
File: PoS_Lab.doc

Stochastic model building and
simulation

©Leif Gustafsson 2006-03-16
Contents:

Exercise 1. Generation of random numbers
 (To build random number generators and testing them.)
Exercise 2. Monte Carlo simulation of a neutron shield
 (Stochastics on a static model)
Exercise 3. A weather model
 (Modelling temperature and precipitation over the year.)
Exercise 4. Stochastic modelling of radioactive decay
 (Correct modelling or just adding noise.)
Exercise 5. An epidemic model
 (Is the average of a stochastic model equal to that of a deterministic one?)
 (Estimates of averages, variations and confidence intervals.)
Exercise 6. A logistic population model
 (Warning for using a deterministic model structure. Start from the system when
 making your stochastic model!)
Exercise 7. A stochastic prey-predator model
 (How stochastics excites dynamic variations and how new qualities are obtained.)
Exercise 8. Summary of your findings
 (Sum up your findings in your own
words.)

d
es

odelling of dynamic
systems.

Purpose: To practice stochastic
model building and simulation an
to find out important differenc
between stochastic and deter-
ministic m

N

ame: Date:

C

ourse: A

pproved:

 - 2 -

INTRODUCTION

This exercise is about stochastic modelling and consists of seven different studies and a summary to be
written by you.

The first exercise is preferably done in Excel, while the following ones are done in Powersim.

Exercises 4-7 are about population models. A population consists of a discrete (i.e. integer) number of
individuals. These individuals may be physical quantities like electrons, atoms or molecules or
animals, plants or micro-organisms in biology or humans in e.g. epidemiology. It is then usually
important to model the population as a number of individuals rather than as a continuous mass. For
population models Poisson Simulation is a powerful technique. In these exercises you start by building
deterministic, dynamic models. This is to be able to compare with the behaviour of a corresponding
stochastic and dynamic model.

Use the Euler integration method for all simulations, but be sure to use a step-size that is proper for
each model.

In this presentation we use lower case for deterministic variables (e.g. x, y) and upper case for
stochastic ones (e.g. X, Y).

Exercise 1. Generation of random numbers
(To build random number generators and testing them.)

This exercise is preferably done in Excel.

1.1 A uniform R[0,1]-generator

Write a random number generator for uniformly distributed numbers between zero and one, a so called
R[0,1]-generator (R stands for rectangular distribution).

A linear congruential generator has the algorithm:

rand=Seed
i=1
repeat
 rand = (a*rand+c) Mod M (1)
 Ri=rand/M (2)
 i=i+1
until done

This algorithm generates a sequence R1, R2, R3, ... Rn, R1, R2,... of R[0,1] distributed random numbers.
After a number of random numbers the sequence will start over again with R1, R2,.... The number of
random numbers before it restarts is called the period.

Seed is a value you choose. The seed will exactly determine the sequence. This means that you can
repeat the simulation by just using the same values of the seed.

The parameter m is called the modulus, a is called the multiplier and c is called the increment. They
are all integer numbers.

Mod M means that you divide something (here a*rand+c) by M and keep only the remainder!
Since you divide an integer number by M the remainder can only take values 0, 1, 2, ... M-1.
Thus, M is the longest possible period of a sequence. Therefore, M should be a large number
and a and c should be carefully chosen so that you get a generator of the full period length=m.
In this example we only are interested in the principle and chose the relatively small values:
M=6075, a=106, c=1283.

Open Excel and start with the following:

In Equ 1 you have rand=MOD(a*rand+c; M) where the
first rand is ‘your seed’ and the next comes from the
cell above. (If you have a Swedish version
MOD(number; divisor) function is called REST(tal;
divisor). Note also that the delimiter ‘;’ may be ‘,’
instead depending on the National settings on your
computer.)

 - 3 -

 the

Equ 2

calculates R by dividing rand by M. Thus Since rand
has a value from 0 through M-1, R will get a value
 in the interval 0 ≤ R < 1.

Lock the cells with absolute addresses and copy so that you get 100 random numbers R1, R2,.. R100.

You should now get a series of 100 different random numbers between zero and one.

To test the generator, calculate the average and the standard deviation of the 100 numbers. Does it
seem reasonable? (The theoretical standard deviation is: (1-0)/√12 ≈ 0.289.)

Answer: Average = Standard deviation =

Try some other seeds to see the changes!

Another of many possible tests is that the numbers should be rather evenly distributed. For example
about the same fraction of random numbers should be in the intervals 0-0.1, 0.1-0.2, ... 0.9-1. To test
this you may make a new column where you multiply Ri by 10 and round it down to an integer.
(=ROUNDDOWN(10*C6;1). (Swedish: =RUNDA.NER(10*C6;1). You should then get a column of
100 numbers of values 0, 1 ... 9.

At the next column you may check how many of the 100 values that are equal to 0 using
=COUNTIF(D6;D105,0). (Swedish: =ANTAL.OM(D6:D105;0).) Then do the same for 1,
2, ... 9.

Now mark the fields telling the number of occasions for 0, 1, 2, ...9, and make a histogram. Try some
other seeds to see if there is a tendency to be more outcomes in a certain interval.

Answer: ...

1.2 An Exponential generator

Now we want exponential distributed random numbers of the form: f(x)=(1/m)⋅e-x/m. (This distribution
is denoted Exp(m).) This is easily done by using the inversion method. First we need the cumulative

distribution function which is F(x)=1-e-x/m. To obtain a random value x from an R(0,1) distribution, we
have to invert the relation r=F(x) to get x=F-1(r).
 F(x)=1-e-x/m

x

x

f(x)=(1/m)e-x/m

x=F-1(r)

0

1

Figure 1. Map r∈R[0,1] to x by using the inverse function F-1. With our choice of F, x will be Exp(m)
distributed.

Thus r=1-exp(-x/m) i.e. exp(-x/m) = 1-r. Taking the logarithm of both sides gives -x/m = ln(1-r)
implying x=-m*ln(1-r). But since r has a uniform distribution between zero and one, the same is true
for 1-r so we can replace 1-r by r giving: x=-m*ln(r). This is the inverse we use when mapping
r∈R[0,1] to the x∈Exp(m) distribution.

Thus, to use an inverse mapping of r∈R[0,1]-numbers it is practical to use a column somewhere to the
right of the R(i) column. Above this column write m and reserve a cell for its value, e.g. ‘2’. In this
column use the formula: =-G3*LN(C6); (if G3 is the cell containing the value of m).

Copy it down to get 100 cells with Exp(m) distributed random numbers. Check the average and the
standard deviations for a number of seeds. (Theoretically they should both be equal to m.)

Also make a histogram with 10 bars and try a number of seeds. (For m=2 the intervals 0-0.1, 0.1-0.2,
... 0.9-1 will do.) [BÄTTRE: 0-1, 1-2, ...9-10!! Sven Smårs ??]

What did you get?

Answer: ...

..

1.3 A Poisson generator

A Poisson generator can be based on different methods. A simple and often used method makes use of
the exponential distribution.

The underlying idea is that a Poisson process with intensity λ events/time unit can be regarded in two
alternative ways:

1) The number of events during a time interval Δt is Po[Δt⋅λ] distributed.
2) The distance between events is exponentially Exp[1/λ] distributed. (Its probability distribution

function is f(t)= λe-λt.)

 - 4 -

 - 5 -

 Δt

Figure 2. Po[Δt⋅λ] is the number of events during the time interval Δt when the intensity is λ. This
number can be obtained by adding exponentially distributed distances d1+d2+... until the sum exceeds
Δt. In this figure you get four intervals d1+d2+d3+d4≤Δt in the first time-step since
d1+d2+d3+d4+d5>Δt.

The direct algorithm for Poisson distributed random numbers (where Δt⋅λ is called L] can be written:

 Function Po(L) (L=Δt⋅λ)
 N=0 (N counts the events)
 D=0 (D is a variable to sum up the distances)
Again: D=D+(-Ln(R[0,1])/L) (The inverse method. Add exp(L) distributed distances)
 N=N+1 (One more event)
 IF D<1 THEN GoTo Again (Inside the interval of size 1? (Δt is included in L and therefore
also

 in D so compare with a unit interval))
 Po=N-1 (Don’t include the last distance that goes beyond.)

As you see the Poisson algorithm includes the exponential algorithm which in turn calls the uniform
R[0,1] generator. If a seed is included it should be passed all the way back to the R[0,1) generator. (If
you look for the direct algorithm in the literature you will find that a number of tricks are used to make
it faster. E.g. a multiplicative rather than additive mechanism is usually used.)

Although the Po[L] algorithm is easily implemented in a program, it is a bit tricky to write it in a
spreadsheet since you don’t know a priori how many loops you will need for each Poisson distributed
random number (unless you perform it in a macro: See the laboratory exercises: “Exercises with the
spreadsheet Excel”, Example 9).

To get a rough estimate, set m=1/L=1/(Δt⋅λ), e.g. Δt=0.1 and λ=20 gives
L=Δt⋅λ=2 and m=1/L=0.5. Then Po(L) is a Po(2) distribution. In
average you expect to sum up 2 consecutive distances before the sum
exceeds one. Set m=0.5 and start from the top of the Exp(0.5) column
and count the exponentially distributed numbers downwards like in the
table.

In this example we got the numbers 1, 4, 2, 3, 2, 0, 3 ... of Poisson
distributed random numbers for the seven first time-steps.

What did you get? Does it seems reasonably for your own figures?

Answer: ..

(Comment. There is a slight difference between the algorithm above
where the “last distance” (making the sum above one) is discarded. In
the table the “last distance” is reused for the next Δt. Both ways are correct. This is because of a
unique property of the exponential distribution called memorylessness.)

x x x x x x x x t

d1 d2 d3 d4 (d5)

Exercise 2. Monte Carlo simulation of a neutron shield
(Stochastics on a static model)

Monte Carlo simulation is a very primitive form of simulation where time is not explicitly present –
and thus of course no dynamics (e.g. time derivatives). It only uses random numbers, usually uniform,
to estimate the surface or volume of a body inscribed in another surface or body with a known area or
volume. In an earlier exercise it was used to estimate the value of π. Another type of use is given here:

You have to protect yourself against a beam of neutrons by putting a wall of lead between you and a
neutron ray. The wall is 5 units thick. Each neutron hits the wall at right angle and travels a unit
distance before it collides with a lead atom. It then rebounds and continuous another unit distance in a
random direction and so on. After eight collisions all the neutron’s energy is spent. What percentage of
the neutrons will pass the lead shield?

(To make the model simple we make a number of simplifications: The neutron always travels a unity
distance between collisions, all angels are equally probable, we only consider two dimensions etc.
However, we could use random numbers for the distances and angels and make the calculations in
three dimensions.)

θ2
θ1

x
Figure 3. The neutron is scattered in the lead shield. 0 1 2 3 4 5

Let x be the distance through the wall the neutron reaches. Then it first reaches one unit before the first
collision. The second distance will then be cos(θ1), where θ1 is the scattered angle (0≤ θ1<2π). the
distance after eight distances therefore is:

x = 1 + cos(θ1) + cos(θ2) + cos(θ7) = 1 + cos(2π⋅R1) + cos(2π⋅R2) + cos(2π⋅R7)

The factor 2π is included because 0≤R[0,1]<1 is not enough for the full turn.

Note that time is not really present. It is only a sequence of a first distance plus seven distances in
random angels that are added. Nor is there any dynamics involved.

The simple model above can easily be implemented in any programming language, in a spreadsheet or
in a simulation language like Powersim. In Powersim the model may look like in Figure 4.

 - 6 -

 - 7 -

Figure 4. The Monte Carlo model implemented in Powersim.

Make a number of replications (=simulation runs). Do you get the same result every time?

Answer:

What percentage of the neutrons will pass the lead shield?

Answer: %

How to make the simulation reproducible
As seen we get a slightly different result for each new replication. That is good because if you had
done several experiments on the real system you would also get somewhat different results. But if you
for some reason want to repeat the model experiment exactly – just to demonstrate it or because you
want to compare just this experiment with a neutron that behaves “stochastically the same” but where
you have a thicker lead shield – then it would be nice to be able to control the stochastics.

This can be done by using the seed option in the random function. For example:

 EXPRND(Mean [, Seed])
 NORMAL(Mean, Deviation [, Seed])
 POISSON(Mean [, Seed])
 RANDOM(Min, Max [, Seed])

are the formats of the four random number functions (exponential, normal, Poisson and uniform
distributions in Powersim). The last parameter ‘Seed’ within the brackets is optional. If it is left out
you have no control of the random sequence. Specifying the seed (which should be different for the
seven terms in x above) will give you the same result for every replication. Changing the seed values
gives you a new result.

Include seven different seed values in the right hand side of the equation for x and do three
replications. Did you get the same results?

Answer:

Exercise 3. A weather model
(Modelling temperature and precipitation over the year.)

3.1 Introduction

Weather is a complex concept of temperature, precipitation (Sw. nederbörd), humidity, solar radiation,
wind, pressure etc. Different aspects of the weather are often crucial parts of a simulation model in
ecology, agriculture, hydrology, system of hydroelectric power stations etc. For example a growing
crop is dependent on radiation from the sun, temperature and water. The harvesting may require that
the fields are not to wet. A cold winter may reduce a population. A wet summer may cause the spread
of some disease. A hydroelectric power station has to control the water level upstreams and is
dependent on the amount of water collected.

Depending on the purpose with the model it may be important to include more or less exact data about
the weather over time. This may be done in two different ways:

1. As time-series data. Such data may e.g. be given in table form in Powersim or as data in a
spreadsheet (and perhaps imported to Powersim). The advantage of this approach is that you
get data from real measurements so that statistical averages, variations, correlations etc. are
authentic. Disadvantages are that data can be lacking, it is time consuming if you need large
amounts of data, you can’t easily adjust data to a hypothetical situation to se what happens.
(Say that you want to test what happens when the number of rainy days doubles. How do you
implement that and what is the connection to other quantities like temperature and solar
radiation?)

2. Build a sub-model describing the important aspects of the weather. In this case you should

certainly not try to include huge meteorological models requiring a super-computer. Instead
you should focus on those aspects that are important according to your purpose; say,
temperature and precipitation. Also in this case you need real data from the location under
study to fit your parameters. Depending on your purpose and how exact you must be the sub-
model will be more or less complex. You will probably not reach the realism of time-series
data with this approach. On the other hand the model may be good enough and easy to adjust in
form of a number of parameters.

Below we will study how you can build a simple sub-model for temperature and precipitation over the
year in say Stockholm.

3.2 Temperature and Precipitation over the year in Stockholm

Additional information: The number of days with
precipitation is in average 42 per year.

Figure 5. A diagram of temperature and precipitation over the year for Stockholm. From Nordisk
Skolatlas 1964.

 - 8 -

 - 9 -

The two temperature curves in Figure 5 are average daily max and min temperatures. Although not
exactly the same, we take the average of these two curves as the mean temperature and the distance
from this mean to max and min as ± the standard deviation.

We also se that the shape of the mean temperature over the year curve is close to sinusoidal. If we,
with regard to the purpose, decide that a sinusoidal description is acceptable it’s fine, otherwise we use
a table look-up function to describe it in detail.

The precipitation bars in the figure have min in February and max about half a year latter. Also these
variations seems close to sinusoidal.

After the construction of the model the information from Figure 5 will be used to tune the model
parameters (“model fitting”).

3.3 The weather model

We will now construct a stochastic model of the weather in terms of temperature and precipitation. If
the temperature is above zero the precipitation will be in form of rain, else it will come as snow. In the
latter case it will stay frozen until its melt because of higher temperature.

The units will be Day (i.e. 24 hours), °C and mm H20.

The time horizon is one year, but since the weather is cyclical the simulation may run for any number
of years.

3.3.1 Temperature

To describe the temperature we start with the mean annual temperature and add the seasonal
variations. To this we add the daily fluctuations. For the seasonal variations we use a sinus or cosinus
function. (cos is the same as sin but translated so that its peak occurs at time zero. Zero is a nicer offset
to refer to when we later moves the peak.) Thus:
 Temp = a+ b.cos(φ) + r
with
 a = T_YearMean [Mean annual temperature]
 b = T_YearAmp [Amplitude of annual variations]
 φ = 2.Pi(Time – T_PeakDay)/365 [Location of temperature peak: 2π.Time/365 gives Time in
 days and (Time – T_PeakDay) shifts the curve to have the
 peak at T_PeakDay.]
 r = N(0, T_DayVar) [Daily variations round a+ b.cos(φ). A Normal distribution
 with mean 0 and T_DayVar as Standard deviation is used.]

With this sub-model the daily random variations around an annually fluctuating average temperature
can be simulated.

Now adjust the parameters T_YearMean, T_YearAmp, , T_PeakDay and T_DayVar in accordance to
Figure 5 and test the model.

Comments: ..

 - 10 -

3.3.2 Precipitation

Precipitation also has a typical annual cycle. During the winter it is relatively dry and in late summer
considerably more rain will fall. To model the annual precipitation cycle a cosin function, YearCycle,
will be used. (Again, a table look-up function would be still more accurate.)

To decide if there will be any precipitation at a certain day we use a uniform random number
generator, RANDOM(0,1), and test if the random sample is smaller than a certain number
Risk_Precip. In that case the amount of precipitation, Amount, will fall. Thus:

 Precipitation = IF(RANDOM<Risk_Precip, Amount, 0) [Test if precipitation today.]
 Risk_Precip=... [See Figure 5.]
 Amount = EXPRND(Day_Av_If_Precip)*YearCycle [YearCycle modifies Amount.]

The Amount draws a random number from an exponential distribution with average
Day_Av_If_Precip. The exponential distribution is chosen because the amount is usually small but can
at rare occasions become very large. [If you think the distribution is crucial you should collect
statistics and build a more accurate random mechanism. You may then replace the exponential random
number generator in Amount by an own made function where you map R(0,1) random numbers
through a table look-up function to achieve a distribution more like the real distribution of the amount
of precipitation during a day.]

Finally, Amount of precipitation is also modified by the sinusoidaly varying YearCycle. The YearCycle
varies sinusoidally over the year around a mean value equal to one with an amplitude, Amp. Again we
use 2π.Time/365 to get Time in days and (Time – P_PeakDay) shifts the curve to have the peak at
P_PeakDay. Thus:

YearCycle = 1 + Amp*COS(2⋅Pi.(Time – P_PeakDay)/365)

The ratio of max to min is denoted MaxToMin and will be recalculated into the amplitude, Amp, of the
cosin function. Amp then gets the form:

 Amp = (MaxToMin - 1)/(MaxToMin + 1)

Now, tune the constants: Risk_Precip, Av_IF_Precip, MaxToMin and P_PeakDay in accordance to
Figure 5. [Note that since the annual average of YearCycle is one, the expected annual precipitation
will be: 365*Risk_Precip*Day_Av_If_Precip. This makes it easier to fit the parameters to give correct
average precipitation. This is why we put extra effort to give YearCycle a mean equal to one.]

When the temperature goes above zero the precipitation comes as rain, else it comes as snow:

 Rain = IF(Temp > 0, Precipitation, 0)
 Snow = IF(Temp <= 0, Precipitation, 0)

As long as the temperature stays below zero the precipitation is accumulated in form of snow and ice.

 SnowBuffer(time+Δt) = SnowBuffer(time) + Δt*Snow(Time) -Δt*Melt(Time).

When the temperature then rises above zero the melting will start and its rate is a function of
temperature, the size of the accumulated snow buffer and of a constant, Melt_const:

 Melt = IF(Temp > 0, Melt_const* Temp* SnowBuffer, 0).

(This is not a very accurate formula. Further, the solar radiation should also play a role.)

The model is calibrated by the rate of melting given in the constant: Melt_const. We assign the value
0.3 to this parameter.

A possible layout of the weather sub-model is shown in Figure 6.

Figure 6. A possible layout of the weather sub-model. There are nine parameters to fit to the studied
weather system in this case. (For a practical use rain and melting water may for example drain the
humus from the soil or fill the water reservoirs for the power stations or affect the crop.)

3.3.3 Random numbers are affected by the time-step chosen

So far we have made the model for a step-size Δt=1. Usually, Δt is freely adjustable to a small enough value.
But there is one exception: Random numbers are step-size dependent! The problem is that a new random
sample is drawn for every Δt. This will not produce any errors with regard to the averages, but to the variations.
For example if there is 12.5 per cent risk per day of precipitation, the statement: Precipitation =
IF(RANDOM<Risk_Precip, Amount, 0) will give precipitation about each eights day for Δt=1. But
changing Δt to 0.1 would give precipitation most of the days (although with the amount Δt*Amount per
time-step.) This may be OK if you run the hydroelectric water station but not if you are a tourist – so
the purpose of your study decides if you have to deal with it.

Another problem comes when you cumulate a random variable like the snow into a snow-buffer. The
accumulation with Δt=0.1 will result in ten times more snowfalls, each with a tenth of the content. But
the variations in the snow-buffer will loss most of its variations because it represents an average based
on ten times more samples. (“The law of large numbers”.)

 - 11 -

One way to eliminate such problems is to sample the random functions once a day. This sample will
then be used for the whole day independent of your time-step (as long as it is not larger than one). In
principle you should write e.g.: SAMPLE(RANDOM(0,1), FirstTime, Interval) with FirstTime=0 and

 - 12 -

Interval=1 if the time unit is one day. (Unfortunately, you may not nest functions like RANDOM, IF etc. inside
the SAMPLE function, so you need to include extra auxiliaries – one holding SAMPLE and the other holding
the random function.)

With these very important comments we leave this subject for now and stick to Δt=1 in this exercise.

3.4 Testing the weather model

Simulation starts in January 1 and proceeds day per day with 365 days per year. If you want you may
assign an initial value (other than zero) to the SnowBuffer if you think there typically is snow on the
ground at January 1.

To test the model add a number of diagrams for temperature, rain and snow. Also cumulate the
precipitation to see if you get a reasonable amount per year.

Simulate the model in five replications of one year each. Does the results seem to be in accordance to
those in Figure 5 and to what you know about weather?

Depending on what you want to use the model for, you should test it by asking relevant questions.
These could for example be:

- What was the highest and lowest temperature you got? Answer: ...

- Does the variations in temperature seem reasonable? Answer: ...

- Is the annual precipitation reasonable? Answer: ..

- During which part of the year did you get most precipitation? Answer:

- Which months did you get snow on the ground? Answer: ..

- How many days per year with snow on the ground did you get? Answer:

- According to the model, on how many days a year can you go skiing? (Temperature
 below zero and at least 10 cm of snow (=10 mm in SnowBuffer).

Answer: days/year.

Comments on what to improve on: ..

...

3.5 Simplifications made

This model focuses on how mean temperature and precipitation changes around the year and on
stochastic daily temperature and precipitation variations.

Such a simple model will necessarily contain a number of simplifications and a number of factors not
included. For example the melting is also an effect of solar radiation which is not included. Further we
have assumed the same risk of precipitation every day and let the amount vary over the year. Perhaps
we should instead varied the risk of precipitation? Nor have we included correlations. For example it is
probable that precipitation and low temperature are correlated. Further, low pressures tend to pass in

sequences of three to five in a row. No autocorrelation for this is included. If these simplifications are
serious or not, depends on what is important according to the purpose of your study. (If you use real
data, the nature will take care of all these problems!)

 - 13 -

WARNING: Don’t use this as a standard model. Always start with your own purpose
formulated in operative terms to see what data about the weather you need and how
accurate they have to be. Then find time-series or build an appropriate model. The
exercise above may be a good help for ideas about how to proceed.

Acknowledgement: This model is a slight modification of a model by Tomas Thierfelder in “Dynamisk
simulering av karakteristisk säsongsvariation i myrars humusbuffert”.

 - 14 -

Exercises 4-7 are about population models. A population consists of a discrete (i.e. integer) number of
individuals. These individuals may be physical quantities like electrons, atoms or molecules or
animals, plants or micro-organisms in biology or humans in e.g. epidemiology. It is then usually
important to model the population as a number of individuals rather than as a continuous mass. The
Poisson distribution plays a central role in population models. Further, the Poisson distribution is time
scalable so that the step-size does not affect the model statistically!

Exercise 4. Stochastic modelling of radioactive decay
(Correct modelling or just adding noise.)

A deterministic model of radioactive decay is:

 dx/dt=x/T where T=10 time units is the time constant for the decay.
 x(0)=x0 where x0 is initial number of atoms.

If the initial number of atoms is large this is a good description of the process. But assume that we
study a very small sample of x0=100 atoms. Then stochastic variations have a considerable impact.
How to include that?

What you often see is that the modeller just adds noise to make the result ‘look nicer’. This is a very
stupid idea! If randomness should be included, it must be modelled in a correct way – otherwise you
just distort the model and its behaviour. To see what happens we just add noise e.g. uniform or
normally distributed. That is:

 x(t+Δt) = x(t) + F(x,t)
 F(x,t) = -x(t)/T + Noise where e.g. Noise=RANDOM[-a, a] or Noise=Normal[0, SD].

It is of course important that the noise has the expected value of zero, since you just want to include
fluctuations – not adding a positive or negative inflow. The size of a or SD (for standard deviation)
will determine the size of the random variations.

In Powersim make 1) a deterministic model and 2) a stochastic model where you just add noise and
plot the results in a common diagram. If you haven’t added further errors the fluctuations of the
stochastic solutions should roughly be around the deterministic one.

Now make a number of simulations. What peculiarities do you see? Name at least 4 impossible
artifacts!

Answer: 1) ...

 2) ...

 3) ...

 4) ...

 Finally, change Δt by a factor of ten. What happens?

Answer: ...

..

Poisson Simulation

Poisson Simulation is a method to model stochastics within Continuous System Simulation for
population models. A population model is a model where the state consists of an integer number of
individuals, like 3 men, 12 customers, 16 plants, 74, rabbits, 17 ships, 100 atoms, 50 infected people.
Flows to or from such a state may then only add or subtract integer number of individuals.

An individual arriving to or departing from a state is called an event. When events in a flow occur
randomly, independently and singly, the flow is a Poisson process defined by the single intensity
parameter, λ. Often the intensity of this flow varies over time implying a non-stationary Poisson
process where λ=λ(t). That λ varies causes no problem because λ(t) can be stepwise constant during
the short time interval, Δt, – just like other quantities in CSS. Stochastically, the probability of an
event during the finite time interval, Δt, then becomes proportional to the length of the interval. The
number of entities during the time interval, Δt, then becomes Poisson distributed and described by
Po[λ*Δt]. In the case of discrete entities, it is thus natural to base the stochastics on the Poisson
distribution.

How stochastics should be implemented

In the stochastic case the expected outflow is still F=X/T per time unit or Δt⋅F=Δt⋅X/T during the time
interval Δt. Since the properties of single events and independency are fulfilled, the number of events
during Δt should be Poisson distributed with the intensity λ=X/T. Thus, the outflow during the time
interval Δt has a Poisson distributed variation denoted Po[Δt⋅X/T]. The flow rate then becomes:
Po[Δt⋅X/T]/Δt decays per time unit. Therefore, the model is reformulated as:

 X = X+Δt⋅(−F)
 F = Po[Δt⋅X/T]/Δt [The decay is now stochastic. The rest is unchanged.]

Po[~] means that for each time interval, Δt, a random number is sampled from a Poisson distribution
with the actual parameter value specified in the expression within the brackets.

One advantage with this mechanism to introduce randomness is that the time interval Δt can be
changed to handle the dynamics properly without distorting the stochastic behaviour of the model.

A special feature of the Poisson Simulation model is that if the state variable is initiated to an integer
value it will stay an integer, as opposed to a deterministic CSS model where the state can take any real
value.

In Figure 7, the deterministic model, the stochastic model where noise was added and the Poisson
Simulation model of radioactive decay described above are shown as Forrester diagrams.

Figure 7. Three radioactive decay models.

 - 15 -

 - 16 -

Perform a number of replications with the Poisson Simulation model.

Which of the problems of the ‘noise model’ do you find here?

(Do you get integer values of the number of atoms?, can the number of atoms suddenly increase?, Can
you get a negative number of atoms?, Are the stochastic variations the same for say 100 and 10 atoms
left?, Do you still get variations after that all atoms have decayed?

Answer; ...

..

What happens when you decrease the step-size by a factor of ten or a hundred? Compare with what
happens for the ‘noise-model’.

Answer: ...

Exercise 5. An epidemic model
(Is the average of a stochastic model equal to that of a deterministic one? Estimates of averages,
variations and confidence intervals.)

Here, we will return to a an epidemic model similar to what you have studied earlier. We study how an
infectious disease hits a group of people (animals or plants) that are susceptible to an infection. The
individuals that get infected become infectious (and sick) and will recover after some time to be
become immune to the disease.

We can divide the population in three different stages of individuals: the susceptible (S), the
infectious (I) and the recovered (R) stage. Such models, therefore, are called SIR models.

The susceptible stage is the individuals that are not infected but have the potential of catching the
infection. The infectious stage consists of people that have become sick. The recovered stage consists
of the individuals that have been sick but are now recovered. See Figure 8.

Figure 8. A deterministic SIR models of an infectious disease.

The epidemic development is dependent on the following rules:

1) The total size of the population is constant during the time period we are studying. At the start of
the study the susceptible population has the size 1000 individuals, and one person has just become
infected (I(0) = 1).

2) The number of individuals that catch the infection per time unit is proportional to the number of
susceptible individuals (S) and to the number of infectious individuals (I). The proportional constant
(the spread factor for the disease) is p=0.0003 per day and person.

3) The time for the infectious stage is typically about T=4 days, and then the sick people become
immune.

Select a step-size and test if it is small enough. What step-size will you use?

Answer: Δt = time units. How many individuals become sick? Answer: persons

According to the deterministic theory, if an epidemic will occur depends on the so called Reproduction
number: R0=p*S*T that tells how many individuals that are infected by each infectious person. If R0>0
an epidemic will occur! What is R0 in this case? Answer: R0=

A stochastic SIR model

Now make the model stochastic by implementing the Poisson mechanism in F1 and F2 of the
deterministic model.

Perform a number of replications to see the number of individuals hit by the disease. Write down the
numbers from 10 replications.

 - 17 -

Answer: ...

Do you always get an epidemic? Does it look like you in average get the same results as you got from
the deterministic model?

Answer: ..

As you notice, it is quite tedious to perform, say, 1000 replications in this way and thereafter calculate
average, variations, confidence intervals etc. The 1000 replications will also take some time.
Therefore, we first try to reduce the execution time. Firstly, don’t use a too small Δt. (Δt=0.1 is
enough.) Then, since it often happens that the one and only infectious individual recovers before he
has infected anyone the epidemic can sometimes be over very quickly. Simulating until, say,
Time=1000 will then be a waste of time. Instead make an auxiliary and call it BREAK for example.
Open BREAK and use the function STOPRUNIF(I < 0.5) that stops the replication when I becomes
zero. (I<0.5 is better than I=0 since the binary representation may represent zero by e.g. 10-17.) Also
add another auxiliary denoted DURATION and define it as TIME to se the time when the epidemic is
over. Test the model to see that it works well and save the model.

Now we open the supervisory program StocRes (for STOChastic RESults) that you find on the
desktop. You will then get an interface like that in Figure 9.

Figure 9. The StocRes interface for calculating statistics from many replications of a model.

• Start clicking [Select File] to specify and connect to your model.

 - 18 -

 - 19 -

• In the “Result Variable” field write the name of the Resistant state variable and click [Add].
Then write DURATION and add that variable.

• Set “No. Runs” to 1000.
• Click [RUN] and let StocRes do the job.

When the 1000 replications are done you see the statistics in form of Average, Standard deviation,
Confidence interval, Min, Max etc for each studied quantity.

You may [Print] the results on paper. There is also possible to mark one or two of the variables by a
star (*) to make a histogram, Scatter plot or to dump the results from each simulation onto a file for
further analysis.

What was the average number of individuals that were hit by the disease and its confidence interval?

Answer: Average[R]=................. (C.I.=⎯..............) individuals.

What was the average duration of the epidemic and its confidence interval?

Answer: Average[Duration]=................. (C.I.=⎯..............) time units.

With how many percent differs these results from that of the deterministic model?

Answer:

Does the reproduction number R0=p*S*T > 1 grant an epidemic?

Answer:

Can there be an epidemic if R0=p*S*T < 1? (Test it!)

Answer:

Exercise 6. A logistic population model
(Warning for using a deterministic model structure. Start from the system when making your
stochastic model!)

[Start from the system when making your stochastic model! Adjusting the model structure to fit
observed stochastic variations - A logistic model. Warning for using a deterministic model structure.)

The deterministic case
A deterministic, logistic model has the form: dx/dt=ax-bx-cx2; where a is the fertility rate, b the
mortality rate and c is the mortality rate because of competition. The change in the state value x thus
increases proportionally to x (if a>b) and decreases because of competition proportionally to the term
x2 (meaning that each of the x individuals competes with all the other).

But we can also write dx/dt=a’⋅x-cx2=(a-b)x-cx2 where a’=a-b. The term (a-b)x is then the net flow.
Further, how does the competition work? Does it result in an additional outflow of dying individuals
or does it hamper the growth process (or is it involved in both)?

Depending whether we model ax and bx as separate flows or as a net flow (a-b)x and depending on
whether we assume that competition is a cause of additional death or a cause of reduced fertility we
can com up with the four different models in Figure 10.

x(t+Δt)=x(t)+Δt⋅(Fac-Fb)
Fac = a⋅x - c⋅x2

Fb = b⋅x

x(t+Δt)=x(t)+Δt⋅(Fab–Fc)
Fab = a⋅x -b⋅x
Fc = c⋅x2

x(t+Δt)=x(t)+Δt⋅Fabc
Fabc = a⋅x-b⋅x-c⋅x2

x(t+Δt)=x(t)+Δt⋅(Fa–Fb–Fc)
Fa = a⋅x
Fb = b⋅x
Fc = c⋅x2

Figure 10. A) ax and bx as separate flows & competition as an outflow. B) (a-b)x as a net flow &
competition as an outflow. C) ax and bx as separate flows & competition reducing an inflow. D) (a-b)x
as a net flow & competition reducing an inflow.

 - 20 -

 - 21 -

In case A) we have assumed that the three flows Fa, Fb and Fc all are independent. This means that the
number of births in Fa only depends on the parameter a and the value of X, and not on what happens
in the other flows. A similar statements are true for Fb and Fc.

In case B) we have assumed that a net increase is because of (a-b) and the value of X. Implicitly we
have then assumed that no other death will occur except for that from competition. Does this seems
reasonable?

In case C) the underlying assumption is that the effect of competition causes a reduced increase of the
population.

In case D) the assumption is that no death whatsoever can occur, bx and cx2 only will reduce the
increase.

Mathematically this four models have all the differential equation: dx/dt=ax-bx-cx2. They should,
therefore, give exactly the same results. In deterministic modelling there is no reason to discuss the
realism of the different structures because they gave all the same results so we couldn’t decide which
behaved more similar to data from a studied system. (Although we could use biological knowledge to
at least rule out case D) as biologically infeasible.)

To check the models, set a=0.2, b=0.1 and c=0.01 and simulate the four models for 100 time units with
a small step, e.g. Δt =0.05. What number of individuals did you get?

Answer: A) B) C) D)

Poisson Simulation models

Now we will consider that the increase or decrease in the flows are individuals that at some points in
time enter or departure from the state x. Assume that the events causing an increase or a decrease of
individuals happen independently of each other, then the flows are Poisson processes that can be
modelled as PO[Δt⋅λ]/Δt.

Transform the four deterministic model into Poisson Simulation models and study their behaviours.

Note: In deterministic simulation a way to grant accurate calculations is to keep Δt small so that the
change of the state(s) is small during Δt. For stochastic models making Δt small is also crucial – but
here a number of events could happen within Δt even when it is short. In some models you can accept
it while in other you may pass into a forbidden situation. For example assume that we in case A) have:
X(t+Δt)=X(t)+Po[Δt⋅a⋅X] - Po[Δt⋅b⋅X] - Po[Δt⋅c⋅X2] and X=1. It is then possible that the first Po-term
becomes zero and the second and third both become equal to one. X(t+Δt) then gets the value –1. In
the following Po[Δt⋅a⋅X] and Po[Δt⋅b⋅X] will be zero because the Po[Neg number]=0. But Δt⋅c⋅X2 is a
positive number because of the square so Po[Δt⋅c⋅X2] will continue to produce departures in an
increasing rate and X can even get large (negative) enough to produce overflow in the computer
calculations. A reduced Δt usually is a good (but not absolutely sure) cure, because if you reduce Δt to,
say, a tenth it is improbable that both departure events will happen in the same time-step. And if they
don’t the first event will take X to zero and there will be no second as long as X remains at zero.

[If you want to be absolutely sure you can guard against outflows making X negative. E.g.: Δt⋅Fbc =
MIN(Po[Δt⋅b⋅X] + Po[Δt⋅c⋅X2], X). In this case the combined output is limited to the value of X.]

Now, make a diagram so you can follow the development of the states by eye. Save the model and
Start StocRes. Connect to the stochastic model, Study the states for the stochastic four models (XA,

 - 22 -

XB, XC and XD) and run 500 replications. (If you get problems of the type described above so
decrease the step-size.

Model Average Standard

deviation
Confidence
interval

Min Max

A)
B)
C)
D)

Now its time to analyse the results. Firstly, in deterministic modelling there were no reason to discuss
the realism of the different structures because they gave all the same results so we couldn’t decide
which behaved more similar to data from a studied system.

In the stochastic case, however, we see that we get different results for the four cases. This is because
the four structures behave statistically different. And dynamics and stochastics interact!

Why did you get considerably smaller values of X(t=100) in the stochastic case (for cases A, B and
C)?

Answer: ..

Why did you in case D almost always end up at XD=10?

Answer: ...

Which model do you think is most realistic?

Answer: ..

As you probably have noticed, making the model stochastic is a considerably tougher task. But if you
study populations that are not very large, you usually get wrong estimates and conclusions from a
deterministic model.

Further, the stochastics that you obtain from data from system under study contains information that
should not be thrown away by smoothing. This information you can take care of by fitting the three
parameters a, b and c (the deterministic model had only two independent parameters a’=(a-b) and c).

Say that you have concluded that A is a reasonable model.
The average of a stochastic variable X is defined by: m[X]=E[X]=Σxi/N for the N data x1, x2, ...xN.

The variance of a stochastic variable X is defined by: V[X]=E[(X-m]2] where m is the average. One
way to calculate the variance is V[X]=E[X2] – (E[X])2. The variance V[X] is a measure of the
variations around the average and is meaningful if we have a rather constant average. However, here
we are only interested in estimating the parameter values of a, b and c so that the behaviour of the
system and the model become about the same.

Figure 11. Data from the studied system. What are the average and the variance?

Analysing the data from the studied system (in e.g. Excel) gives E[X]=96.8 and Var[X]=257.7
(SD[X]=16.1; SD=√Var).

Figure 12. A simple device to measure average (E[X]) and variance (Var[X]) or Standard Deviation
(SD[X]).

Start with fitting the model so you get a reasonable average: that is (a-b) and c needs proper values.
When this is done increase or decrease a and b equally. This will not affect the average, but the
variations become larger when a and b are increased. (Be careful to initiate X to a proper value!)

The estimates were: a =, b = and c =

 - 23 -

Exercise 7. A stochastic prey-predator model
(How stochastics excites dynamic variations and how new qualities are obtained.)

The Lotka-Volterra equations describe a prey-predator system for two species e.g. Rabbits (x) and
Foxes (y) by differential equations. The rabbits breed at a rate proportional to their number x. They die
because of encounters with the foxes, which is proportional to x⋅y. Also, there is competition among
the rabbits, where each rabbit competes with all the others. Competition, therefore, is proportional to
x2. The encounters with rabbits give the foxes energy to breed so they increase in proportion to x⋅y.
Finally, the fox death rate is proportional to the number of foxes, y. The Lotka-Volterra model
therefore has the form:

 dx/dt = ax – bxy – kx2

 dy/dt = cxy – dy

where a and b are fertility constants, c and d mortality constants, and k is a proportionality constants
for competition.

By setting the derivatives dx/dt and dy/dt to zero and solving for x and y we obtain three possible
stationary solutions:

1) x=0 and y=0, 2) x=a/k and y=0, 3) x=d/c and y=(a-kd/c)/b.

Setting e.g. a=0.2, b=0.005, c=0.005, d=0.3 and k=0.001 gives in the second case (foxes become
extinct) x=200 and y=0, and in the third case (both species survive) x=60 and y=28.

To treat the system numerically we rewrite the equations in Euler’s form:

 x(t+Δt) = x(t) + Δt⋅(F1 - F2 - F3)
 F1 = ax
 F2 = bxy
 F3 = kx2

 y(t+Δt) = y(t) + Δt⋅(F4 - F5)
 F4 = cxy
 F5 = dy

Initialising this simulation in steady state with x(0)=60 and y(0)=28 give the trivial results of two
constant lines for x and y. But even if we disturb the system to generate variations, these will die out.

Build the model in Powersim an initialise way of the equilibrium, e.g. x(0)=150 and y(0)=10.

Run the model and sketch the result in Figure 13.

Figure 13. The deterministic system is damped by the competition and then stays in an equilibrium.

 - 24 -

Now assume that the flows of births deaths and competition follow the Poisson
requirements. Then each flow Fx is transferred into the form: Poisson(Δt⋅Fx)/Δt. The model, with
stochastic flows are shown in Figure 14.

 Figure 14. The structure of Volterra’s equations. Randomness is introduced in each flow.

 or predators. Sketch
e behaviour of a replication where extinction of a species happens in Figure 15.

igure 15. An example of the behaviour of the Poisson model starting at equilibrium.

s

ry. It also displays the periodical pattern and its typical period length of the
eterministic model.

 state X=a/k=200. (If rabbits get extinct, there will be no food for the foxes
o they will soon follow.)

rting at an equilibrium and even though a corresponding
eterministic model would damp them out.

Start the simulation from the equilibrium values X(0)=d/c=60 and Y(0)=(a-kd/c)/b=28.
Repeat the simulation a number of times and look for possible extinctions of preys
th

F

In the Poisson simulation the inherent dynamics of the system is excited by the stochastic fluctuation
(because we started at equilibrium). We also see that this dynamics not only causes the numbers of
rabbits and foxes to va
d

Also note that in some replications all foxes may starve to death, making the rabbits increase and
fluctuate around the steady
s

This example demonstrates several qualities. Firstly, it illustrates that dynamics and stochastics may
generate continued oscillations also when sta
d

 - 25 -

 - 26 -

Secondly, the model may flip to a mode where foxes get extinct - a quality that could not happen in a
deterministic model.

Finally

Also in this model we could have chosen different designs of the model that are deterministically equal
but stochastically different. For example if we eliminate the predators and only keep the preys (X)
(and F2 from bxy to bx) we are back to the logistic model studied in the previous example.

Another issue that could be discussed is whether we should include an auxiliary “ENCOUNTERS”
with the value x⋅y. Again this would not affect the deterministic model – but in the stochastic model
we would have Po[Δt⋅X⋅Y]/Δt randomizing the number of possible meetings at only one place in the
model instead of two (F2 =b⋅ENCOUNTERS and F4 =c⋅ENCOUNTERS). This change would not
affect the expected values of F2 and F4 but it would affect there variances. Further, this change would
“synchronize” F2 and F4 so they become fully correlated (when F2 is large/ small so is F4). In the
original setting F2 and F4 were uncorrelated. Which design is the best can only be determined from
how the studied system behaves.

As seen stochastic modelling is much more tricky than deterministic, but it also gives you better
possibilities to make a realistic model and to get better estimates and better conclusions and
understanding.

 - 27 -

Exercise 8. Summary of your findings

Go through your exercises and sum up your findings in your own words. Especially, differences
between deterministic and stochastic modelling, simulation, model behaviour etc. are important.

• ...

.. ...

.. ...

• ...

.. ...

.. ...

• ...

.. ...

.. ...

• ...

.. ...

.. ...

• ...

.. ...

.. ...

• ...

.. ...

.. ...

• ...

.. ...

.. ...

• ...

.. ...

.. ...

	1.1 A uniform R[0,1]-generator
	How to make the simulation reproducible

	How stochastics should be implemented
	A stochastic SIR model
	Poisson Simulation models
	Transform the four deterministic model into Poisson Simulation models and study their behaviours.

	(How stochastics excites dynamic variations and how new qualities are obtained.)
	Finally

