Localization in Networks Based on **Log Range Observations**

Fredrik Gunnarsson Fredrik Gustafsson

Fredrik Gunnarsson Localization in Networks Based on Log Range Observations

Wireless Systems Workshop 2008 Johannebergs Slott

Outline

- FOCUS Area Control
- Sensor Measurement Modeling
- Nuisance Parameter Elimination
- Simulations

Fredrik Gunnarsson Localization in Networks Based on Log Range Observations

Wireless Systems Workshop 2008

Log Range Observations

Sensor Network Modeling

Problem definition and notation:

- One target with unknown position x(t) (2D).
- N sensor nodes with known positions p_k , $k=1,\ldots,N$.
- ullet Each sensor node consists of M sensor types.
- Observations denoted $y_{k,i}(t),\,k=1,\ldots,N$ and $i=1,\ldots,M$.
- ullet Problem: Localization (from one snapshot $y_{k,i}(t)$) and tracking of x(t).
- Assumption: target speed times sampling interval small compared to network dimensions.
- Restriction: Communication, sensor calibration and multi-target localization with data association are not considered here.

Fredrik Gunnarsson Localization in Networks Based on Log Range Observations Wireless Systems Workshop 2008 Johannesbergs Slott AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET

Sensor Model

Assumption: the received power for each sensor type follows an exponential decay

$$\bar{P}_{k,i} = \bar{P}_{0,i} ||x - p_k||^{n_{p,i}}.$$

where

- the transmitted energy is denoted $P_{0,i}$,
- ullet the path loss constant is denoted $n_{p,i}$,

are different for each sensor type i but the same at each node k.

The log range model where the power is measured in decibels with additive noise $e_{k,i}$ with variance $\mathrm{Var}(e_{k,i})=\sigma_{p,i}^2$:

$$P_{k,i} = P_{0,i} + n_{p,i} \underbrace{\log(||x - p_k||)}_{\triangleq c_k(x)},$$

$$y_{k,i} = P_{k,i} + e_{k,i}.$$

The fundamental log range (LR) term $c_k(x)$ is introduced here.

Fredrik Gunnarsson Localization in Networks Based on Log Range Observations Wireless Systems Workshop 2008 Johannesbergs Slott

Sensor Network Measurement Model

$$\mathbf{y} = \mathbf{h}(x, \theta) + \mathbf{e},$$

$$\mathbf{y} = \begin{pmatrix} y_{1,1} \\ y_{2,1} \\ y_{3,1} \\ \vdots \\ y_{N,M} \end{pmatrix}, \quad \mathbf{e} = \begin{pmatrix} e_{1,1} \\ e_{2,1} \\ e_{3,1} \\ \vdots \\ e_{N,M} \end{pmatrix}, \quad \mathbf{h}(x, \theta) = \begin{pmatrix} P_{0,1} + n_{p,1}c_1(x) \\ P_{0,2} + n_{p,1}c_2(x) \\ P_{0,2} + n_{p,1}c_3(x) \\ \vdots \\ P_{0,M} + n_{p,M}c_N(x) \end{pmatrix},$$

$$\theta_i = (n_{p,i}, P_{0,i})^T$$
$$Cov(e_{k,i}) = \sigma_{n,i}^2.$$

Target location x unknown, θ unknown nuisance parameters and σ_i may or may not

Both $n_{p,i}$ and $\sigma_{p,i}$ may depend on the local environment.

Note: $\mathbf{h}(x,\theta)$ is linear in θ .

Fredrik Gunnarsson Localization in Networks Based on Log Range Observations Wireless Systems Workshop 2008 Johannesbergs Slott AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET

Non-linear Least Squares (NLS)

Straightforward application of non-linear least squares (NLS). Assume first that σ_p is known from off-line experiments.

$$\widehat{(x,\theta)} = \arg\min_{x,\theta} V(x,\theta,\sigma_p),$$

$$V(x,\theta,\sigma_p) = \sum_{i=1}^{M} \sum_{k=1}^{N} \frac{\left(y_{k,i} - h(c_k(x),\theta_i)\right)^2}{\sigma_{p,i}^2},$$

$$h(c_k(x),\theta_i) = \theta_{i,1} + \theta_{i,2}c_k(x),$$

$$c_k(x) = \log\left(\|x - p_k\|\right).$$

2M+2 unknowns, MN non-linear equations. Solvable only if $N\geq 3.$

Fredrik Gunnarsson Localization in Networks Based on Log Range Observations Wireless Systems Workshop 2008 Johannesbergs Slott

The nuisance parameters θ appear linearly in all equations. Estimate these first with standard weighted least squares (WLS).

$$\hat{\theta}_{i}(x) = \underbrace{\left[\begin{pmatrix} N & \sum_{k=1}^{N} c_{k}(x) \\ \sum_{k=1}^{N} c_{k}(x) & \left(\sum_{k=1}^{N} c_{k}(x)\right)^{2} \end{pmatrix} \right]^{-1}}_{R(x)} \underbrace{\left(\sum_{k=1}^{N} y_{k,i} \\ \sum_{k=1}^{N} c_{k}(x) y_{k,i} \right)}_{f_{i}(x)}$$

Parameter estimate depends on target position x only via $c_k(x)$. Explicit matrix inverse:

$$R(x) = \frac{1}{N \sum_{k=1}^{N} c_k^2(x) - \left(\sum_{k=1}^{N} c_k(x)\right)^2} \begin{pmatrix} \sum_{k=1}^{N} c_k^2(x) & -\sum_{k=1}^{N} c_k(x) \\ -\sum_{k=1}^{N} c_k(x) & N \end{pmatrix}$$

Fredrik Gunnarsson Localization in Networks Based on Log Range Observations Wireless Systems Workshop 2008 Johannesbergs Slott AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET

NLS in x Only

Plugging in the nuisance parameter estimate gives

$$\hat{x} = \arg\min_{x} \min_{\theta} V(x, \theta, \sigma_{p}) = \arg\min_{x} V(x, \hat{\theta}(x), \sigma_{p}),$$

$$V(x, \hat{\theta}(x), \sigma_{p}) = \sum_{i=1}^{M} \sum_{k=1}^{N} \frac{\left(y_{k,i} - h(c_{k}(x), \hat{\theta}_{i}(x))\right)^{2}}{\sigma_{p,i}^{2}},$$

$$= \sum_{i=1}^{M} \frac{\sum_{k=1}^{N} y_{k,i}^{2} - f_{i}^{T}(x)\hat{\theta}_{i}(x)}{\sigma_{p,i}^{2}},$$

2 unknowns, M(N-2) degrees of freedom in the non-linear equations. Solvable only if $M\geq 2, N=3$ or $N\geq 4.$

Fredrik Gunnarsson Localization in Networks Based on Log Range Observations Wireless Systems Workshop 2008 Johannesbergs Slott

Grid Method to Solve for x

$$V(x, \hat{\theta}(x), \sigma_p) = \sum_{i=1}^{M} \frac{\sum_{k=1}^{N} y_{k,i}^2 - f_i^T(x) \hat{\theta}_i(x)}{\sigma_{p,i}^2}$$

- Tedious to compute the gradient ...
- Grid method for the lazy ...

Fredrik Gunnarsson Localization in Networks Based on Log Range Observations

Wireless Systems Workshop 2008 Johannesbergs Slott

Cramer-Rao Lower Bound

Position RMSE bounded by the Cramér-Rao lower bound (CRLB)

$$\mathrm{RMSE} = \sqrt{\mathrm{E}\left((x_1^o - \hat{x}_1)^2 + (x_2^o - \hat{x}_2)^2\right)} = \sqrt{\mathrm{tr}\,\mathrm{Cov}(\hat{x})} \geq \sqrt{\mathrm{tr}\,J^{-1}(x^o)}$$

In case of Gaussian measurement errors, the Fisher Information Matrix (FIM) equals

$$J(x) = \sum_{i=1}^{M} \sum_{k=1}^{N} \frac{\nabla_x h(c_k(x), \theta_i) \nabla_x^T h(c_k(x), \theta_i)}{\sigma_{p,i}^2}$$

$$= \sum_{i=1}^{M} \sum_{k=1}^{N} \frac{\theta_{i,1}^2}{\sigma_{p,i}^2 \|x - p_k\|^2} (x - p_k) (x - p_k)^T$$

$$\sum_{i=1}^{M} \sum_{k=1}^{N} \frac{\theta_{i,1}^2}{\sigma_{p,i}^2 \|x - p_k\|^2} (x - p_k) (x - p_k)^T$$
 Network
$$\sum_{i=1}^{M} \sum_{k=1}^{N} \frac{\nabla_x h(c_k(x), \theta_i) \nabla_x^T h(c_k(x), \theta_i)}{\sigma_{p,i}^2}$$

Fredrik Gunnarsson Localization in Networks Based on Log Range Observations

Wireless Systems Workshop 2008 Johannesbergs Slott

Handling Unknown Noise

Marginalize linear parameters as above.

The maximum likelihood method assuming Gaussian noise gives

$$\min_{\sigma_p,\theta} V^{GML}(x,\theta,\sigma_p) = \sum_{i=1}^{M} N \log \left(\sum_{k=1}^{N} y_{k,i}^2 - f_i^T(x) \hat{\theta}_i(x) \right)$$

which again can be optimized over x

Fredrik Gunnarsson Localization in Networks Based on Log Range Observations Wireless Systems Workshop 2008 Johannesbergs Slott

