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\ Abstract and Outline '

This presentation gives a brief review of regularized least squares. Some
motivations and interpretations are given, and methods for selecting the
regularization parameter are summarized. Outline:

e Linear regression using least-squares
e Regularized (Tikhonov) least-squares
e Selection of the regularization parameter
e | east-squares with unknown noise color

e Weighted |least-squares with regularization

e Hyper-parameter estimation

. /
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‘ Linear Regression Problem I

Measured signal y (/V x 1) contains signal and noise:
y=X+e

Signal part modeled by basis function expansion:
X = Zaksk — [a1,...,a,]s=As, n < N.
k=1

We assume noise e is zero-mean white, Fee*] = oI (colored noise
considered later).

Given y we wish to:

e Determine signal amplitudes s - detection/classification

\0 Reconstruct x - filtering/smoothing/prediction

\

WIP/Beats Workshop 2004

Slide 3



‘ Signal Processing Application I \

Wireless channel prediction using sinusoidal modeling:

n

y(t) = 3 sk’ +e(t)

k=1
The vector of observationsfort =0,1,...,N —11s

n

y=[y(0),...y(N=D]" =) a(wi)ss +e=As+e
k=1

wherea(w) = [1,e7, ..., el N=D]T jsthe DFT vector.

Assume frequencies w;. known (or accurately estimated). The task isto
estimate amplitudes s and then predict future values of y(¢)!

\Difficulty: wiStend to be closely spaced = A isill-conditioned! /
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‘ Linear Regression I

L east-squar es solution:

S;s = argmin ||y — Ag||?
S

L eads to
Sis = (A*A)IA*y =Aly

Xrs = A8, =AA"A) ATy =TIy

Motivations:
e S, 5 isthe BLUE (Best Linear Unbiased Estimator)

e If eisGaussian distributed, S;, ¢ iIsalso ML

\So what is the problem? /

WIP/Beats Workshop 2004

Slide 5



CHALMERS

‘ Least-Squares Performance I

Amplitude estimation performance

\

Inserty into Sy s:
Srs = (A*A) " 'A*(As+e)
which gives
MSEps,s = E|(515 — 9) (815 — 9)*] = 02(A*A) !
Potential troubleif A ill-conditioned; A*A nearly singular!
LettheSVDof AbeA =5, _,u,o,.vi =UXV". Then,
MSEps s = 0?VE~2V*

. /
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‘ Least-Squares Performance I

Signal estimation (prediction) performance

The reconstructed signal is

Xrs =AS g =X+1IIa€

MSELS,:C — E[()A(LS — X)()A(LS — X)*] = O'SHA
We can define an average signal estimation error:

N 1 1
MSEps.. = NE[HXLS —x||?] = NUQTr{HA} S

\Works fineaslong asn < N, independent of A and s!
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‘ Regularization I \

Regularization is away to avoid ill-conditioning, both for numerical and
statistical reasons!

Motivation 1: Ill-conditioning leads to large ||s||. Add a penalty term:
Sreg = argmin |y — Asl|* + |||
where \ > 0 isthe regularization parameter. The solutionis
Sreg = (A*A + AI)"!A*y = R 'AYy

Motivation 2: Model s as zero-mean random with E[ss*] = o2I. Then,
LMMSE (Linear Minimum Mean Square Error Estimate) of sis

éReg — RglA*y

Qvith)\zag/qf:SNR_l. /
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‘ Regularized LS Performance I \

Amplitude estimation perfor mance

We first compute the average performance, assuming s is random:
Sreg = Ry 'A*(As+e) =s— AR, 's+ R, "A%e
Thus, with A\ = 0% /02 we have
MSEReys = MNo?R*+0°R,'A*ARY]

_ 2p-1
= o.R,

In terms of the SVD of A = UXV™:

MSEReys = o2V (X2 + M) ~HV*

. /
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‘ Regularized LS Performance I \

Signal estimation (prediction) performance

MSERey» = 02AR, A
The average signal reconstruction error is
AT 1, —1p*
MSEReg » = N%TY{ARA A"}

In terms of the singular values {0}, }7_, this becomes

n

9
0} —

k

)\—M LS.z —

— 0.
MSEReg,x == —
N — O',% +

Wrs

k=1

=]

Interpretation: If a% of the singular values obey o7 < X\ = 02 /02, then
\he MSE isreduced by (at least) a%! /
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Performance for a Fixed
Amplitude

What can we say for afixed s? LS performance independent of s! For
regularized LS.

MSEpgey.ss = NV’Ry sSR! + 0?RyTAARY!
Easy to show that
o*RyATAR T < o*(ATA) !
and for afixed value of A wefind

o Forsmal ||s||: MSEpcy.ss < MSELs 4s

\. For |arge ||SH MSEReg,s|s > MSELS,S|S
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‘ Optimality I

We conclude that no linear estimator is uniformly optimal!

Easy to see that
OMSEReg s
O\ N—0

so regularization is always better if A\ is"small enough".

<0

From Stein’s classical result (A =1, n = N) we know that LS is not
admissible, there exist other estimators that are uniformly (for all s) better!

. /
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Choice of Regularization
Parameter

It seems like a good ideato determine )\ from datal A direct MSE
optimization would be:

1. Usea'reasonable" \ and obtain preliminary estimates 52 and §

2. Choose "optima™ A by minimizing M.SERcg sjs Of MSERcg 2|5,
evaluated at 6 and S

3. Compute improved S and x
Unfortunately, it does not work; A will tend to O!

Popular methods that work:
e Cross-validation techniques

\o Hyper-parameter estimation (ML or Bayesian)
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| Cross-Validation Techniques I

The Jack-knife (leave-one-out): compute Z, () using y;, | # k. Determine
A by minimizing

CV(N) =) lyr — 2V
k=1

Variation: Leave K out, K > 1
Generalized Cross-Validation [Golub and Heath, 1979]: select A to
minimize

GCV()\) — Hy_)A(Reg()\)H
Tr{l — AR 'A*}

This can be interpreted as |eave-one-out applied to transformed datal

. /
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‘ Hyper-Parameter Estimation I \

An interesting ideaisto estimate A using e.g. ML. Thisis possible only if
the marginalized likelihood w.r.t. sis used. Galatsanos and Katsaggel os
(1992) used the Gaussian prior:

sc N(0,\/d?l)

The likelihood function for o2 and ) is now

£(ys 02\ = / £ (Y18, 0% A fa(S 0%, \)ds

and the maximizing arguments yield 62 and .

Fortunately, the integral can be solved in closed form. It isalso possible to
\find &2 intermsof \, but \ requires a scalar search! /
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‘ Hyper-Parameter Estimation I

The resulting estimates are

A 1 * — *
62 = S ( — AR 'A%y

and
A = arg m)%n ML(\)

where

1
ML(\) =log ly*(I — AR 'A% )y| — 7 log I — AR 'A%

(Another possibility: assign prior on A and marginalize w.r.t. \ instead)

.

\

/
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Example: Mean Square Error
Performance

E||8(\) — §||*/N and E||X(\) — X||? /N vs X for "representative” scenario:

x 1072 Average amplitude (s) estimation error
T T

4

x107° Average signal (x) estimation error
T T

1.45
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Regularization parameter Regularization parameter

\_ /
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Example: Histograms I

Histograms for Agcov (left) and Ay, 7 (right)

Generalized Cross-Validation Maximum Likelihood
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‘ Example: "Conclusions" I

In this example:
e Both ML and GCV yield )\ that reduce the MSE over LS

e ML "estimates' have lower variance, and are clustered around the value
that miminizes M SE ey »|s

e GCV tendsto chose )\ "too small"

. /
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\ Unknown Noise Color I

A related problem (n = 1 for smplicity):
y=X+e=as+e
where E'lee”| = Q isunknown. Noise color estimated from training data:
Z = z(0),2(1),...,z(M — 1)]
with E|z(k)z*(1)] = Q dx.

Weighted L east-Squares (WLS) with Certainty Equivalence (CE):

. 1
= —77"
< M
.1 A —1

(a'Q a 'a'Q 'y

(VAN
I

\Poor performance if M "too small", and even impossible if M < N!

\
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‘ Signal Processing Application I

Space-Time Adaptive Processing (STAP) in radar: x contains backscattered
signal from moving target, received at K antennas during L pulses:

a=all)®alw) (Nx1),N=KL
Here, 0 isthe Direction-of-Arrival and w the target Doppler frequency.

Major noise source: ground clutter — highly structured space-time color!

Noise color estimated using secondary data at other carrier frequencies
and/or range bins. Usually not enough datal

. /
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\I\/Iaximum Likelihood Estimation.

If eand z(k) are N'(0, Q), thejoint MLE isidentical to WLS-CE:

- 1
- 77
Q M
R P BN
§ = (@Q a'aQ 'y

" Bayesian" likelihood: assign prior Q'

/fle (Yls, Q

Then, the MLE of the signal amplitudeis

c fo(Q ") and marginalize:

fo(Q™1)dQ™"

SML = argmax fy(Y;s)

.

\
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\ Choice of Prior Distribution I

Non-informative priors add as little information as possible and are
parameterization invariant!

Jeffrey’sprior
fo(Q7Y) o [FIM[Y/2 o [Q7HH

(FIM isthe Fisner Information Matrix)
Bad luck: using Jeffrey’s prior also leadsto WLS-CE:

R oa—l 4 a1
§=@Q a 'aQ vy

Reference prior ismore "non-informative" than Jeffrey’s, but does not
\allowanexplicitsolution (MCMC sampling)! /
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‘ Regularization Prior I

Regularization has been found to work well in practice. Use WL S with
Q, = L 77 + Al
AM

The problem isto choose !

The above is like saying we have extra training data with sample covariance
Al. We can as well move thisto the prior for Q*:

fo(Q,N) < Q7 Fetr{—Q7'A}

Interpreting this as aregularization prior we can determine A\ by
hyper-parameter estimation!

/
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‘ Hyperparameter Estimation I

Using the regularization prior resultsin

X B P
s\ = (@Q, a 'a'Q, vy
A 1
= —Z7Z7ZF + )\l
Q. i +

and we can estimate the hyper-parameter by

AL = arg max Fu(Y;8(N), \)

where f,(y; 5(\), A) isgiven in closed form.
(Itisalso possible to assign prior £ () and integrate again!)

. /
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‘ Concluding Remarks I \

e Linear regression looks ssimple, but fortunately we can make it quite
complicated!

e Regularization is very useful to deal both with numerical problems and
sensitivity to noise and model imperfections

e Theregularization parameter A can be set from prior info, or from data
e Data-driven methods for selecting A generally work well
e Our example favors ML over GCV but no generality is claimed

e Regularized WLS can be interpreted using a prior distribution of the
noise covariance

\o Regularization prior allows selecting A by hyper-parameter esti mation!/
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