0 

  ...    ...  ...   ...   ...  ... 
 bs0  bs1  ...   bsj2  ...  bss 

Decrease by 
i-j2 entities 

i(t) 
(current index)

j1-i 

Inflow Outflow

i-j2 
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In detail, the updating of i(t) to i(t+Δt) entities is performed in the following way: 
 

1. Enter line i of the A and B matrices.  
2. Decide the outcomes of the increase and the decrease processes. For matrix A the 

elements aii to ais are the probabilities for 0, 1, ... s-i arriving entities. To realise 
only one of these probabilities a Uniform[0,1] distributed random number 
generator (RNG) is used. If element aij1 is chosen it means an increase by (j1-i) 
entities. The same is valid for the realisation of the number of departures from the 
B matrix, where a decrease of (i-j2) entities is assumed. 

3. Then i(t) is updated by: i(t+Δt) = i(t) + (j1(t)-i(t)) – (i(t)-j2(t)). 
4. Next the time index t+Δt is renamed to t and the process starts over with the new 

index value of i.  
5. Finally, after many iterations time reaches the end of the replication. 

 
It can be seen that a Markov Simulation model, representing all possible states and all 
possible transitions between these states, is a large and complex construction just to update an 
index.  
 
However, the probabilities aii, aii+1 through ais in point 2, above, are the first s-i+1 terms of 
the Poisson distribution. Therefore, a Poisson distributed RNG, Po[λa⋅Δt] (instead of a 
Uniform[0,1] RNG and the transition matrix A) can be used to realise the j1-i arrival events. 
The same is valid for the realisation of the (i-j2) departures from the B matrix. 
 
Thus, instead of the Markov model with its transition matrix, state vector and a Uniform[0,1] 
RNG, an index could be represented as just one (or a few) state variable(s), and stochastic 
functions based directly on the Poisson distribution could be used to update the model. Such a 
model would be much smaller, more comprehensive, more robust, easier to fit and faster to 
execute. This is what Poisson Simulation is about. 
 
 
4. Poisson Simulation 
 
4.1. A simple Poisson Simulation model 
 
For simple models like the population model in Example 3 above, Figure 2 and the related 
text in Section 3.7 show how arrivals and departures of a Markov Model can be separated into 
A and B matrices and that their row terms are the terms in the Poisson distributions: 
Po(Δt⋅λa(i)) and Po(Δt⋅λb(i)). They also show that this enables an updating scheme where the 
matrices are no longer needed. The s+1 states are represented by one index which holds the 
current value of the state i(t), and the transition probabilities from state i(t) to state j(t+Δt), 
located at the ith row of the matrices, are represented by Poisson distributions for arrivals and 
departures. In Markov Simulation, the actual outcomes from the ith row of the A and B 
matrices are achieved by drawing random numbers according to the probabilities aij and bij; 
j=0,1,…. In Poisson Simulation, the outcome is generated by drawing from a Poisson 
distributed RNG. Using this updating scheme produces: 
 
    I(t+Δt) = I(t) + Po[Δt⋅λa] - Po[Δt⋅λb]  The stochastic model in Euler’s form. 
    I(0) = i0       Initial value of entities. 
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Po[~] means that for each time-step a random number is sampled from a Poisson distribution 
with the argument specified by the expression within the brackets. 
 
For practical reasons, it is preferable to denote the index variable I by x and call it a state 
variable. The equation is also rewritten as a system of equations where the arrivals and the 
departures are separate equations. This separation becomes important when the departures 
from one state variable constitute the arrivals to another. This gives: 
 
   x(t+Δt) = x(t) + Δt⋅F1(t) – Δt⋅F2(t)      x(t) holds the actual number of entities to be updated   
                                                                by Δt⋅F1 and Δt⋅F2 for the next Δt. 
   Δt⋅F1(t) = Po[Δt⋅λa]  Arrivals in a separate equation. 
   Δt⋅F2(t) = Po[Δt⋅λb]  Departures in a separate equation. 
   x(0) = x0                       Initial value of x. 
 
The intention with this subsection and Section 3.7 above is to demonstrate how a simple 
Markov model can be redesigned into a stochastic difference equation. For the general case, 
however, the state space is naturally expressed in k dimensions (see Figure 1). It is then better 
to define Poisson Simulation from the underlying stationary Poisson process. 
 
4.2. General form of a Poisson Simulation model 
 
A formal derivation of Poisson Simulation, without any references to Markov models, can be 
based directly on the stationary Poisson process, see [9,19]. In short, the reasoning is as 
follows. By extending the time-step Δt of a stationary Poisson process (Section 3.3), the 
condition of only zero or one event no longer holds. Property 3 in Section 3.3 then states that 
the number of entities during the time-step is Poisson distributed Po[Δt⋅λ]. 
   The idea is now to use the stationary Poisson process as an approximation during 
appropriately short time intervals, even when the intensity λ changes because dynamics 
λ(x(t)) or time λ(t) are involved. The powerful properties of the stationary Poisson process 
can thereby be maintained as good approximations within each updating time-step. These 
methods can also be used in a dynamic non-stationary case by regarding the process as step-
wise constant. Thus, by holding the argument Δt⋅λ(x(t),t) of the Poisson process piece-wise 
constant (Euler’s scheme), this principle can be used step by step over the whole replication. 
(Although Δt is still limited to a step-size where λ can be regarded as almost constant.)  
 
Thus to update the stochastic process   
 
   X(t+Δt)=X(t)+Po[Δt⋅λ(X(t))]  
 
on a sequence of intervals [0, Δt), [Δt, 2Δt), [2Δt, 3Δt), ..., [(N-1)Δt, N⋅Δt); where N⋅Δt is the 
length of the simulation (where [t1, t2) means t1 ≤ time < t2). Thus, updating of the stochastic 
variable X is performed by:  

     ⋅λi];  where the interval i is [(i-1)⋅Δt, i⋅Δt) ∑
= =

Δ=
N

i

N

i
tientsNumberOfEv

1 1
Po[)( ∑

using only the stationary Poisson process on short intervals [t, t+Δt). 
 
Since Po[Δt⋅λi] ≥0, one term is needed for the inflow and one for the outflow, giving the 
fundamental model structure: 
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   X(t+Δt) = X(t) + Po[Δt⋅λin] – Po[Δt⋅λout] 
 
 
This principle can be extended to a model of any number of state variables in the same way as 
in Continuous System Simulation. For a model where the number of entities is sub-divided 
into k categories (k dimensions, see Figure 1), the Poisson Simulation model has k state 
variables, each represented by a stochastic difference equation. Since a state variable can hold 
any number of individuals, the structure of a Poisson Simulation model is independent of the 
number of entities. 
 
All Poisson Simulation models turn out to have the same general form given by: 
 
   dxi=Po[dt⋅λin_i(x,t)]–Po[dt⋅λout_i(x,t)] with initial values xi(0) = x0i;     i=1,2...k,     (3) 
 
where xi denotes state variable i and x is a k-dimensional vector of state variables. (Note that λ 
can be a function of any of the k state variables in x.) Reformatting the differential equation 
into numerical form gives: 
 
     xi(t+Δt) = xi(t) + Δt⋅Fin_i − Δt⋅Fout_i 
     Δt⋅Fin_i = Po[Δt⋅λin_i(x,t)]    (4) 
     Δt⋅Fout_i = Po[Δt⋅λout_i(x,t)] 
     where i=1…k and xi(0) = x0i. 
 
Thus, as seen from (4), Poisson Simulation can be defined as a number of coupled 
(interacting) simultaneous processes that are modelled as sequences of step-wise independent, 
stationary Poisson processes during short time-steps Δt. 
 
Thus, within [t, t+Δt) all flow rates Fin_i and Fout_j are independent. However, over time the 
interactions are considered in Δt⋅Fin_i = Po[Δt⋅λin_i(x,t)] and Δt⋅Fout_i = Po[Δt⋅λout_i(x,t)]. 
 
 
The detailed structures of the models vary. State variables may be connected by physical 
flows in series, parallel or in a feedback way. A state variable may also influence the flows to 
or from the own or other state variables.  
 
The system of equations can be directly implemented in any programming language (see 
Appendix) or better still in any Continuous System Simulation language [20-22] provided a 
Poisson random number generator is included, which it usually is. The execution comprises 
alternately updating the state variable equation and the flow equations (using a Poisson RNG 
to draw the number of arriving and departing entities) for each time-step. 
 
Comment: When using a Continuous System Simulation language, one is often bound to a 
structure such as: x(t+Δt) = x(t) + Δt⋅(F1(t) – F2(t)) and F1(t) = Po[Δt⋅λin]/Δt and F2(t) = 
Po[Δt⋅λout]/Δt. The extra divisions by Δt do little harm. 
 
4.3. Graphical representation of a Poisson Simulation model 
 
   In Continuous System Simulation, a frequently used technique to represent dynamic models 
is the Forrester diagram [20-25]. It was first introduced by Professor Jay W Forrester at MIT 
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for economic models [23]. It is now also frequently used in biology, ecology, epidemiology, 
medicine and many other areas.  
   In the Forrester diagram each state variable (compartment) is represented by a box 
containing the current number of entities. This number can change only because of physical 
inflows and outflows. These flows are represented by double-lined directed arrows. On each 
flow is a valve controlling the flow rate. Single line arrows are used to show where the valves 
acquire their influence (information) (see Figure 3). 

 
Figure 3. Forrester diagram of a model with arrivals and departures. The compartments X and 
Y contain the current integer numbers of entities. The compartments can only change by flows 
of arriving entities Fin or by departing entities Fout. Parameters are represented by rhombus 
symbols ( ). The single-lined arrows from X and p to Fout show that Fout is dependent on the 
current number of entities in X and on the parameter p. 
 
 
Back in the 1960s, this type of diagram was used as the foundation for building and coding 
the model in the Continuous System Simulation language DYNAMO [25] – one equation of a 
specified form for each type of symbol. In Continuous System Simulation languages such as 
Powersim [20], Stella [21] and Vensim [22] to name but a few, the model is constructed 
directly on the screen as a Forrester diagram using icons in a click and play manner. 
Thereafter, each symbol is ‘opened’ by double clicking and values, functions or tables are 
specified. The ‘graphical model’ is then ready for execution. 
   The Forrester diagram works equally well for representing discrete entities in a Poisson 
Simulation model. To highlight the fact that the number of entities entering or leaving the 
state variable box through the inflows and outflows are Poisson distributed, ‘Po’ is included in 
the valves in Figure 3. 
 
The physical flows Fin and Fout may be connected to other state variable boxes or come 
from/lead to a source/sink that is unspecified, i.e. outside the boundaries of the model. In the 
latter case the arrow starts from, or ends, in a cloud symbol for aesthetic reasons. 
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4.4. Some examples of Poisson Simulation models 
 
Figures 4a-f show some Poisson Simulation models in equation form and as Forrester 
diagrams to display the model structures.  
 
a) Radioactive decay model [26,27]. 

dx = −Po[dt⋅a⋅x] 
 
 
 
 
b) Logistic model [26,27]. 

dx = Po[dt⋅a⋅x] − Po[dt⋅b⋅x2]   
 
 
 
 
 
c) Lotka-Volterra model – a prey-predator system [26-28]. 

dx1 = Po[dt⋅a⋅x1] − Po[dt⋅b⋅x1⋅x2] − Po[dt⋅k⋅x1⋅x1] 
    dx2 = Po[dt⋅c⋅x1⋅x2] − Po[dt⋅d⋅x2] 
 
 
 
 
 
 d) Lanchester's model of warfare [26,27,29]. 

dx1 = −Po[dt⋅a⋅x2] 
    dx2 = −Po[dt⋅b⋅x1]  

 
 
 
e) Epidemic SIR model [19,30-32]. 

dx1 = −Po[dt⋅a⋅x1⋅x2]  
dx2 = Po[dt⋅a⋅x1⋅x2] − Po[dt⋅b⋅x2] 
dx3 = Po[dt⋅b⋅x2] 

 
 
f) M/M/1  queue mode  [17,33]. 
    dx = Po[dt⋅a] – MIN(Po[dt⋅b], x) 
 
 
 
Figure 4 a-f. Some Poisson Simulation models. See references [9,19,27,33] for a presentation 
of these and other models treated by Poisson Simulation.  
 
 
Comment on Figure 4e: For models where what leaves one state variable xi enters another xj, 
it is important that the numerical realisation uses a single flow equation. For the epidemic SIR 
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model, the flow of individuals (Δt⋅F1) leaving stage x1 is identical to the flow entering stage 
x2. Instead of writing: x1(t+Δt)=x1(t)–Po[Δt⋅ a⋅x1⋅x2] and x2(t+Δt)=x2(t)+Po[Δt⋅ a⋅x1⋅x2]–
Po[Δt⋅ b⋅x2], where two statistically independent F1 flow rates are obtained from two separate 
drawings from the RNG, the model should be implemented as: x1(t+Δt)=x1(t)– Δt⋅F1(t) and 
x2(t+Δt)=x2(t)+ Δt⋅F1(t)- Δt⋅F2(t), Δt⋅F1(t)=Po[Δt⋅ a⋅x1⋅x2]. The same is valid for the flow 
rate F2 between x2 and x3.  
 
Comment on Figure 4f: In the M/M/1 queue model x is the actual number of queuing and 
served individuals, a is the arrival intensity and 1/b is the mean service time. For this model it 
is important to prevent service to an empty queue. The MIN(arg1, arg2) function takes the 
smallest of its two arguments to prevent more departures than the current number of entities in 
the queue. 
 
   One feature of the state variables in a Poisson Simulation model is that if the state variables 
are initiated to integer values they will stay integer, as opposed to a Continuous System 
Simulation model, where the state variables can take any real values. 
   An important advantage with Poisson Simulation is that each parameter is explicitly defined 
once in the model. Another advantage is that the time-step Δt can be changed to handle the 
dynamics properly without distorting the stochastic behaviour of the model.  
   This is perhaps an appropriate place for a warning about a possible mistake when 
constructing Poisson Simulation models. Even though two or more inflows (or outflows) to 
the same state variable may be merged in accordance with Po[Δt⋅λ1] + Po[Δt⋅λ2] = 
Po[Δt⋅(λ1+λ2)], it seriously distorts the model to use this on differences because: Po[Δt⋅λ1] – 
Po[Δt⋅λ2] ≠ Po[Δt⋅(λ1-λ2)].  
 
4.5. Implementation and statistical tools for Poisson Simulation 
 
4.5.1. Implementation 
   Poisson Simulation is a theoretically sound, easy handled and computer-efficient way of 
realising a stochastic compartment model. The calculation effort is also almost independent of 
the number of entities. It is easily implemented in any Continuous System Simulation 
language where a random number generator for the Poisson distribution is included. It is also 
easy to write the model directly in a general purpose programming language such as Pascal, 
C, FORTRAN, Java, etc., see Appendix. Poisson random number generators can be found in 
e.g. [34-36].  
 
4.5.2. Tools for statistical analysis 
   The very essence of a stochastic model is that the detailed outcome of a replication is 
unpredictable so the results differ between replications. Therefore, a number of replications 
must be performed and the results from them collected, statistically analysed and presented.  
   To estimate means, standard deviations, confidence intervals, correlation, min and max of 
quantities X and Y, it is sufficient to cumulate X, Y, X2, Y2 and X⋅Y and to check if X and Y are 
the smallest/largest results so far for each of the N replications. After the loop these statistical 
measures are calculated in a few lines of code. 
   Furthermore, it is convenient to have a supervisory programme that can order a number of 
replications, collect the outcomes and present them in probability distribution functions 
(p.d.f.). From the p.d.f., statistical information such as mean, standard deviation, confidence 
intervals, percentiles, results of hypothesis tests, etc. can be derived. Correlations between 
different quantities can also be directly studied (or derived from multi-dimensional p.d.f.s). 
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Such programmes [37,38] are available for the Continuous System Simulation language 
Powersim [20] and for MATLAB [39]. 
   Although the time to execute a Poisson Simulation model is only a few times longer than for 
executing a corresponding deterministic model, the need for 100 to 10 000 replications to 
build the p.d.f. makes a substantial difference. 
 
 
5. Comparisons 
 
   Markov Simulation and Poisson Simulation models are both based on the Poisson process. 
If correctly handled they should therefore produce the same results – they are consistent. To 
be exact, any large number of replications with the two methods should produce probability 
distribution functions (p.d.f.s) of the outcomes that are not significantly different.  
 
   A fair way of comparing Markov Simulation and Poisson Simulation is to investigate what 
happens when they are used in a real modelling and simulation project. Such a study may 
concern any kind of discrete entities to be modelled such as decaying atoms, bacterial growth, 
epidemic, combat, competition between species, etc. Here the system under study and the 
purpose of the study are intentionally not specified beforehand in order to provide the 
flexibility to discuss different aspects and problems that may emerge.  
   The phases of the project must then be gone through systematically in order to identify 
problems, performance, advantages and disadvantages of using Markov Simulation and 
Poisson Simulation. 
   Apart from the terminology, which varies somewhat, a model study of a system should 
contain the following project phases [11-14]: 
 

1. Problem recognition: (Identifying a problem. A first sketch e.g. in the form of a 
graphical representation.) 

2. Problem definition: (Formulating objectives and setting system boundaries. Creating 
a conceptual model.) 

3. Model building: (Choice of model type. Finding an appropriate model structure. 
Model fitting to calibrate the parameters. Choice of step-size. etc.) 

4. Validation of the model: (Is the model trustworthy? Is the model good enough for the 
specified objectives? Verification of technical correctness. Validation using data from 
the system independent of those used for model fitting.) 

5. Analysis: (Using the model in accordance with the objectives; e.g. estimation of 
consequences, optimisation, sensitivity analysis, control, prediction.) 

6. Result evaluation: (A final evaluation of the results. Is the model structure realistic? 
What would other assumptions give? Sensitivity analysis. Interpretation of the results.) 

7. Result presentation: (Graphical, verbal and numerical presentation of system, model 
and results in a comprehensive form in accordance with the objectives.) 

•   Data acquisition: (Collection of measurements, observations and other information 
      needed for phases 1 to 7.) 

 
   Many issues, depending on the choice of a Markov or a Poisson Simulation approach, occur 
throughout the different phases of the project. These issues are investigated, phase by phase, 
in the following. Since many aspects occur in different phases of the project, each is discussed 
more thoroughly the first time it appears and is simply mentioned when it occurs in later 
phases. 
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In the comparison, the type of Markov simulation approach (Bernoulli, exponential or 
Poisson) that is compared with Poisson Simulation is also important. The Bernoulli, 
exponential and Poisson approaches are all based on matrices of the same size, although of 
different structures. However, the Poisson approach is much too complex to construct. It was 
originally included to demonstrate the structural relationship to Poisson Simulation, but is of 
limited interest in the following comparison. 
 
5.1. Problem recognition 
 
   As soon as a problem is recognised, powerful concepts are needed to comprehend the nature 
of the system under study. There is also a need for a way to sketch any thoughts and ideas that 
arise in a more formalised way. 
 
5.1.1. Problem-orientated modelling 
   The comprehensive concepts of state variables (compartments), flows and distinct 
parameters make the Poisson Simulation approach considerably more problem-orientated 
than the Markovian approach.  
   State variables, such as number of predators, infected individuals, queuing entities, etc., are 
concepts with a direct counterpart in the system under study. This contrasts with the huge 
number of states representing all possible k-tuples, where k is the number of dimensions (see 
Section 2). Such tuples are abstract, theoretical constructs, to enable a detailed mathematical 
analysis of a model without a physical counterpart in the system under study. 
   In a similar way, flows as an aggregation of events that transfer the entities from one state 
variable to another also have a direct physical correspondence in the studied system where 
they can often be directly measured. The transition probabilities, on the other hand, are an 
often huge assembly of conditional probabilities of the different transitions between the (more 
abstract) states. 
   Furthermore, each parameter of a studied system, such as fertility, sojourn time, risk, etc., is 
a comprehensible concept that can be directly modelled at a single place in a Poisson 
Simulation model. In a Markov model it becomes distributed over the transition matrix. 
 
5.1.2. Graphic representation of the model 
   Already for the conceptualisation of the system or process under study some form of 
graphical description is needed to sketch a model. Later on, the graphical description is 
needed for structuring knowledge, for overview and for communication with other people 
within or outside the project. It also helps in documenting the model in a comprehensive way 
and in describing the model in the final presentation of the project. 
   For Markov models a state transition diagram, where every state and every possible 
transition is depicted, is often used in textbooks to explain how Markov models work and to 
illustrate theoretical concepts such as periodic, absorbing, recurrent or isolated states, with 
simple examples. However state transition diagrams are far too complicated and detailed to be 
used for all but the very simplest models, as the number of states and transitions soon 
becomes huge. Furthermore, a state transition diagram is not suited to reveal the dynamic 
structure of the studied system.  
   The Forrester diagram (Figures 3 and 4) is perfectly suited for the stochastic and dynamic 
Poisson Simulation models. It is a powerful tool for conceptualisation, structuring the 
knowledge, overview, communication, documentation, presentation and even for direct 
implementation as a computer model. In all these respects it is widely superior to a state 
transition diagram. 
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5.2. Problem definition 
 
   Problem definition means formulating the objectives of the project and defining the 
boundaries of what to include in or exclude from the study. This has a profound impact on the 
whole project – e.g. type of model, model structure, what data are needed, what to validate, 
what to analyse, control, optimise, etc., what to evaluate and present as results. However no 
decision has yet been made on what model approach (e.g. Markov model or Poisson 
Simulation model) to use. 
   The problem definition can be supported by the problem-orientated, comprehensive 
concepts of state variables, flows and distinct parameters that are the basic elements of 
Poisson Simulation and by the unifying Forrester diagram. 
  
5.3. Model building 
 
   The model building phase has many aspects to consider when comparing a Markov and 
Poisson Simulation approach. Here, these are divided into: 5.3.1 Model size, 5.3.2 The 
sojourn time distribution of a stage, 5.3.3 Finding an appropriate step-size, 5.3.4 Specifying 
parameters or transition probabilities, 5.3.5 Execution time, and 5.3.6 Flexibility to change the 
model.  
 
5.3.1. Model size 
   In Poisson Simulation the studied system is represented by a small number (k) of state 
variables, where one state variable can represent any number (n) of entities.  
   The state space contains the same states in a Markov model and a Poisson Simulation 
model, but the k dimensions spanning the state space act as coordinates of k-tuple for 
definition of the states in a Markov Model (see Figure 1). Thus, the Markov state vector is a 
massive disaggregation from the state space dimensions into all possible states in which the 
process can exist. For a population model (n>1) this means all possible combinations of 
subpopulation sizes. For a model of k=3 dimensions and n=3 entities, these entities can be 
combined into any possible states described by the 3-tuple (c1, c2, c3) where c1+c2+c3=n; i.e. 
into the set of ten states {(3,0,0}, (2,1,0), (2,0,1), (1,2,0), (1,1,1), (1,0,2), (0,3,0), (0,2,1), 
(0,1,2), (0,0,3)}.  
   The number of states in a Markov model follows Bose-Einstein statistics, which describe 
the number of ways n identical particles can be distributed into k cells without restriction on 
the number of particles per cell. 
   For a model structure where every particle (entity) can populate every cell (dimension of 

state space) the formula for the number of states in the state space is: ≡ 

, where k is the dimension of the state space and n is the constant number of 

entities in the population [4].  
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   For k=3 dimensions and n=10 entities, a Markov model has a state space of 66 states. 
However even for n=100 entities, the state space consists of 5151 states, while for n=1000 
entities the state space comprises about half a million states (instead of 3 state variables in a 
Poisson Simulation model).  
  The number of states in the state space (i.e. the number of rows in the transition matrix in a 
Markov model) with k=5 dimensions and n=1000 individuals is then around 4⋅1010.  
   Thus the number of states, even for quite a small Markov model, can become 
astronomically high, while in Poisson Simulation there is no problem with models of e.g. 
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hundreds or even thousands of state variables since the model size grows only linearly with 
the number of state variables (k) and not at all with the population size (n).  
   As Figure 5 shows, the model size in terms of state space dimensions (k) and population (n) 
that can be handled with Markov Simulation is indeed very limited, while Poisson Simulation 
can handle really large models. 
 

Figure 5. The number of states for a Markov model (solid lines) and the number of state 
variables for a Poisson Simulation model (dashed lines) as a function of dimension (k) and 
population size (n).  
 
 
The model size discussed above assumes a constant number of entities. For models where the 
number of entities is growing, the number of states is unknown a priori in a Markov model. If 
the model is to be run e.g. 10 000 times to produce an accurate p.d.f. or confidence interval, 
allocation must be made for the largest number of entities that may arise – or some 
mechanism for dynamic expansion of the model has to be included. In Poisson Simulation this 
is never a problem since the state variables can hold any number of entities. 
 
However, there is a more ‘trivial’ special case where the n entities are non-interacting – see 
Section 3.2 for examples. For such a system the size of a Markov model can be drastically 
reduced by studying the entities one-by-one and afterwards superimposing the n results. This 
reduction in size – see Figure 5 with n=1 instead of say n=1000 – gives the Markov model a 
reasonable size. However, this comes at a cost of n=1000 replications of the Markov model 
for one experiment, compared with a single replication when using a Poisson Simulation 
model. 
 
5.3.2. Sojourn time distribution of a stage 
   In both Poisson Simulation and Markov Simulation it is equally important to appropriately 
model the statistical distribution of the time in a stage [40]. Only in the rare case when the 
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sojourn time has an exponential distribution is it appropriate to model the stage by a single 
state variable or the current stage by a single state. Otherwise the stage has to be modelled by 

om S

a structure of state variables or states in series, parallel and/or feedback. 
   An illustrative example of how the sojourn time distribution of a stage may heavily 
influence the results is the following epidemic SIR model (see also Figure 4e). Models of 
infectious diseases are generally based on a sequence of stages fr usceptible via 
Infectious to Removed. Such a model is therefore denoted a SIR model.  

emiology of infectious diseases are usually based on the 

ious stage is T=4 

to be collected into a probability distribution function over 

other than exponential 

aving the sojourn time of T/α time units. (The model for α=3 is given in the 

at 
stimate in Table 1, which also shows the results of the corresponding deterministic model. 

ted: S(0)-S(End), and the 95% C.I.), and 
sults from the corresponding deterministic model 

 
Model type 

) /2) /3) /5) T/10) 

 
Example 6: An epidemic SIR model 
   The first SIR model was published by Kermack and McKendrick in 1927 [30] and since 
then books and studies on the epid
SIR and related models [4,31,32].  
   In its deterministic form an epidemic of a certain magnitude occurs if, and only if, 
R0=S⋅T⋅p>1, where S is the number of Susceptibles, T is the expected sojourn time in the 
Infectious stage, and p is the risk-of-infection parameter. The model to be studied is specified 
as S(0)=1000, I(0)=1, p=0.0003 and the average sojourn time in the Infect
time units (so R0=1.2 and an epidemic is created in the deterministic case).  
   In a stochastic setting (see Figure 4e where a=p and b=1/T), the outcomes from many 
replications vary and have 
outbreaks of different sizes.  
   Since the infection process within the individual always requires a finite time, the sojourn 
time distribution is unlikely to be exponential. Depending on the disease studied, the sojourn 
time will have some specific statistical distribution. Consider what happens if the sojourn time 
distribution of the Infectious stage is allowed to have a distribution 
(implied by modelling the Infectious stage by a single state variable).  
   An often useful family of distributions for biological and medical systems is the gamma 
family. So let us test the gamma(α,β) distribution for α=1,2 ,3, 5 and 10 and β=T/α=4/α time 
units. This is accomplished in Poisson Simulation by a structure of α state variables in a 
series, each h
Appendix.)  
   The effects of different statistical distributions of the sojourn time are easily tested using 
Poisson Simulation. The results from 10 000 replications of the stochastic model give a p.d.f. 
that is condensed to the average size of the epidemic and the 95% confidence interval of th
e
 
Table 1. Number of individuals becoming ill for different assumptions on the sojourn time 
distribution. Results obtained from 10 000 replications of the Poisson Simulation model 
(average number of Susceptibles that become infec
re

SIR 
Γ(1,T

SIIR 
Γ(2,T

SIIIR 
Γ(3,T

SI5R 
Γ(5,T

SI10R 
Γ(10,

Stochastic: Av. 
7.5) 0.7) 7.8) 5.8) 6.8) (95% C.I.) 

55.1 
(52.7-5

68.1 
(65.5-7

75.1 
(72.4-7

83.0 
(80.2-8

84.1 
(81.3-8

Deterministic  318.5 318.5 318.5 318.5 318.5 
 
    As shown in Table 1, the average results from a stochastic SIR model differ greatly from 
those of a deterministic model, as is well known. Furthermore, the model structure, SIR, SIIR 
etc. do not affect the size of the epidemic for the deterministic models.  
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   In the stochastic case, however, using a SIIIR instead of a SIR structure changes the average 

fore, the Markov modeller 
ays a very high price for making the model more realistic. On the other hand, 

hen the number of states is 
creased. Another reason may be that the deterministic model does not reveal that the sojourn 

is of any importance. 

size of the epidemic by about 35%.  ▄ 
 
   However, as a consequence of size, the costs of modelling the Infectious stage are much 
higher in a Markov model than in a Poisson Simulation model. For example, if the sojourn 
time T in the Infectious stage of the disease has a gamma(3,T/3) distribution, it can be 
modelled by three state variables in a series in the Poisson Simulation model. For the 
epidemic SIR model this would increase the number of state variables from 3 to 5, 
independently of the size of the studied population. However for a Markov model with only 
10 individuals the increase would be from 66 to 1001 states. There
p
oversimplification creates poor results and erroneous conclusions. 
 
   Although the shape of the sojourn time distribution may have a strong impact on the results 
of a stochastic model, this fact is often neglected in Markov modelling. One reason is 
probably that Markov models rapidly become too huge w
in
time distribution of the Infectious stage 
 
5.3.3. Finding an appropriate step-size 
   Real time is continuous. Modelled time can be divided into finite slices only because of the 
way digital computers work. Fortunately, the errors in doing this can be reduced to any small 

aller than the smallest time 

m

ion of Δt may then be 

 valuable for finding an appropriate step-size – 

ndling approach chosen has to be considered. For the 

n used. 

number provided that the size of the time-step is sufficiently small. An alternative way of 
handling time is to jump from the instant of an event to the instant of the next one.  
   The value of a sufficiently small step-size depends on the time constants for the dynamic 
processes. A rule of thumb is that it should be considerably sm
constant of the system (Tmin). How much smaller depends on the required precision. For 

oderate precision Tmin/10 is often an acceptable step-size.  
   In Continuous System Simulation the standard method is to run the model with some large 
Δt. This Δt is then repeatedly halved to find an appropriate value where the effects on 
precision are acceptable. In Poisson Simulation the way to find an appropriate step-size starts 
with using the deterministic model embedded in the Poisson Simulation model (the model 
where the stochastic Po-parts – but not the arguments – are eliminated). Then different step-
sizes of Δt can be tested. Thereafter, the stochastic Poisson Simulation model is resumed with 
the appropriate Δt from the deterministic model. A slight modificat
necessary so the Poisson Simulation model should also be tested with Δt and, say, Δt/2 to see 
whether the resulting p.d.f. from a number of replications are similar. 
   Since Poisson Simulation is an extension of Continuous System Simulation, an important 
property of Poisson Simulation is that the model behaviour is preserved when a sufficiently 
small step-size is decreased. This property is
small enough to handle the dynamics of the model but not smaller than necessary because too 
small a Δt only increases the execution time. 
   For Markov Simulation the time ha
exponential approach there is no technical time-step to be chosen, which eliminates the 
problem of finding a proper step-size. 
   For the Bernoulli and Poisson approaches to Markov modelling it is more problematic to 
find an appropriate step-size, since a change in the step-size affects all the transition 
probabilities of the model. An erroneous and dangerous practice of avoiding the problem by 
setting the step-size to the same as that for the interval between observations is ofte
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This confusion of sampling interval and step-size must be strongly condemned since, unless 
the sampling time is sufficiently short, it severely distorts the results and conclusions. 
   An important point is that when the distribution of a stage is changed from e.g. 
exponential(T) to gamma(3,T/3), the new structure of the modelled stage has three state 
variables in series, each with a sojourn time of T/3. If T is the shortest time constant in the 
former model and Δt is adequate to handle it, the step-size now needs to be reduced to Δt/3 to 
keep the precision of the calculations. This is trivial to accomplish in Poisson Simulation but 

quires complete rebuilding of the Markov model based on the Bernoulli or Poisson time 

.3.4 Specifying parameters or transition probabilities

re
handling approaches. 
 
5  

. Relying on known relations; e.g. the number of decays of n radioactive atoms is n/T 

eved by tuning the set of unknown parameters so that the 
model behaves as similarly as possible to the behaviour of the studied system. This is 

e. When all the 
ansition elements are unknown there are a huge number of parameters to estimate. This 

rs than there are reliable observations to match. If the number of parameters is too 

own parameter values as in a Poisson Simulation model, the 
ansition matrix has to be rebuilt for each new test of a parameter set in the search for the best 

ters. 

   In principle, there are two different ways of building a model. 
 

1
per time unit where the quantities n(t=0) and T have known values. 

 
2. First constructing a model structure. In this case the parameters are unknown and have 

to be estimated, which is achi

called parameter estimation. 
 
   In both cases each parameter of the studied system (such as time constant, sojourn time, 
fertility, interest rate, risk, etc.) can be directly defined and assigned a value at a single place 
in a Poisson Simulation model (as for p and T in the epidemic SIR models in Figure 4e, 
Example 4 and Appendix). This contrasts with the Markov model, where the parameters are 
not defined explicitly anywhere, but are spread out over all the transition elements where they 
are mixed with other quantities. Therefore, assignment of values to all the transition 
probabilities of a transition matrix is a much more problematic procedur
tr
often leads to a severely over-parameterised model and to disastrous results. 
 
   Parameter estimation is closely connected with the number of parameters and the risk of 
over-parameterisation. To get an idea of this problem, consider a static and deterministic 
model where there are M equations and Np unknown parameters. If M=Np there is exactly 
one solution. If M>Np the model can be fitted by regression. The problem comes when 
M<Np, in which case there are infinitely many solutions. Taking any one of these infinitely 
many solutions will handle the fitting problem – but the model cannot be expected to pass the 
validation against new data. For a dynamic model (stochastic or not) the problem is similar. 
Using an over-parameterised model produces nonsense results, since one cannot fit more 
paramete
large the model is over-parameterised and the model has to be simplified or more data are 
needed. 
   The problem of over-parameterisation is particularly problematic for Markov models since 
all the non-zero elements, pij, of the transition matrix have to be estimated. 
   Even when the transition probabilities, pij, can be deduced from known relations so we have 
the same number of unkn
tr
estimate of the parame
 
5.3.5. Execution time 
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   The execution time for a Poisson Simulation model was explored here by testing the SIIIR 
model presented in Example 6 in Section 5.3.2. This model was coded as the complete Pascal 
program including a simple Poisson RNG shown in Appendix. This model (where the screen 

he code. In particular, the four calls to 

5) the Normal 

ulation

output was suppressed) was executed for 10 000 replications, which took 19.5 seconds on a 3 
GHz PC.  
   Virtually all of the execution time was spent in the ten state variable, flow and auxiliary 
statements of the ‘AGAIN loop’ close to the bottom of t
‘Function POISSON( )’, which in turn frequently calls the built-in uniform U[0,1] RNG 
named ‘Random’, required most of the execution time. 
   The simple Poisson distributed RNG used here (Function POISSON in Appendix) is 
appropriate for models of this size. This RNG requires r+1 calls to the U[0,1] generator for 
an outcome of r events. However, there are often more efficient ways to acquire Poisson 
distributed random numbers. For example, for larger arguments (say arg > 1
approximation can be used. The cumulative distribution functions of the Poisson distribution 
can even be tabulated so that an inverse transform algorithm can be used [35]. 
   For Markov Sim  the situation is more problematic. Even this small SIIIR model with 

es the number of events. Thus, in the Bernoulli 

tion 

 faster execution than one based on the Bernoullian approach, and might 
 very favourable cases (few events per time-step) execute with a speed of the same order as 

k=5 state variables and n=1001 individuals gives rise to a huge Markov model with some 
4⋅1010 states.  
   Now, assume that it has been possible to correctly build such a Markov model and also to 
deduce or estimate all the transition elements. How long would the execution time be 
compared with that of the corresponding Poisson Simulation model? The answer is that a 
Poisson Simulation model executes many times faster than a corresponding Markov 
Simulation model. The reason is as follows: For a Markov model using the Bernoulli time 
handling, the time-step h must be so small that it almost guarantees that just zero or one 
transition occurs in (t, t+h). Then an event only might happen during the time-step. If, for 
example, h is short enough to only, erroneously, give two or more events in 1 case out of a 
hundred, then it will create one event in about 13 cases out of the hundred – and zero events 
in the other 86 cases! (Calculated from the Poisson distribution.) This means that the number 
of time-steps in this case is about seven tim
approach to Markov Simulation the calls to a random number generator are to check whether 
an event might occur in the next time-step. 
   The aggregation of many events (for each of several flows) during a large time-step, instead 
of a very short time-step (where zero events will most probably occur), makes the execu
of a Poisson Simulation model orders of magnitude faster than execution of a corresponding 
Bernoullian Markov Simulation model (if it even is possible to build the Markov model). 
   Finally, a Markov model based on the exponential approach would execute considerably 
faster than one based on the Bernoulli time handling approach. Here, one event is handled for 
each time-step. So for each time-step one RNG call is needed to obtain the instant of the next 
event and another RNG call to determine which is the next state to be visited. The execution 
time for this approach is of the same order as the execution time when the same algorithm is 
used in a stochastic compartment model using the so-called Stochastic Simulation Algorithm 
(SSA) [41]. Experiments show that stochastic simulation of compartment models with few 
events per time-step have about the same execution speed as the same model using Poisson 
Simulation. However, for many events in several flows during a time-step the SSA method is 
considerably slower. In any case, a Markov model based on the exponential time handling 
approach has a much
in
Poisson Simulation. 
 
5.3.6. Flexibility to change the model 
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   In the model building phase as well as during other phases of the project, more information 
is obtained about the system under study, the model and its defects. For example: 
programming errors are detected, hypotheses or assumptions are changed, components are 
added or removed and the model structure may be modified. It is then important that the 
model is flexible enough to incorporate these changes with a reasonable effort. As seen above, 
this is considerably easier in Poisson Simulation than in Markov Simulation because of 
transparency, size, explicit parameterisation, ease of adjusting the step-size, etc. However, the 
xponential Markov approach is somewhat more flexible than the other Markov approaches 

v modelling, while little 
xtra effort is needed to explore more detailed and realistic structures without making the 

 over-parameterised when using Poisson Simulation. 

y used at the model fitting 

 as programming errors is often called verification. Again 

 can reuse the seeds of the generators to reduce the stochastic 
fluence on the sensitivity estimates. This should if possible also be done using a Markov 

itivity analysis. 

concern understanding the behaviour of the studied system, 

he 
ore flexible the model is, the simpler and better the analysis is performed. In general, 

 than Markov Simulation in these respects. 

 the form of text, result 
bles and diagrams. Issues already discussed, such as graphical presentation, transparency, 
odel size, quality of validation, etc. are then once again of interest. 

e
since no time-step is involved in the transition matrix. 
 
   In conclusion on model building, size, over-parameterisation and over-simplified models in 
particular are frequent and often insurmountable problems in Marko
e
model large and
 
5.4. Validation 
 
   The purpose of validation is to decide whether the model is trustworthy, and good enough to 
solve the problem stated as objective(s) in the problem definition. Is it useful for its purpose?  
   A systematic validation may uncover deviations because of wrong hypotheses, poor data or 
programming errors. However, the major issue is whether the model will behave like the 
system described by new data – independent of those alread
(Section 5.3.4). Often, deviations are found and the model has to be more or less modified, a 
process that is simplified if the model is flexible (Section 5.3.6). 
   Looking for technical errors such
it is easier to find errors in a Poisson Simulation model since it is much smaller and more 
transparent than a Markov model. 
   In validation, sensitivity analysis is a frequently used technique. For stochastic models 
sensitivities are affected by random variations. In Poisson Simulation one has access to the 
random number generators and
in
model for sens
 
5.5. Analysis 
 
   The analysis phase of the project is where the model is used to solve the problem specified 
as the objective. This may 
estimates of the results of certain measures, predicting the future, controlling the system, 
optimising its behaviour, etc. 
   It would be too extensive to discuss all these possibilities, but the conclusion is that t
m
Poisson Simulation is considerably better suited
 
5.6. Result evaluation and Result presentation 
 
   Finally, it is time to check whether the results of the model study comply with the issue 
formulated in the objective. It is also time to interpret the results and put them in context, and 
to reformulate the simulation results into digestible project results in
ta
m
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6. The full power of Poisson Simulation 
 
   In order to present the similarities between Poisson Simulation and Markov Simulation and 

 a state. When this is relaxed the model belongs to the 

sed as: Pr[X(tn+1)=j | X(tn)=i] is independent of 

ill see, general sojourn times and non-stationarity bring additional problems to 
arkov simulation, while Poisson Simulation already has the capability to handle these 

es, parallel or 

m

the 

 a small array 
f T/h=100 cells and some tenths of entities, this construction alone would be googol-sized – 

eding the number of atoms in the known universe.  

n the current one fails, since it also depends on time. This implies 

to compare their merits and demerits, this study has so far intentionally restricted its focus to 
stationary processes where the Markov property is valid.  
   The Markov property states that the model is memoryless and implies an exponential (or 
geometrical) sojourn time distribution in
wider class of semi-Markov models. Then the process is only required to behave as a Markov 
process at instants of state transitions.  
   The stationarity means that the intensities λij (or transition probabilities pij) are constant in 
time. In Markov terms this can also be expres
tn. In the non-stationary case λij or pij in the Markov model and parameters in a Poisson 
Simulation model become functions of time. 
   As we w
M
qualities. 
 
6.1. Sojourn time distributions other than exponential 
 
   Poisson Simulation can swiftly cope with non-exponential sojourn time distributions. 
Assume that the aim is to model a Uniform[0,T] or a Triangular[0,T/3,T] or even an 
empirical sojourn time distribution of a stage. Such non-dynamic distributions can be 
approximated by a structure of state variables in Poisson Simulation in seri
feedback, but would require a number of state variables. The same could in principle be done 
in a Markov model, but this would increase the number of states considerably.  
   Alternatively in Poisson Simulation, one can use a multi-entrance array of T/Δt elements 
that for each Δt shuffles the contents by one place. When an entity arrives at the stage, 

odelled by the array, a random sample from the proper probability distribution is drawn to 
decide the time it should stay there. If this time is τ the entity enters an array element located 
τ /Δt places before the array exit. For a more detailed description see [33]. Technically, the 
array can be implemented as a static circular buffer [42,43], so the array size is small, and 
execution is fast since only a pointer to the actual time is updated at each time-step instead of 
shuffling the contents around. (Entrance and exit are synchronised relative to the pointer.) 
   But what would happen if such a multi-entrance shift mechanism were to be implemented 
into a Markov model? A matrix that randomises the entrance row in accordance with any 
probability distribution can be created, and a compulsory shift mechanism to the next ‘array 
state’ is trivial. However, the state space would be horrendously large. For only
o
the number of states far exce
 
6.2. Non-stationary models 
 
   For non-stationary stochastic processes, the Markov property stating that the probability for 
the next state only depends o
that the elements pij of the transition matrix have to be reconstructed for each time-step 
instead of remaining static.  
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   For Poisson Simulation, non-stationarity is directly handled without any complications. For 
xample, constant parameters are replaced by time functions and time-dependent flows are 

ld from semi-Markov to stochastic processes in general. 
here is still a state space and a time index, but the Markov condition is replaced by a much 

p between the random variables Xi where the joint cumulative 

del produces oscillations (as does a corresponding deterministic 
odel). It also produces stochastic variations with the risk of extinction of one or both species 

(wh owever, the model could be refined in a number of 
ways. Here we only focus on the concept of correlation. Assume that the Lotka-Volterra 
mo  
 

– Δt⋅F2 –Δt⋅F3 
 – Δt⋅F5 

 Δt⋅F2 = Po[Δt⋅b⋅x1⋅x2]  

⋅x2] 

u o
t⋅F2) is uncorrelated to the number of predator-births 

2 = 
⋅Encounters and Δt⋅F4 = c⋅Encounters. 

-births can be made partly correlated by dividing the flow rates F2 
nd F4 into F2,corr+ F2,uncorr and F4,corr+ F4,uncorr where the uncorrelated parts have independent 

 a 
oisson function.  

e
modelled to include the time dependency. 
 
6.3. General stochastic processes 
 
   Let us now further broaden the fie
T
more general relationshi
distribution function among the random variables is to be specified. (See the classification of 
stochastic processes in Section 3.1) 
 
Example 7: Correlation 
   Just as an example, consider the stochastic Lotka-Volterra model in Figure 4c in Section 
4.4. Qualitatively, this mo
m

ich a deterministic model fails to do). H

del is implemented as:

 x1(t+Δt) = x1(t) + Δt⋅F1 

 x2(t+Δt) = x2(t) + Δt⋅F4

 Δt⋅F1 = Po[Δt⋅a⋅x1]  

 Δt⋅F3 = Po[Δt⋅k⋅x1⋅x1]  
 Δt⋅F4 = Po[Δt⋅c⋅x1⋅x2] 
 Δt⋅F5 = Po[Δt⋅d

 
where x1 is the n mber of prey and x2 is the number of predators. Then the number f prey-
deaths because of predators during Δt (Δ
during Δt (Δt⋅F4).  
   To instead make prey-deaths and predator-births correlated, a single Po-call is made for 
both Δt⋅F2 and Δt⋅F4, for example using the code: Encounters = Po[Δt⋅x1⋅x2]; Δt⋅F
b
   Prey-deaths and predator
a
calls to the Poisson distributed RNG and the correlated parts have a common call to it. ▄ 
 
6.4. Combined simulation 
 
    Deterministic and stochastic sub-models can be mixed in a Poisson Simulation model. This 
is because a deterministic equation can be linked to the integer outcome of a stochastic 
equation, and a stochastic equation can take any value (not only integers) as argument in
P
   For example, assume that the prey x1 in Example 7 above are so many that they may be 
regarded as continuous matter (e.g. micro-organisms or grass). We can then drop the Po[] part 
of equations Δt⋅F1, Δt⋅F2 and Δt⋅F3 but keep it for the predators (equations Δt⋅F4 and Δt⋅F5). 
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In a wider scope this opens the way for new possibilities in combined simulation where, 
traditionally, Discrete Event Simulation (DES) was used to handle discrete entities and 
Continuous System Simulation (CSS) was used to handle continuous quantities. Hereby, 
several advantages are obtained. First, a theoretically sound foundation is achieved in which 
aggregation can be performed safely. Second, combined type problems can often be 
erformed exclusively in PoS, which is often considerably simpler than including DES. The 

n a large number of discrete entities can be 
odelled as flows into and out of a relatively small number of state variables. Third, even 

ynamic time delays of specified order, static delays that 

 It is also a great advantage that the model can be directly written and executed in a 
ontinuous System Simulation language with its problem-orientated concepts, the possibility 

gful names, syntax checking, checking for algebraic loops, 
utput facilities, etc. Tools for statistical analysis of many replications of a Poisson 

  The theoretical foundation of both Markov Simulation and Poisson Simulation is the 
he two types of models are also consistent in that in principle they are 

pplicable to the same types of problems and produce consistent results. Technically, the 

 The main purpose of this paper is to compare how well Markov Simulation and Poisson 

p
computational complexity is reduced whe
m
when it is practical to include DES, the combined DES/Poisson Simulation approach is more 
powerful and flexible than a combination of DES and CSS 
 
6.5. Other facilities in Poisson Simulation    
 
   Poisson Simulation can utilise the rich library of functions and procedures of its host 
language – be it a Continuous System Simulation language or a general purpose programming 
language. Such a library contains mathematical functions such as trigonometric functions, 
logarithms, square root, etc., time triggered functions such as PULSE, STEP, RAMP or 
SAMPLE functions, random number generators of different distributions, logical functions 
such as IF, MIN and MAX functions, d
can handle pure time delays of the form X(t-T). Furthermore, there are table look-up functions 
for one or several dimensions, so any empirically found relationship can simply be plugged 
into the model without any mathematical treatment or complication. Even vectorisation of 
state variables, flows and parameters is often very handy if e.g. a human population is to be 
subdivided into five-year age groups. 
  
C
of giving the concepts meanin
o
Simulation model are also a great asset [37,38], see Section 4.5.2. 
 
 
7. Discussion and conclusions 
 
   Markov theory plays a fundamental role in the theoretical analysis of stochastic processes 
and it enables a mathematical/statistical analysis of simpler models from various fields. 
Markov models are also frequently used for simulation of stochastic and dynamic models, 
which is the main focus of this paper. 
  
Poisson process. T
a
Markov approach is based on transition probabilities between all possible states, while the 
Poisson Simulation approach focuses on flows between state variables. 
 
7.1. Comparisons 
 
  
Simulation perform in a project. To identify problems, merits and demerits and to compare 
performance, the paper examined how Markov Simulation and Poisson Simulation affected 
the different phases of a project from Problem recognition and Problem definition via Model 
building, Validation, Analysis to Project evaluation and Presentation.  
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   Before the main comparisons we established that of the three time handling approaches to 

p; 

Markov simulation, the exponential approach is usually superior in several regards. It creates 
a simpler structure of the transition matrix, it eliminates the need to find a time-step for 
updating the model over time and removes the approximation generated by a fixed time-ste
and the model executes considerably faster than a Markov model based on Bernoulli time 
handling.  
   However, Markov simulation was inferior in all aspects studied compared with Poisson 
Simulation. Two problems of Markov Simulation stood out as monumental for all but the 
very simplest models – size and the problem of assigning values to the transition elements.  
   Size: The Markov model is a hugely disaggregated construction because every possible 
state of the system and every possible transition between these states are represented. For a 
Markov model the number of states in the state space grows combinatorially with the 
population size and with the number of categories of the population (Figure 5). Poisson 
Simulation, on the other hand, aggregates the state space into a small number of state 
variables, where a state variable can hold any number of entities. This makes a Poisson 
Simulation model independent of the population size and orders of magnitudes smaller than 
the corresponding Markov model. Therefore, much larger and more complicated models can 
be built and executed with Poisson Simulation than is possible with the Markov approach. 
The practical limitations for Poisson Simulation are about the same as for Continuous System 
Simulation – it is possible to have thousands of state variables without any limitation on the 
number of entities. For Markov Simulation models, the practical limit is a few or say ten 
dimensions of the state space, provided the studied number of entities is really small. (The 
only exception is when the entities do not interact so the ‘special case’ described in Sections 
3.2 and 5.3.1 can be used – but at the cost of a large number of replications for each 
experiment.) The limitation in size for Markov models also tends to result in the modeller 
over-simplifying the model structure. The Poisson Simulation model is not only much easier 
to build, but also gives a more transparent and comprehensive model. 
   Assigning values to the parameters: Parameterisation is perhaps the most problematic part 

s in a Poisson Simulation 
of Markov modelling. What are natural parameters of the real system – e.g. time constants, 
fractions, fertility, interest rate, etc. – are also distinct parameter
model. In a Markov model, however, these parameters become part of all the non-zero 
transition probabilities. The need to assign values to all the transition elements often makes 
the Markov model over-parameterised.  
    The aspects execution time, finding a proper step-size, flexibility to change the model and 
graphical representation of the model are also worthy of comment. 
   Execution time: A Poisson Simulation model is also aggregated over time so that many 

e event may occur during this short time-step. The 

entities (for each of several flows) can be transferred during a comparatively long time-step. 
This contrasts with the Bernoullian Markov Simulation, where the time-step usually has to be 
much smaller, so usually zero or at most on
exponential Markov approach is considerably faster than the Bernoullian Markov approach. 
However, Poisson Simulation executes faster than Markov Simulation. 
   In a test in this paper, 10 000 replications of an epidemic SIIIR model with a population of 
1001 individuals was executed within 20 seconds on an ordinary PC. Such a system is not 
even possible to build as a Markov model. 
   Finding a proper step-size: An important property in Poisson Simulation is that the model is 
preserved when a sufficiently small time-step is changed. This property is valuable for finding 
an appropriate step-size – small enough to properly handle the dynamics of the model but not 
smaller than necessary. For Markov Simulation based on Bernoullian and Poisson time 
handling this is more problematic since the values of the transition probabilities are all 
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functions of the step-size, so any change in it affects the whole model. There are many 
examples in the literature of Markov models where a sufficiently small step-size was not used. 
An additional problem to lack of precision is then that the results become functions of the 
step-size. However, these problems are eliminated when the exponential time handling 
approach to Markov modelling is used. 
   Flexibility to modify the model: It is important that the model is flexible enough to 
incorporate changes with a reasonable effort. Changing the model is considerably easier in 
Poisson Simulation than in Markov Simulation because of transparency, size, 
parameterisation, etc. 
   Graphical representation: For even the conceptualisation of the system under study, some 
form of graphical representation is needed to sketch a model from the underlying concepts, to 
structure our knowledge, for overview, and for communication with other people within or 
outside the project. For documentation and presentation of the study too, it is crucial to 
describe the model in a comprehensive way.  
   For Markov models the state transition diagram is sometimes used for pedagogic reasons. In 
this diagram every state and possible transition is depicted, so it is far too complicated and 
detailed to be used for all but the simplest models. Furthermore, such a diagram is not suited 

knowledge, overview, 
ommunication, documentation, presentation and, in some simulation packages, even for 

 of a growing population, etc. 

Poisson Simulation had the advantage. The overall 
onclusion is that Poisson Simulation widely outperforms Markov Simulation. This study did 

, Poisson Simulation 

handle non-stationary models, which for Markov Simulation 

cesses can be handled with Poisson Simulation. 
or example correlation between flows is easily constructed. Poisson Simulation can also 

d, logical and table look-up functions. In addition, it can 
se dynamic time delays of specified order and static delays that e.g. can handle pure time 

 

to reveal the dynamic structure of the studied system. For Poisson Simulation the Forrester 
diagram is a powerful tool for conceptualisation, structuring the 
c
direct implementation of the diagram into an executable computer programme. In all these 
respects the Forrester diagram is widely superior to the state transition diagram. 
   Poisson Simulation also outperforms Markov Simulation in other aspects, such as not 
having to worry about the maximum size
 
   For every issue compared in this study, 
c
not find any non-trivial case where Markov Simulation is smaller, easier, faster or in any other 
respect superior to Poisson Simulation.  
 
7.2. The full power of Poisson Simulation 
 
   The first five sections of this paper intentionally restricted the application of Poisson 
Simulation and Markov Simulation to stationary processes. However
covers a much wider field than Markov processes. A presentation of the full power of Poisson 
Simulation is outside the scope of this paper, but to give an idea of its potential a few 
examples of more complex and realistic modelling can be mentioned: 
   Poisson Simulation can easily 
would require reconstruction of the transition matrix for each time-step. 
   Poisson Simulation can also cope with semi-Markov models, where one can have an 
arbitrary probability distribution of the time a process remains in a stage. This can e.g. be 
efficiently implemented with structures of compartments in series/parallel/feedback or with 
multi-entrance circular buffers.  
   Furthermore, more general stochastic pro
F
utilise mathematical, time-triggere
u
delays. Random number generators of different kinds can also be used in a Poisson 
Simulation model. 
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7.3. Some further remarks 
 
   Even when Markov theory is used for mathematical analysis, various kinds of assumptions 
and simplifications are often used. It is then important to test the consequences of such 
assumptions or simplifications. This can be swiftly done in Poisson Simulation – especially 
when Markov Simulation is not a possible option. 
   Furthermore, when Markov theory is not sufficient, the embedded differential equation 
model is sometimes used. This embedded model – which is the same for a Poisson Simulation 
and a Markov model – is most easily acquired by stripping the Po[] parts of the Poisson 
Simulation model. This means that all statistical information is lost, but even worse, incorrect 
results may be obtained (see Example 6 above). In fact, of the six models in Figure 4, using 
the embedded deterministic model gives more or less biased results for 4b) Logistic model, 

imulation this can easily be tested – or better still the embedded model is not 
eeded when one can rely on Poisson Simulation and also preserve the stochastics. 
 Although using Markov models for simulation is a problematic choice, Markov theory and 

constitute a strong combination to theoretical insight and realistic 
xperiments.  
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4c) Lotka-Volterra model, 4d) Lanchester’s model of warfare (even though this model is 
perfectly linear with constant coefficients), 4e) Epidemic SIR model, and 4f) Queue model. 
With Poisson S
n
  
Poisson Simulation 
e
 
 
A
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Appendix. Programming a Poisson Simulation model 
 
   A Poisson Simulation model of an epidemic SIIIR model (see Example 6 in Section 5.3.2) 
is given in Pascal code [44] below. Pascal is chosen only because of its readability. The model 
could equally well be coded in e.g. Fortran, C, BASIC or Java. The included function for 
generation of Poisson distributed random numbers is given in [35]. This generator can handle 
Poisson-arguments up to theta=88. (Otherwise there is overflow in the statement: 
M:=exp(theta);.) For more advanced generators see e.g. [34,35]. 
 
Program SIIIR; 
type double=real;         (* Gives double precision. *) 
var dt, time: real; 
    S, I1, I2, I3, R, si1, i1i2 ,i2i3, i3r, I: real; (* si1 is the flow between S and I1 etc. and I=I1+I2+I3. *) 
    p, T: real;   (* The model parameters. *) 
Label START, AGAIN; 
 
Function POISSON(theta: real): integer; (* Poisson random number generator. *) 
var X: integer; 
    m: real; 
begin 
   X:=-1; 
   M:=Exp(theta); 
   Repeat 
     X:=X+1; 
     M:=M*Random;  (* Random is a call to the built-in *) 
   until M<1;   (* uniform U(0,1)-generator in Pascal. *) 
   POISSON:=X; 
end; (* Poisson *) 
 
begin 
  Randomize;    (* Randomises seed so each simulation is a new experiment. *) 
  dt:=0.05; Time:=0; 
  p:=0.0003; T:=4; 
  S:=1000; I1:=1; I2:=0; I3:=0; R:=0;   (* Initial values of the states. *) 
  Writeln('  Time     S     I     R');   (* Write headline. *) 
  Goto START; 
 
AGAIN: 
  S:= S - si1;            (* FIRST CALCULATE THE STATE VARIABLES, *) 
  I1:=I1 + si1 - i1i2; 
  I2:=I2 + i1i2 - i2i3; 
  I3:=I3 + i2i3 - i3r; 
  R:=R  + i3r; 
START: 
  I:=I1+I2+I3;    (* THEN THE AUXILIARY QUANTITY, *) 
  si1:= POISSON(dt*p*S*I);   (* AND LAST THE FLOWS. *) 
  i1i2:= POISSON(dt*I1/(T/3)); 
  i2i3:= POISSON(dt*I2/(T/3)); 
  i3r:= POISSON(dt*I3/(T/3)); 
 
  Writeln(Time:6:2, S:6:0, I:6:0, R:6:0); 
  Time:=Time+dt; 
  If  I > 0 then Goto AGAIN;   (* A better breaking criterion than:                  *) 
end.   (* If  Time < large value then Goto AGAIN;. *) 
 
Comment: In the execution time test (see Section 5.3.5) a loop over the model part was 
executed 10 000 times, and the screen output lines “Writeln…;” were eliminated. 
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