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Abstract and Outline

This presentation gives a brief review of regularized least squares. Some

motivations and interpretations are given, and methods for selecting the

regularization parameter are summarized. Outline:

• Linear regression using least-squares

• Regularized (Tikhonov) least-squares

• Selection of the regularization parameter

• Least-squares with unknown noise color

• Weighted least-squares with regularization

• Hyper-parameter estimation
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Linear Regression Problem

Measured signal y (N × 1) contains signal and noise:

y = x + e

Signal part modeled by basis function expansion:

x =
n∑

k=1

aksk = [a1, . . . , an]s = As , n ≤ N.

We assume noise e is zero-mean white, E[ee∗] = σ2
eI (colored noise

considered later).

Given y we wish to:

• Determine signal amplitudes s - detection/classification

• Reconstruct x - filtering/smoothing/prediction
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Signal Processing Application

Wireless channel prediction using sinusoidal modeling:

y(t) =
n∑

k=1

skejωkt + e(t)

The vector of observations for t = 0, 1, . . . , N − 1 is

y = [y(0), . . . , y(N − 1)]T =
n∑

k=1

a(ωk)sk + e = As + e

where a(ω) = [1, ejω, . . . , ej(N−1)ω]T is the DFT vector.

Assume frequencies ωk known (or accurately estimated). The task is to

estimate amplitudes s and then predict future values of y(t)!

Difficulty: ωks tend to be closely spaced ⇒ A is ill-conditioned!
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Linear Regression

Least-squares solution:

ŝLS = arg min
s

‖y − As‖2

Leads to

ŝLS = (A∗A)−1A∗y = A†y

x̂LS = AŝLS = A(A∗A)−1A∗y = ΠAy

Motivations:

• ŝLS is the BLUE (Best Linear Unbiased Estimator)

• If e is Gaussian distributed, ŝLS is also ML

So what is the problem?
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Least-Squares Performance

Amplitude estimation performance

Insert y into ŝLS :

ŝLS = (A∗A)−1A∗(As + e)

which gives

MSELS,s = E[(ŝLS − s)(ŝLS − s)∗] = σ2
e(A∗A)−1

Potential trouble if A ill-conditioned; A∗A nearly singular!

Let the SVD of A be A =
∑n

k=1 ukσkv∗
k = UΣV∗. Then,

MSELS,s = σ2
eVΣ−2V∗
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Least-Squares Performance

Signal estimation (prediction) performance

The reconstructed signal is

x̂LS = AŝLS = x + ΠAe

so

MSELS,x = E[(x̂LS − x)(x̂LS − x)∗] = σ2
eΠA

We can define an average signal estimation error:

MSELS,x =
1
N

E[‖x̂LS − x‖2] =
1
N

σ2
eTr{ΠA} = σ2

e

n

N

Works fine as long as n � N , independent of A and s!
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Regularization

Regularization is a way to avoid ill-conditioning, both for numerical and
statistical reasons!

Motivation 1: Ill-conditioning leads to large ‖s‖. Add a penalty term:

ŝReg = arg min
s

‖y − As‖2 + λ‖s‖2

where λ > 0 is the regularization parameter. The solution is

ŝReg = (A∗A + λI)−1A∗y = R−1
λ A∗y

Motivation 2: Model s as zero-mean random with E[ss∗] = σ2
sI. Then,

LMMSE (Linear Minimum Mean Square Error Estimate) of s is

ŝReg = R−1
λ A∗y

with λ = σ2
e/σ2

s = SNR−1.
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Regularized LS Performance

Amplitude estimation performance

We first compute the average performance, assuming s is random:

ŝReg = R−1
λ A∗(As + e) = s − λR−1

λ s + R−1
λ A∗e

Thus, with λ = σ2
e/σ2

s we have

MSEReg,s = λ2σ2
sR−2

λ + σ2
eR−1

λ A∗AR−1
λ

= σ2
eR−1

λ

In terms of the SVD of A = UΣV∗:

MSEReg,s = σ2
eV(Σ2 + λI)−1V∗
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Regularized LS Performance

Signal estimation (prediction) performance

MSEReg,x = σ2
eAR−1

λ A∗

The average signal reconstruction error is

MSEReg,x =
1
N

σ2
eTr{AR−1

λ A∗}

In terms of the singular values {σk}n
k=1 this becomes

MSEReg,x =
σ2

e

N

n∑
k=1

σ2
k

σ2
k + λ

= MSELS,x − σ2
e

N

n∑
k=1

λ

σ2
k + λ

Interpretation: If α% of the singular values obey σ2
k � λ = σ2

e/σ2
s , then

the MSE is reduced by (at least) α%!
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Performance for a Fixed
Amplitude

What can we say for a fixed s? LS performance independent of s! For

regularized LS:

MSEReg,s|s = λ2R−1
λ ss∗R−1

λ + σ2R−1
λ A∗AR−1

λ

Easy to show that

σ2R−1
λ A∗AR−1

λ ≤ σ2(A∗A)−1

and for a fixed value of λ we find

• For small ‖s‖: MSEReg,s|s < MSELS,s|s

• For large ‖s‖: MSEReg,s|s > MSELS,s|s
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Optimality

We conclude that no linear estimator is uniformly optimal!

Easy to see that
∂MSEReg,s|s

∂λ

∣∣∣∣
λ=0

< 0

so regularization is always better if λ is "small enough".

From Stein’s classical result (A = I, n = N ) we know that LS is not

admissible, there exist other estimators that are uniformly (for all s) better!
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Choice of Regularization
Parameter

It seems like a good idea to determine λ from data! A direct MSE
optimization would be:

1. Use a "reasonable" λ and obtain preliminary estimates σ̂2 and ŝ

2. Choose "optimal" λ by minimizing MSEReg,s|s or MSEReg,x|s,
evaluated at σ̂ and ŝ

3. Compute improved ŝ and x̂

Unfortunately, it does not work; λ will tend to 0!

Popular methods that work:

• Cross-validation techniques

• Hyper-parameter estimation (ML or Bayesian)
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Cross-Validation Techniques

The Jack-knife (leave-one-out): compute ˆ̂xk(λ) using yl, l �= k. Determine

λ by minimizing

CV (λ) =
N∑

k=1

|yk − ˆ̂xk(λ)|2

Variation: Leave K out, K > 1

Generalized Cross-Validation [Golub and Heath, 1979]: select λ to

minimize

GCV (λ) =
‖y − x̂Reg(λ)‖

Tr{I − AR−1
λ A∗}

This can be interpreted as leave-one-out applied to transformed data!
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Hyper-Parameter Estimation

An interesting idea is to estimate λ using e.g. ML. This is possible only if

the marginalized likelihood w.r.t. s is used. Galatsanos and Katsaggelos

(1992) used the Gaussian prior:

s ∈ N (0, λ/σ2I)

The likelihood function for σ2 and λ is now

fy(y; σ2, λ) =
∫

s

fy|s(y|s, σ2, λ)fs(s; σ2, λ)ds

and the maximizing arguments yield σ̂2 and λ̂.

Fortunately, the integral can be solved in closed form. It is also possible to

find σ̂2 in terms of λ, but λ̂ requires a scalar search!
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Hyper-Parameter Estimation

The resulting estimates are

σ̂2
e =

1
N

y∗(I − AR−1
λ A∗)y

and

λ̂ = arg min
λ

ML(λ)

where

ML(λ) = log |y∗(I − AR−1
λ A∗)y| − 1

N
log |I − AR−1

λ A∗|

(Another possibility: assign prior on λ and marginalize w.r.t. λ instead)
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Example: Mean Square Error
Performance

E‖ŝ(λ) − s‖2/N and E‖x̂(λ) − x‖2/N vs λ for "representative" scenario:
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Example: Histograms

Histograms for λ̂GCV (left) and λ̂ML (right)
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Example: "Conclusions"

In this example:

• Both ML and GCV yield λ̂ that reduce the MSE over LS

• ML "estimates" have lower variance, and are clustered around the value

that miminizes MSEReg,x|s

• GCV tends to chose λ "too small"
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Unknown Noise Color

A related problem (n = 1 for simplicity):

y = x + e = a s + e

where E[ee∗] = Q is unknown. Noise color estimated from training data:

Z = [z(0), z(1), . . . , z(M − 1)]

with E[z(k)z∗(l)] = Q δk,l.

Weighted Least-Squares (WLS) with Certainty Equivalence (CE):

Q̂ =
1
M

ZZ∗

ŝ = (a∗Q̂
−1

a)−1a∗Q̂
−1

y

Poor performance if M "too small", and even impossible if M < N !
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Signal Processing Application

Space-Time Adaptive Processing (STAP) in radar: x contains backscattered

signal from moving target, received at K antennas during L pulses:

a = a(θ) ⊗ a(ω) (N × 1) , N = KL

Here, θ is the Direction-of-Arrival and ω the target Doppler frequency.

Major noise source: ground clutter – highly structured space-time color!

Noise color estimated using secondary data at other carrier frequencies

and/or range bins. Usually not enough data!
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Maximum Likelihood Estimation

If e and z(k) are N (0, Q), the joint MLE is identical to WLS-CE:

Q̂ =
1
M

ZZ∗

ŝ = (a∗Q̂
−1

a)−1a∗Q̂
−1

y

"Bayesian" likelihood: assign prior Q−1 ∈ fQ(Q−1) and marginalize:

fy(y; s) =
∫

Q

fy|Q(y|s, Q−1)fQ(Q−1)dQ−1

Then, the MLE of the signal amplitude is

ŝML = arg max
s

fy(y; s)
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Choice of Prior Distribution

Non-informative priors add as little information as possible and are

parameterization invariant!

Jeffrey’s prior

fQ(Q−1) ∝ |FIM|1/2 ∝ |Q−1|−N

(FIM is the Fisher Information Matrix)

Bad luck: using Jeffrey’s prior also leads to WLS-CE:

ŝ = (a∗Q̂
−1

a)−1a∗Q̂
−1

y

Reference prior is more "non-informative" than Jeffrey’s, but does not

allow an explicit solution (MCMC sampling)!
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Regularization Prior

Regularization has been found to work well in practice. Use WLS with

Q̂λ =
1
M

ZZ∗ + λI

The problem is to choose λ!

The above is like saying we have extra training data with sample covariance

λI. We can as well move this to the prior for Q−1:

fQ(Q, λ) ∝ |Q−1|−Ketr{−Q−1λ}

Interpreting this as a regularization prior we can determine λ by

hyper-parameter estimation!
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Hyperparameter Estimation

Using the regularization prior results in

ŝ(λ) = (a∗Q̂
−1

λ a)−1a∗Q̂
−1

λ y

Q̂λ =
1
M

ZZ∗ + λI

and we can estimate the hyper-parameter by

λ̂ML = arg max
λ

fy(y; ŝ(λ), λ)

where fy(y; ŝ(λ), λ) is given in closed form.

(It is also possible to assign prior fλ(λ) and integrate again!)
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Concluding Remarks

• Linear regression looks simple, but fortunately we can make it quite

complicated!

• Regularization is very useful to deal both with numerical problems and

sensitivity to noise and model imperfections

• The regularization parameter λ can be set from prior info, or from data

• Data-driven methods for selecting λ generally work well

• Our example favors ML over GCV but no generality is claimed

• Regularized WLS can be interpreted using a prior distribution of the

noise covariance

• Regularization prior allows selecting λ by hyper-parameter estimation!
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