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The binary reflected Gray code is optimal for
M -PSK

Erik Agrell, Johan Lassing, Erik G. Ström, and Tony Ottosson

Abstract— This paper concerns the problem of selecting a bi-
nary labeling for the signal constellation in an M -PSK communi-
cation system. Gray labelings are discussed and the original work
by Frank Gray is analyzed. As is noted, the number of distinct
Gray labelings that result in different bit-error probability grows
rapidly with increasing constellation size. By introducing a recur-
sive Gray labeling construction method called expansion, the pa-
per answers the natural question of what labeling, among all pos-
sible constellation labelings, that will give the lowest possible av-
erage probability of bit errors. Under certain assumptions on the
channel values, the answer is that the labeling proposed by Gray,
the binary reflected Gray code, is the optimal labeling for M -PSK
systems, which has, surprisingly, never been proved before.

Index Terms— binary reflected Gray code, constellation label-
ing, phase shift keying, pulse amplitude modulation, quadrature
amplitude modulation, average distance spectrum

I. INTRODUCTION

This paper concerns the problem of selecting a binary label-
ing for the signal vectors in an M -ary phase shift keyed (M -
PSK) communication system that will minimize the probability
of bit errors. As was shown in [1], the average bit error proba-
bility (BER) of coherent M -PSK (M is assumed to be a power
of two) is given by,

Pb =
1
m

M−1∑
k=1

d̄ (k)P (k), (1)

where m = log2 M and P (k) is the probability that the re-
ceived signal is displaced into the decision region of a symbol k
steps counter-clockwise away from the transmitted signal. The
main focus in this paper is on the function d̄(k), the average
distance spectrum (ADS) of a binary labeling of the symbols
in a signal constellation. This function is the average number
of bits that differ in symbols separated by k steps, averaged
over all M symbols. The probabilities P (k) given, for exam-
ple, by the expressions in [2, p. 201], are not functions of the
constellation labeling, so the BER dependence on the labeling
is captured entirely by d̄(k). For most channels of interest, the
function P (k) decreases rapidly with k making it is reasonable
to chose a labeling that assigns binary patterns to the constel-
lation symbols in such a way that adjacent patterns differ in a
single bit. Such labelings are known as Gray labelings.

The problem of evaluating the average BER of M -PSK mod-
ulation schemes has been studied extensively in the literature.
In [3–6], approximate and exact values of the BER for certain
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values of M are given and in [1] the exact values are given for
all M . Common for all these references is the use of the binary
reflected Gray labeling of the constellation symbols. The binary
reflected labeling was suggested by Frank Gray in a patent from
1953 [7] as a means of reducing the coding error in a pulse code
communication system. This system referred to by Gray can be
viewed as an analog-to-digital converter, in which an analog
signal controls the deflection of a sweeping electron beam. The
electron beam sweeps during each sampling interval over a row
of a coding mask, which allows the electrons to pass in certain
slots while blocking them in others. Electrons that actually hit
the collector anode give rise to an output current, while this cur-
rent is essentially zero if the electrons are blocked. This system
converts an analog signal into a signal that is essentially a string
of binary digits. The solution proposed by Gray addresses three
main issues with this system. First, the problem of reducing the
distortion of the decoded analog signal arising from a small er-
ror in the deflection of the electron beam. Second, simplifying
the manufacturing of the coding mask by making the smallest
apertures of the coding mask larger, and third, improving the
timing properties of the recovery circuitry. The way that Gray
solves this problem is by simply listing the binary numbers in
a different order, so that adjacent numbers differ in a single bit
position. This approach solves the first and most important is-
sue, giving a small decoding error (a single bit) for small er-
rors in the beam deflection. In addition, the particular mapping
Gray proposes also doubles the size of the smallest apertures
of the coding mask. Gray calls the proposed mapping the re-
flected binary code, due to its recursive construction method
(see Section III-A). Gray identifies the trivial operations de-
fined in Section II below, but his treatment only concerns Gray
labelings with the symmetric properties imposed by the recur-
sive reflection construction method.

In most references in the literature the binary reflected label-
ing proposed by Gray is referred to simply as ‘the Gray’ label-
ing, without further specification. However, for m > 3 there
exist several Gray labelings that have different ADS and as m
increases the number of such labelings rapidly becomes very
large [8–10]. To find the labeling that gives the lowest possible
BER, it is necessary to consider the entire class of binary label-
ings having the Gray property. Only a fraction of the labelings
in this class can be generated from the recursive methods de-
fined below, but we will show that it is possible to generate the
optimum labeling by these recursions. For illustration, in Table
I are given two binary labelings having the Gray property along
with their respective ADS. By comparing the ADS of the two
labelings it is seen that, from (1), these labelings will indeed
result in different BER.
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The natural approach to finding the labeling that minimizes
(1) is to make sure that the chosen labeling results in a d̄(k) that
grows slowly with k. To be more precise, we will address the
problem of finding the optimal labeling under the assumption
that the channel values P (k) decay sufficiently quick with k
to make the minimization of the BER equivalent to sequential
minimization of the components of the ADS. Such channels
will be called “well-behaved” in the rest of this text. Under this
assumption, considering two labelings a and b with ADS ā(k)
and b̄(k), respectively, the labeling a will result in a lower BER
according to (1) if and only if

ā(i) = b̄(j), 0 ≤ i < j

ā(j) < b̄(j)

for some integer j > 0. In this paper we will show that the
binary reflected Gray code (BRGC) is the unique labeling that
results in the slowest increasing ADS among all possible bit-
to-symbol mappings. For well-behaved channels this mapping
will be optimal in the sense of providing the lowest possible
value of the BER.

In a related work [11], the effect of the constellation labeling
on the constellation’s edge profile is evaluated. The aim of the
work in [11] is to provide a formal answer to what labelings are
sensible for using in trellis-coded modulation systems. How-
ever, the edge profile is related to the union bound on the BER
of the system using a particular constellation labeling, although
bit error probability is not the scope of [11] and consequently
not mentioned. The edge profile cannot be used to determine
the effect on the exact BER of an M -PSK system.

The outline of the paper is as follows. The necessary nomen-
clature and definitions are given in section II along with some
remarks that will prove useful. In section III, two recursive
construction methods for binary Gray labelings, reflection and
expansion, are introduced. The proof of the optimality of the
BRGC is given in section IV and section V concludes the dis-
cussion.

II. PRELIMINARIES

To simplify the discussion, we start by making some neces-
sary definitions. We will focus our discussion on binary, cyclic
labelings.

Definition 1—Binary Labeling: A binary labeling C of order
m ∈ Z

+ is a sequence of M = 2m distinct vectors (code-
words), C = (c0, c1, . . . , cM−1), where each ci ∈ {0, 1}m.

Definition 2—Binary Cyclic Gray Code: A binary, cyclic
Gray code of order m is a binary labeling with M = 2m code-
words, where adjacent codewords, including the first and the
last codeword, differ in only one of the m positions.

Note that we call the labeling with adjacent vectors differing
in a single position a Gray code since this is the ubiquitous
designation in the literature, although the term Gray labeling
would be more appropriate.

Throughout this paper, it will be implicit that all labelings
mentioned are binary. Also, since it is assumed here that the
Gray codes used for M -PSK constellation labeling are both
cyclic and binary, we will use the term Gray codes to denote
binary cyclic Gray codes.

Definition 3—Average Distance Spectrum: The aver-
age distance spectrum (ADS), d̄(k), of a binary labeling
C = (c0, c1, . . . , cM−1) is the average number of bit posi-
tions that differ in codewords separated by k steps, averaged
cyclically over all the codewords, i.e.,

d̄(k) � 1
M

m−1∑
i=0

M−1∑
l=0

∣∣[cl]i − [c(l+k) mod M ]i
∣∣ (2)

for all k ∈ Z, where the notation [cl]i denotes the bit in position
i of cl.

Remark: By definition, the ADS of a binary cyclic Gray
code satisfies d̄(0) = 0 and d̄(1) = 1.

Remark: As a result of the modulo-operator and the ab-
solute value function in (2), the ADS is an even function(
d̄(k) = d̄(−k)

)
and periodic with period M .

Definition 4—Superior and Equivalent ADS: The ADS d̄(k)
of a binary labeling C1 is said to be superior to the ADS h̄(k) of
a binary labeling C2 of the same order, if the following relations
hold for some integer j > 0,

d̄(i) = h̄(i), 0 ≤ i < j

d̄(j) < h̄(j).

If d̄(i) = h̄(i) for all integers i, C1 and C2 are said to have
equivalent ADS.

Definition 5—Optimality: The ADS of a binary labeling is
said to be optimal if it is superior or equivalent to the ADS of
any other binary labeling of the same order. An optimal labeling
is a labeling with an optimal ADS.

Definition 6—Trivial Operations: Trivial operations on a bi-
nary labeling are

• cyclic shifts and reflection of the codeword sequence,
• permutation of the codeword coordinates,
• binary inversion of any coordinates.
Remark: Trivial operations on a labeling does not affect the

ADS of the labeling.
In the the discussion to follow, it is sometimes convenient to

relate a binary labeling to a path on a hypercube.
Definition 7—The Hypercube Qm: The graph whose vertex-

set is the set of all binary strings of length m, with an edge
between two vertices if and only if they differ in exactly one
position, is called the m-dimensional hypercube Qm.

A binary cyclic Gray code of order m is formed by listing
the binary strings corresponding to the vertices of a cycle in
Qm that contains all vertices. Such a path is known as a Hamil-
tonian cycle [12, pp. 226]. It is known that there exist Hamilto-
nian cycles of all orders m ≥ 1, which is also evident from the
constructions in Section III.

III. RECURSIVE CONSTRUCTION OF BINARY LABELINGS

In this section, we provide two different methods of how to
recursively construct binary labelings of any order m from bi-
nary labelings of order m − 1. Both these methods show that
it is possible to construct binary cyclic Gray codes of any order
m ≥ 1.
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TABLE I
TWO DIFFERENT BINARY MAPPINGS a AND b, BOTH HAVING THE GRAY PROPERTY AND THEIR RESPECTIVE AVERAGE DISTANCE SPECTRUM ā(k) AND

b̄(k).

a b k ā(k) b̄(k)
0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 1 1 1
0 1 0 1 0 0 1 1 2 2 2
0 1 0 0 0 0 1 0 3 2.375 2
0 1 1 0 0 1 1 0 4 2.5 2
0 0 1 0 0 1 1 1 5 2.5 2.5
1 0 1 0 0 1 0 1 6 2.5 3
1 1 1 0 0 1 0 0 7 2.125 2.5
1 1 0 0 1 1 0 0 8 2 2
1 1 0 1 1 1 0 1 9 2.125 2.5
1 1 1 1 1 1 1 1 10 2.5 3
0 1 1 1 1 1 1 0 11 2.5 2.5
0 0 1 1 1 0 1 0 12 2.5 2
1 0 1 1 1 0 1 1 13 2.375 2
1 0 0 1 1 0 0 1 14 2 2
1 0 0 0 1 0 0 0 15 1 1

As was noted in the introduction, for a given order m, the
number of Gray codes that do not have equivalent ADS is usu-
ally very large. Only a fraction of these labelings can be gener-
ated from the recursive methods proposed below. However, we
show in this paper that it is possible to generate the optimum
labeling by these recursions.

A. Construction by labeling reflection

To generate a labeling of order m from a labeling of
order m − 1 by means of reflection we proceed as fol-
lows. To the labeling of order m − 1, denoted by Cm−1 =
(c0, c1, . . . , cM/2−1), we append a sequence of M/2 vectors
formed by repeating the codewords of Cm−1 in reverse order;
(c0, . . . , cM/2−1, cM/2−1, . . . , c0). To this new sequence of bi-
nary vectors, an extra coordinate is added to each vector from
the left. This extra coordinate is 0 for the first half of the M
vectors and 1 for the second half. The so obtained sequence
Cm consists of distinct codewords, so it is a labeling, and Cm is
said to be obtained by reflection of Cm−1. Labeling reflection
is possible for m ≥ 2, and illustrated in Figure 1.

If Cm−1 is a Gray code, then so is Cm, which proves that
Gray codes of any order exist. The originally proposed Gray
code [7], which is still the most commonly encountered Gray
code in communications, can be defined as follows.

Definition 8—Binary reflected Gray code: The labeling Gm

obtained by m − 1 recursive reflections of the trivial labeling
G1 = (0, 1) is the binary reflected Gray code of order m, for
any m ≥ 1.

B. Construction by labeling expansion

The second method of construction we will consider is
termed labeling expansion. To generate a labeling Cm

from a labeling Cm−1 by expansion we do the follow-
ing; from Cm−1 = (c0, c1, . . . , cM/2−1), repeat each
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Fig. 1. Construction of Gray code of order m = 3 from a Gray code of order
m = 2 by means of reflection.

codeword once to obtain a new sequence of M vectors
(c0, c0, c1, c1 . . . , cM/2−1, cM/2−1). Now, an extra coordinate
is added to each codeword from the right, taken in turn from
the vector (0, 1, 1, 0, 0, 1, 1, 0, . . . , 0, 1, 1, 0) of length M . La-
beling expansion is possible for m ≥ 2, and the procedure is
illustrated in Figure 2.

If Cm−1 is a Gray code, then so is Cm. By induction, it is
possible to verify that m− 1 recursive expansions of the trivial
labeling G1 = (0, 1) leads to a Gray code in which the code-
words corresponds to the same path on Qm as the BRGC.

IV. OPTIMALITY OF THE BINARY REFLECTED GRAY CODE

The main result of this paper is captured by the following
theorem, which will be proved in Section IV-B.
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Fig. 2. Construction of Gray code of order m = 3 from a Gray code of order
m = 2 by means of expansion.

Theorem 1—Optimality of BRGC for M -PSK: The binary
reflected Gray code of order m is the optimal labeling for
2m-PSK, in the sense of Definition 5. The labeling is unique
up to trivial operations.

A. The first components of the ADS

In order to prove Theorem 1 we will rely on the following
theorem, which relates the ADS of a labeling Cm−1 of order
m − 1 to the ADS of its expanded labeling Cm. The proof is
given in the Appendix.

Theorem 2—Recursion for ADS of an Expanded Labeling:
Let d̄m(k) for m ≥ 2 denote the ADS of the labeling Cm

obtained from expansion of a labeling Cm−1 having an ADS
d̄m−1(k). Then, for all integers k, the distance spectra of Cm

and Cm−1 satisfy

d̄m(4k) = d̄m−1(2k) (3)

d̄m(4k + 2) = d̄m−1(2k + 1) + 1 (4)

d̄m(2k + 1) =
1
2
d̄m−1(k) +

1
2
d̄m−1(k + 1) +

1
2

(5)

with d̄1(i) = 0 for even i and d̄1(i) = 1 for odd i.
The following two lemmas give the first components of the

ADS. They will be used in the proof of Lemma 5 and are proved
in the Appendix.

Lemma 3: For any Gray code Cm with m ≥ 3, the ADS
satisfies d̄(1) = 1, d̄(2) = 2, and d̄(3) ≥ 2.

Lemma 4: Expanding a Gray code of order m−1 ≥ 2 results
in a Gray code of order m having d̄(3) = 2. Conversely, all
Gray codes Cm with m ≥ 3 and d̄(3) = 2 can be constructed
by expanding a Gray code of order m−1, possibly followed by
trivial operations.

B. Proof of the optimality of BRGC for M -PSK

We now address the problem of which particular labeling will
give the slowest increasing ADS among all possible labelings,

or more precisely, which labeling has the optimum ADS in the
sense of Definition 5. According to the discussion in Section I,
a mapping with optimum ADS will asymptotically result in the
lowest possible BER for the M -PSK system. We will show in
the following that the binary reflected Gray code (BRGC) is the
unique labeling, up to trivial operations, with optimum ADS.

Lemma 5: If Cm−1 is an optimal labeling of order m − 1,
with m ≥ 2, then an optimal labeling Cm of order m is obtained
by expanding Cm−1. The optimal labeling Cm is unique up to
trivial operations.

Proof: The lemma is trivial for m = 2, since, up to trivial
operations, only one Gray code of order 2 exists. From Lemmas
3 and 4, any optimal labeling Cm for m ≥ 3 can be constructed
by expanding a labeling Cm−1 and applying trivial operations.
Hence, the ADS of Cm satisfies (3)–(5). Since, for all integers
i, d̄m(2i − 1) and d̄m(2i) are increasing functions of d̄m−1(i),
and independent of d̄m−1(j) for j > i, sequential minimization
of d̄m(1), d̄m(2), . . . is equivalent to sequential minimization of
d̄m−1(1), d̄m−1(2), . . .. Since Cm−1 is optimal by assumption,
this proves that Cm is also an optimal labeling. �

The proof of the main theorem now follows straightforwardly
from Lemma 5.

Proof of Theorem 1: The BRGC of order m can be ob-
tained by m − 1 recursive expansions of the trivial labeling
(0, 1). The proof of optimality for the BRGC is trivial for
m = 1. By induction and Lemma 5, optimality of the BRGC is
guaranteed for m ≥ 2. �

V. DISCUSSION AND CONCLUSION

We have addressed the problem of finding what constellation
labeling that will produce the lowest possible BER among all
possible labelings. The search is done under the assumption
of a well-behaved channel, for which the channel values P (k)
decay quickly enough to ensure that sequential minimization
of the components of the ADS yields the minimum BER. We
have shown that the best way of labeling an M -PSK constella-
tion under this assumption is by using the binary reflected Gray
code.

The relevance of this discussion and the proof can be verified
by consulting almost any widely spread textbook on communi-
cations in which the problem of calculating the average BER of
systems using M -PSK is treated. In most cases, the BRGC is
used, but referred to simply as ‘the Gray’ labeling and the fact
that a wealth of different Gray labelings exist and their impact
on the BER is often neglected. The proofs in this paper val-
idates the assumption of the BRGC for M -PSK constellation
labeling and allows for a more clear presentation of the topic of
BER calculation for this type of communication system.

APPENDIX

PROOFS OF THEOREMS AND LEMMAS

Proof of Theorem 2: The average distance spectrum
(ADS) of any binary periodic sequence b l with period P is de-
fined, for all integers k, as

δ̄(b, k) � 1
P

P−1∑
l=0

|bl − bl+k|
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Now, from bl we form another sequence ul =
(b−1, b−1, b0, b0, b1, b1, . . .), ul being simply an upsam-
pled version of bl, where each element of bl is repeated once.
The sequence ul is a binary, periodic sequence with period
P ′ = 2P , satisfying u2l = u2l+1 = bl, for all integers l. For
this new sequence we have

δ̄(u, k) =
1
P ′

P ′−1∑
l=0

|ul − ul+k| =
1

2P

2P−1∑
l=0

|ul − ul+k|

By rearranging terms in the second sum we obtain

δ̄(u, k) =
1

2P

(
P−1∑
l=0

|u2l − u2l+k| +
P−1∑
l=0

|u2l+1 − u2l+1+k|
)

For k = 2i, where i is an integer, we have

δ̄(u, 2i) =
1

2P

(
P−1∑
l=0

|u2l − u2l+2i| +
P−1∑
l=0

|u2l+1 − u2l+1+2i|
)

=
1

2P

(
P−1∑
l=0

|bl − bl+i| +
P−1∑
l=0

|bl − bl+i|
)

=
1

2P

(
P δ̄(b, i) + P δ̄(b, i)

)
= δ̄(b, i) (6)

and, similarly, for k = 2i + 1, we have

δ̄(u, 2i + 1) =
1

2P

(
P−1∑
l=0

|u2l − u2l+2i+1|

+
P−1∑
l=0

|u2l+1 − u2l+2i+2|
)

=
1

2P

(
P−1∑
l=0

|bl − bl+i| +
P−1∑
l=0

|bl − bl+i+1|
)

=
1

2P

(
P δ̄(b, i) + P δ̄(b, i + 1)

)
=

1
2
δ̄(b, i) +

1
2
δ̄(b, i + 1) (7)

Consider now the ADS d̄m(k) of a labeling Cm obtained by
expanding a labeling Cm−1 with ADS d̄m−1(k). Denoting the
contribution to the ADS from coordinate i of all codewords with

d̄(i)
m (k) � 1

M

M−1∑
l=0

∣∣[cl]i − [c(l+k) mod M ]i
∣∣, ∀k ∈ Z

we have from (2) for the ADS of Cm

d̄m(k) =
m−1∑
i=0

d̄(i)
m (k)

=
m−1∑
i=1

d̄(i)
m (k) + d̄(0)

m (k)

� ν̄m(k) + d̄(0)
m (k)

where i = 0 corresponds to the last coordinate in the code-
words. Now, we observe that the term ν̄m(k) is simply the

ADS of the list of binary strings that results from simply re-
peating each codeword of Cm−1 once. By noting that the mod-
ulo operator in (2) can be removed without affecting the result,
by instead considering the periodic repetition of the codewords,
we can use (6) and (7) above to obtain, for all integers k,

ν̄m(2k) = d̄m−1(k)

ν̄m(2k + 1) =
1
2
d̄m−1(k) +

1
2
d̄m−1(k + 1) (8)

To obtain the desired result, we note that the term d̄
(0)
m (k) is the

ADS of the (periodically repeated) sequence (0, 1, 1, 0). For
this sequence we have trivially, for all integers k,

d̄(0)
m (4k) = 0

d̄(0)
m (4k + 2) = 1

d̄(0)
m (2k + 1) = 1/2 (9)

Combining (8) and (9) we have

d̄m(4k) = d̄m−1(2k)
d̄m(4k + 2) = d̄m−1(2k + 1) + 1

d̄m(2k + 1) =
1
2
d̄m−1(k) +

1
2
d̄m−1(k + 1) +

1
2

which completes the proof of Theorem 2. �

Proof of Lemma 3: Since, for a Gray code Cm, all adja-
cent codewords differ in a single position, we have d̄m(1) = 1.
Codewords separated by two steps can either differ in 0 or 2
positions, and since all codewords are distinct, d̄m(2) = 2 for
m ≥ 2. To show d̄m(3) ≥ 2 for m ≥ 3, we start by rewriting
the equation for the ADS given by (2) as

d̄(k) =
1
M

M−1∑
l=0

m−1∑
i=0

∣∣[cl]i − [c(l+k) mod M ]i
∣∣

=
1
M

M−1∑
l=0

d(l, k), ∀k ∈ Z (10)

where d(l, k) is the number of bits that differ between c l and
c(l+k) mod M . From this we show that no two consecutive
terms d(l, 3) and d(l + 1, 3) in (10) can both be 1 for m ≥ 3.
To see this, consider any sequence of five consecutive code-
words, which, without loss of generality, can be taken to be
(c0, c1, c2, c3, c4). Since c1 and c3 differ in two positions,
there are exactly two points in Qm that are adjacent to both
c1 and c3. One of these points is c2; the other may be c0 or c4,
but not both. Assume that |c0 − c3| = 1, so that d(0, 3) = 1.
Since c1 and c4 are separated by an odd number of steps this
implies that |c1 − c4| ≥ 3, so that necessarily d̄(3) ≥ 2. �

Proof of Lemma 4: The first statement of the lemma fol-
lows immediately from (5).

For the second statement of the lemma, we know from
the proof of Lemma 3 that, for any Gray code of order
m ≥ 3, the sequence d(l, 3) for l = 0, 1, . . ., consists
of odd positive integers such that no two consecutive val-
ues are both 1. Hence, the only sequence that results in
d̄(3) = 2 is (1, 3, 1, 3, . . .) (or (3, 1, 3, 1, . . .), which will not
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be further considered, since it corresponds simply to a cyclic
shift of the codewords). This means that the codeword pairs
{c0, c3}, {c2, c5}, {c4, c7} . . . are adjacent vertices of Qm,
while the codeword pairs {c1, c4}, {c3, c6}, {c5, c8}, . . ., dif-
fer in three coordinates. Since |ci − ci+3| = 1 for any even
0 ≤ i ≤ M − 4, (ci, ci+1, ci+2, ci+3) forms a square in Qm.
Hence, ci+1 − ci and ci+2 − ci+3 are equal, or

∆ � c1 − c0 = c2 − c3 = . . . = cM−2 − cM−1.

The difference vector ∆ has only one nonzero position, say, po-
sition j. By performing trivial operations on Cm we can obtain
a code C ′

m for which

∆′ � c′1 − c′0 = c′2 − c′3 = . . . = c′M−2 − c′M−1 = 0 . . . 01,

without affecting its ADS. We now partition the codewords of
C′

m according to the value of rightmost bit. This creates two
subsets

(c′0, c
′
3, c

′
4, c

′
7, c

′
8, . . . , c

′
M−1)

and
(c′1, c

′
2, c

′
5, c

′
6, c

′
9, . . . , c

′
M−2),

which represent two cycles on Qm. By picking any of the two
subsets and puncturing the rightmost bit in this subset (which
geometrically corresponds to a projection orthogonal to ∆ ′, so
that the two subsets become identical after puncturing) we gen-
erate a cyclic Gray code of order m−1. It is easily verified that
expanding this labeling using the procedure given in Section
III-B yields C ′

m. �
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