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Wireless TCP system

Several cascaded feedback loops which interact.
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Link layer: Power control and ARQ [Sampath et al, 1997; Khan et al,

2000; Gunnarsson and Gustafsson, 2002].

Transport layer: TCP over general unreliable links [DeSimone et al,

1993; Mascolo et al; TCP Westwood].

This work: Models both link and transport layer.
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Power control

• Outer loop adjusts SIRref to keep BLER at 10%.

• Inner loop adjusts transmission power to track SIRref.
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Markov chain driven by block errors.
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Stationary power control state

Markov transition probabilities depend on the power control step size ∆,

and the radio channel, where P (block error) = f(SIRref).
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Link-layer retransmissions

Link mechanism eliminates block errors, but adds random delays.

Radio blocks:
1 2 3 4 2 5

Retransmit

time

• Delay depends on the block loss process,

and on the retransmission scheduling.

• Block lost each time the Markov chain

makes an upward step.
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IP properties

IP delay depends on power control and link retransmission scheme.

IP input: 1 2d1 d2

Radio blocks: 1 1 1 2 2 2

IP output: 1 2

Prob. d = 0 1 2 3 4 5 6

n = 1 90.0% 0.00% 0.00% 9.35% 0.00% 0.00% 0.63%

2 80.6% 0.00% 8.77% 9.33% 0.00% 0.63% 0.63%

3 71.8% 8.19% 8.75% 9.31% 0.63% 0.63% 0.63%
...

...

7 42.7% 29.73% 13.12% 9.57% 3.12% 0.89% 0.64%
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Spurious TCP timeouts

In TCP, timeouts are used for detecting se-

vere congestion.

PTO = P (RTT > E{RTT}+ 4σ{RTT})

Depends on the delay distribution:

• Uniform distribution: PTO = 0

• Normal distribution: PTO ≈ 0.006%

• General distribution: PTO ≤ 6.25%

• Wireless link: 0.2% . PTO . 1%

PTO for three power control step sizes
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Performance degradation
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MTU = 960 or 1500 bytes

• Available bandwidth (excluding losses): 42 Kbyte/s

• Ideal TCP throughput: 32 Kbyte/s

• Actual TCP throughput: 26.5–30.5 Kbyte/s
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Layer interaction

TCP

IP

Link

SIR
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TCP congestion control

Retransmission of damaged RBs

Outer loop of power control

Inner loop of power control

• Link properties shine through to transport layers.

• Link layer coding and retransmission is key to layer decoupling.

• Engineering freedom in link layer.
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Conclusions
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• Four cascaded feedback control loops. Undesired interaction.

• Performance degradation in the case of an unsaturated link.

• One approach to improved performance is to decouple layers:

Engineer link layer to get a more TCP-friendly delay distribution.
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