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‘I\/Iain points:l

1. Adaptive OFDM downlink designed for 2 GHz.

2. Evaluation of the downlink;
e Effect of prediction inaccuracy
e The feedback control bandwidth demand

e Estimate of total overhead and losses
3. Preliminary study of system capacity

4. Research challenges for a corresponding uplink.

-

~




WIP System Presentation, Aug. 2004

/ ‘ Challenges: I \

e Can the channel variability be exploited when the bandwidth is large?

Strategy: allocate time-frequency bins (exclusively) in the downlink, OFDM.
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e High data rate in a frequency selective channel (OFDM attractive in downlink).
e Adaptation to fast fading could require unrealistic feedback control data rates.
e Slow fading may give problems with QoS.

e Channel prediction required, due to delay in the feedback loop

\ (design aim-point 100 km/h). /
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/ ‘An adaptive OFDI\/I-downIinkI \

Assume FDD and a slotted OFDM-downlink in one sector.

The bandwidth B is used by K active users (terminals).

Partitioned into time-frequency bins.

e In time slot 7, all active terminals predict the SINR at time slot

7 + 3 for all time-frequency bins.

e Based on these predictions, the terminals suggest appropriate
modulation levels for all bins of time slot 7 + 3.

e Scheduling is then performed (centralized for all sectors at site).

e Allocation decisions for time slot 7 + 3 are broadcast.

K (Modulation rates as suggested by the appointed terminals.) /
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/‘ Design of downlink in cellular FDD-system at ZGHz:\I

(Studied together with T. Ottosson, A. Ahlén and A. Svensson, Paper 2, VTCO03-Fall)

e OFDM, with 100 us symbols, 11 s cyclic prefix, 10 kHz subcarriers.

e Time-frequency bins of 0.666 ms x 200 kHz, or 6 symbols x 20 carriers (120

symbols) are allocated exclusively to users.

e Adaptive modulation, with 1-8 bits per symbol (BPSK - 256 QAM), possibly
with trellis-coded modulation. 4 pilots och 8 downlink control symbols per bin

always use 4-QAM. These are used for the channel estimation.
e Each user predicts the whole bandwidth three slots (2 ms) ahead.

e Appropriate modulation levels (based on the SINR predictions) are reported by

all active users for all bins via the uplink.

® A scheduler, located at the base station allocates the resources, and the slot,
\ with 25 bins, is transmitted. Fast link-level retransmission =~ 2 ms is utilized/
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/ ‘Outline of downlink in cellular FDD-system: I \
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Figure 1: One of the time-frequency bins, containing 20 subcarriers with 6 symbols each.

Known 4-QAM pilot symbols (black) and 4-QAM downlink control symbols (rings).

Channel estimation performed by low-complexity Kalman filtering (Wiener-LMS-like

algorithms) at pilot and control locations. (Paper 3, VTC-Fall 2003).

e Coherent detection of payload symbols. 2D curve fitting within bins.

6

v Noise reduced inputs to long-range predictor (performed in time domain). /
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/ ‘Channel power prediction I \
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Predict the channel power (and interference power) over a horizon corresponding to
KO.S wavelengths (=2 ms at 2 GHz carrier and 100 km/h terminal velocity.) /
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‘ Power prediction algorithms I

Result of work with Torbjorn Ekman and Anders Ahlén (e.g. TE PhD thesis)

e The significant taps of the impulse response are predicted, based
on previous tap estimates. (Prediction in the frequency domain of

the OFDM channels seems to perform similarly.)

e Best performance attained by a bias-compensated squared FIR

tap-estimate.

e Noise reduction of the regressors (the previous tap estimates)
should be done with care!

e Do not use a predictor with too many adjustable coefficients.

N /
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/ ‘ Prediction of tap powers, 41 channelsl \

Predictability for different horizons and different regressor quality:

Power prediction of measured taps
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Median of the power prediction NMSE as function of the prediction horizon for cases

with different estimation error power (CEER) on the regressors.

Bias compensated quadratic predictor with 8 coefficients. Smoothed regressors.

Qedictability increases with decreasing estimation errors (noise) on regressors. /
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/ ‘ Predictability of the channel power I \

The performance of the predictor is indicated by the normalized power prediction
error (NMSE)
2 n| = An|n—L
2 _ Bllgnl® = brjn—r|”
’ E|g,|*

o 012, = (0.001 : Essentially perfect prediction.
o 012) = 0.01 : Attainable for L = 0.1 wavelengths.
o 012) = 0.1 : Attainable for L = 0.33 wavelengths (=2 ms at 2 GHz, 100 km/h).
o 012) = 0.5 : Obtained when P, 1, = E|g,|? for Rayleigh fading.
Interesting property:

The relative standard deviation of the prediction error o, (ﬁn|n_L)/1§n|n_L

Increases when ﬁn|n_L decreases, i.e. when we predict into a fading dip.

N /
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‘ Link adaptation I

Optimize number of bits within correct bins (link-level frames):

format k; that results in the highest spectral efficiency
77(;)\/) — Gpo kz(l — Pf,z(’?)) bits/s/Hz .

Pri() =1— (1= P ()",
where P, ; is symbol error rate for uncoded M-QAM.
Overhead factor G, = 100/111 is due to the cyclic prefix
G, = 108/120 is due to the 12 pilots and control symbols per bin.

-

Based on the predicted SINR 4, the terminal selects the modulation

~

(1)
(2)

/
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/ ‘I\/Iodulation rate limits for uncoded M-QAM: I \

Table 1: Optimized switching levels -y,

.

Modulation k;  ~y; (dB)

o) BPSK 1 — 00
1 4-QAM 2 8.701
2 8-PSK 3 14.58
3 16-QAM 4 16.84
4 32 Cross-QAM ) 20.46
5 64-QAM 6 23.59
6 128 Cross-QAM 7 26.86
7 256-QAM 8 29.94

12
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/ ‘Scheduling I

JFrom wired network
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e Buffering per flow (different users and traffic classes.)

e Channel quality weighted against priority, QoS-demands.

Ko Link level retransmission is given highest priority.

~

/
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~

/Simple scheduling principles for theoretical evaluation

(These strategies do not take buffer levels and priorities into account.)

Ofusersu = 1... K, select according to

® max, 7y,: Maximal throughput.
Neglects users far from base station.

® Mmax, %/%: Highest SINR relative to own average.
® max, 7,/average_throughput (Proportional Fair Scheduling)

Simple algorithms appropriate for more realistic cases:
coming PhD thesis by Nilo Casimiro Ericsson.

Bayesian methods that take uncertain buffer inflows into account,

Kpresented iIn coming PhD thesis by Mathias Johansson. /

14



WIP System Presentation, Aug. 2004

/‘ Spectral efficiency vs. SNIR with prediction errors: \I
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Average capacity as a function of the average SINR, equal for all users, with X = 1 active
users (lower curves) and K = 20 terminals (upper curves with rings).

w)t much loss for a power prediction NMSE 0.1, compared to perfect prediction. /
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/ ‘Spectral efficiency with prediction errors: I \
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Spectral efficiency for average SINR 16B (same for all) when selecting the highest SINR out of K
independent Rayleigh fading users. Solid: Perfect prediction. Dash-dotted: prediction NMSE 0.1, with
optimized rate limits. Dashed: prediction NMSE with rate limits adjusted for perfect prediction. Lower

dash-dotted: NMSE 0.495. Conclusions:

1. Rate limits optimized for perfect prediction are adequate.

kNot much multiuser diversity is lost at prediction NMSE 0.1. (We loose everything at NMSE O.SV

16
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‘Summary of estimated losses: I

Bits/s/Hz/sector, when all users have equal SNR 16 dB, and loss factors:

~

K=1 K=2 K=5 K=10 K=20
|deal case, see VTCO03-1 2492 3195 3.886 4.262 4.561
Loss due to variability with bin: 0.87 0.92 0.95 0.96 0.973
Loss due to pred. error NMSE 0.1: 0.878 0.874 0.898 0.916 0.926
Cycl. prefix, training, control (G .G ): 0.811 0.811 0.811 0811 0.811
Link level overheat (18 bits/bin) 0.93 0.948 0.957 0.961 0.964
Payload spectral eff. if all users at 16 dB: 1436 1975 2573 3.039 3.213
Sector capacity at full load , eq.reuse 1.73 =~ 0.83 1.14 1.49 1.76 1.86

-

/
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/ ‘Control bandwidth demand |

Downlink: Adequate with 8 4QAM-symbols.
e Downlink user numbers (ca 5-8 bit incl. coding)
e Indicate user to send in uplink (ca 5-8 bit)

Uplink: All K active terminals indicate desired modulation rate. (/N
levels) for all b bins in slots of duration I". A “dumb” implementation:

107
Bue = Kblogy(N) == = 112 x K [kbits/s] .

for N = 8,0 = 25 (0.2x25=5MHz), T = 0.666ms.

Can easily be reduced by factor 10 by using correlation in time,

Q\ frequency, and the rare use of most modulation levels.

~

/
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/ ‘ Hexagonal cellular system, 60 degree sectors: I \
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/ ‘ Interference control |

High spectral efficiency demands both reuse close to 1 and low co-channel

interference. Two principles are suggested (VTCO03-Fall, Paper 2:):
® Reuse 1 ininner part of sector, reuse 3 in outer part.

e Coordinated scheduling between sectors of the same base station.

SIR distribution: Distr. of bins when max,, &u/ﬁu selected:

~

20
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/ ‘ Sector throughput (preliminary evaluation) I \
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Figure 2. Estimated sector capacity with Rayleigh fading (no shadow fading). Two zones, limit

0.7 of radius (reuse 1.73). OFDM-overhead factor 0.81 (prefix, downlink control). K users,

all with L antennas, with Maximum Ratio Combining. Each data point based on 10000

walizations. Load factor in interfering cells £ = 1 and path loss exponent ov = 4. /
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/ ‘ Challenges for the Uplink 1 I \

Can a similar adaptive OFDM scheme work also in uplinks?

In a FDD system, the base station would have to predict the channels of all
terminals competing access, over the whole bandwidth to be allocated. This would

result in two difficulties:

e Continuous uplink transmission of pilots over a large band would risk draining

terminal batteries.

e To avoid cluttering the band with pilots, we would require simultaneous
(overlapping) pilots. This generates a challenging channel estimation and

prediction problem.
Furthermore

® The transmission from all terminal would have to be well synchronized in

K frequency, to avoid significant inter-carrier interference. /
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/ Challenges for the Uplink 2 I \

In a TDD system, we could predict the uplink channels from measurements of the
downlink.

e Terminals will then need to send pilots only in bins allocated to them. This
preserves battery power.

e Channel estimation and prediction from overlapping pilot patterns is avoided.

However,

® The required prediction horizon (in time) will be longer than in a corresponding

FDD system. (Depends on the switching frequency between uplink and

downlink transmissions.)

e Downlink pilot transmission is interrupted by the uplink periods. This will reduce

/

K the accuracy of downlink estimation and uplink prediction.
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