

Opportunistic Beamforming with Dumb Antennas for Clustered OFDM

Patrick Svedman, Katie Wilson and Len Cimini 1 November 28, 2003

Patrick Svedman, Katie Wilson and Len Cimini 2 November 28, 2003

ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING

• Instead of equalizing the fading channel, divide the channel into sub-channels, which can be considered as flat.

Patrick Svedman, Katie Wilson and Len Cimini 4 November 28, 2003

Opportunistic Beamforming

- Traditionally, multiple antennas have often been used to combat fading (e.g. space-time block coding).
- Opportunistic beamforming using dumb antennas: randomly form the beams for each data block to *increase* the fading of the users! ⇒ Also stationary users will experience temporal fading!
- C.f. Viswanath, Tse and Laroia "Opportunistic Beamforming Using Dumb Antennas" IEEE Trans. Inform. Theory, vol 48, pp. 1277-1294, June 2002.

Opportunism for an OFDM downlink

- In an OFDM downlink, different users can be scheduled on different subcarriers.
- This introduces another dimension on which the users can be scheduled!
- What if the users experience relatively flat channels? More frequency fading can be induced by having different beamforming weights on different subcarriers.

l.S.

TIME-FREQUENCY GRID OF ONE USER

Patrick Svedman, Katie Wilson and Len Cimini 7 November 28, 2003

What about feedback?

- The scheduler requires knowledge of the frequency responses of all users ⇒ much feedback
- Improvement 1: Clustered OFDM
 - Divide the subcarriers into clusters (of adjacent subcarriers).
 If the cluster-size is appropriate, the correlation between the sub-carriers in one cluster is high.
- Improvement 2: Feed back information only about the strongest clusters. The weakest will not be scheduled anyway! ⇒ much less feedback.

- Comparison between
 - 1. Opportunistic OFDM with clustering and reduced feedback
 - 2. Opportunistic OFDM with full feedback
 - 3. A smart antenna solution (beamforming on the largest eigenvalue), with round-robin scheduling
- Simple scenario
 - HIPERLAN/2 channel model (64 sub-carriers)
 - Equally distributed users
 - Maximum system throughput considered
 - Fairness not considered yet

THROUGHPUT VS NUMBER OF USERS:

Patrick Svedman, Katie Wilson and Len Cimini

'etenska' OCH Konst

KTH

THROUGHPUT VS AMOUNT OF FEEDBACK INFORMATION Q:

SNR = 0 dB, Channel Delay-spread = 100 ns

12

THROUGHPUT VS CLUSTER-SIZE N:

SNR = 0 dB, 32 users

ONE USER, ON-OFF WATERFILLING

ONE USER, ON-OFF WATERFILLING

15

ONE USER, ON-OFF WATERFILLING

- Conclusions:
 - Opportunistic beamforming with clustered OFDM promises throughput on par with a smart antenna solution, with little feedback and possibly a lower complexity basestation.
- Future work:
 - Design of a *fair* scheduler
 - Analysis of the impact of channel estimation and feedback error/delay
 - More realistic simulations, especially regarding the channel models
 - and more