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I. Introduction

Mobile Communications Using Smart Antennas
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Realistic spatio-temporal channel models are required for the design, test, and optimization

of mobile communication systems employing smart antenna technologies.
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Meaning of Channel Modelling and Simulation for Mobile Communications

Reference system:

+Channel
model

Noise

Data source Data sink

Transmitter Receiver
d(i) x(t) y(t) d̂(i)

⇒ Performance measure: Bit error probability Pb = f

(

Eb

N0

)

Simulation system:

+Channel

Noise

Data source Data sink

Transmitter Receiversimulator

d(i) x(t) ỹ(t) d̃(i)

⇒ Performance measure: Bit error probability P̃b = f

(

Eb

N0
, ∆β

)

≈ Pb

↑
Model error

• The model error ∆β describes the essential error which is introduced by the channel simulator.

Channel simulators are important for the test, the parameter optimization, and the perfor-

mance analysis of mobile communication systems.
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The Two Main Categories of Fading Channel Simulators

Simulators based on reference models: Simulators based on measurements:

Simulation model

Reference model

Measurement

Real-world

Snapshot

measurementscampaigns

channel channel
Real-world

Simulation model

Problem: Reference models are not

close to real-world channels.

Problem: Finding of typical scenarios.

⇒ The dilemma of mobile fading channel modelling.
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Some Requirements for Fading Channel Simulators

• High precision w.r.t. a given reference model or w.r.t. measured channels

• High efficiency

• The underlying stochastic channel simulator must be ergodic to reduce the number of trials

• Easy to determine the model parameters

• Easy to understand and easy to implement

• Reproducibility for enabling fair performance comparisons

• Easy to extend (frequency selectivity, spatial selectivity, multi-cluster propagation scenarios, number

of antenna elements, etc.)

• Low complexity
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II. Principles of Fading Channel Modelling

Two Fundamental Methods for Modelling of Coloured Gaussian Noise Processes

1. Filter method:

⇒ Stochastic process µ(t)

⇒ Reference model

2. Sum-of-sinusoids (SOS) method:

cos(2πf1t + θ1)

cos(2πf2t + θ2)

cos(2πfNt + θN)

c1

c2

cN

... ...

... ...∞ ∞

e -⊗ -

e -⊗ -

e -⊗ -

+
- µ(t)

⇒ Stochastic process µ(t)

⇒ Reference model
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For a finite number of harmonic functions N , we obtain:

Parameters: ensemble

θn = Random variable (RV)

fn = const.

cn = const.

cos(2πf1t + θ1)

cos(2πf2t + θ2)

cos(2πfNt + θN)

c1

c2

cN

... ...

e -⊗ -

e -⊗ -

e -⊗ -

+ - µ̂(t)

⇒ Stochastic process µ̂(t)

⇒ Stochastic simulation model

Parameters: single realization

θn = const.

fn = const.

cn = const.

cos(2πf1t + θ1)

cos(2πf2t + θ2)

cos(2πfNt + θN)

c1

c2

cN

... ...

e -⊗ -

e -⊗ -

e -⊗ -

+ - µ̃(t)

⇒ Deterministic process µ̃(t)

⇒ Deterministic simulation model
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Relationships Between Stochastic Processes, Random Variables,

Sample Functions, and Real-Valued Numbers

Gaussian process: µ(t) = lim
N→∞

N
∑

n=1
cn cos(2πfnt + θn) (cn = const., fn = const., θn = RV)

Stochastic process: µ̂(t) =
N
∑

n=1
cn cos(2πfnt + θn) (cn = const., fn = const., θn = RV)

simulation 
model

Deterministic

Stochastic 
simulation 
model

model
Reference

Gaussian process

Stochastic process

Random
variable  

 

Sample 
function

Real number

t = t0

θn = const. t = t0

µ̂(t0) = µ̂(t0, θn)

µ̂(t0) = µ̃(t0)

µ̃(t) = µ̂(t, θn)

N < ∞N → ∞

µ̂(t) = µ̂(t, θn)

µ(t) = µ(t, θn)

θn = const.

θn = RV
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Principle of Deterministic Channel Modelling

Step 1: Starting point is a reference model derived from one, two or several Gaussian

processes.

Step 2: Derive a stochastic simulation model from the reference model by replacing each

Gaussian process by a sum-of-sinusoids with fixed gains, fixed frequencies, and

random phases.

Step 3: Determine the deterministic simulation model by fixing all model parameters of the

stochastic simulation model, including the phases.

Step 4: Compute the model parameters of the simulation model by using a proper param-

eter computation method.

Step 5: Simulate one (or some few) sample functions (deterministic processes).
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Example: Derivation of a channel simulator for Rice processes

Step 1: Reference model Steps 2 & 3: Simulation model

ρµ (t)

(t)µ2

1(t)µ

πf t+θm (t)= ρ ρ)ρ2 sin(2

cos(2 πf t+θm (t)=1 ρ ρ)ρ

H (f)

H (f)
(t)2v

(t)1v

ξ(t)

ρµ

ρµ (t)

(t)
WGN

WGN

2

1

⇐⇒

⇒ Stochastic Rice process ξ(t) ⇒ Deterministic Rice process ξ̃(t)

Step 4: Compute the model parameters by fitting the statistics of the deterministic simulation

model to those of the stochastic reference model.

Step 5: Simulate the deterministic Rice process ξ̃(t).
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Methods for the Calculation of the Model Parameters

Deterministic process: µ̃i(t) =

Ni
∑

n=1

ci,n cos(2πfi,nt + θi,n)

↗ ↑ ↖
Model parameters: gains frequencies phases

Historical overview

Methods Disadvantages

Rice method (Rice, 1944) Small period

Jakes method (Jakes, 1974) Special case only

Monte Carlo method (Schulze, 1988) Non-ergodic

Method of equal distances (Pätzold, 1994) Small period

Method of equal areas (Pätzold, 1994) Slow convergency

Harmonic decomposition technique (Crespo, 1995) Small period

Mean-square-error method (Pätzold, 1996) Small period

Method of exact Doppler spread (Pätzold, 1996) Special case only

Lp-norm method (Pätzold, 1996) –

Method porposed by Zheng and Xiao (2002) Non-ergodic
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Classes of SOS Channel Simulators and Their Statistical Properties

Deterministic process: µ̃i(t) =
Ni
∑

n=1
ci,n cos(2πfi,nt + θi,n)

Class Gains Frequencies Phases First-order Wide-sense Mean- Autocor.-

ci,n fi,n θi,n stationary stationary ergodic ergodic

I const. const. const. – – – –

II const. const. RV yes yes yes yes

III const. RV const. no/yes a no/yes a no/ yes a no

IV const. RV RV yes yes yes no

V RV const. const. no no no/yes a no

VI RV const. RV yes yes yes no

VII RV RV const. no/yes a no/yes a no/yes a no

VIII RV RV RV yes yes yes no

a If certain boundary conditions are fulfilled.
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Application of the Scheme to Parameter Computation Methods

Stochastic process: µ̂i(t) =
Ni
∑

n=1
ci,n cos(2πfi,nt + θi,n)

↗ ↑ ↖
Model parameters: gains frequencies phases (RVs)

Parameter computation methods Class FOS WSS
Mean-
ergodic

Autocor.-
ergodic

Rice method II yes yes yes yes

Monte Carlo method IV yes yes yes no

Jakes method II yes yes yes yes

Harmonic decomposition technique II yes yes yes yes

Method of equal distances II yes yes yes yes

Method of equal areas II yes yes yes yes

Mean-square-error method II yes yes yes yes

Method of exact Doppler spread II yes yes yes yes

Lp-norm method II yes yes yes yes

Method proposed by Zheng and Xiao IV yes yes yes no
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Applications of the Principle of Deterministic Channel Modelling

• Frequency-nonselective channels (Rayleigh, Rice, ext. Suzuki, Nakagami, etc.),

• Frequency-selective channels (COST 207, CODIT),

• Space-time wideband channels (COST 259),

• Multiple cross-correlated Rayleigh fading channels,

• Multiple uncorrelated Rayleigh fading channels,

• Perfect modelling and simulation of measured 2-D and 3-D channels,

• Frequency-hopping fading channels,

• Design of ultra fast channel simulators (tables system),

• Design of burst error models,

• Development of MIMO channels.
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III. Modelling of MIMO Channels

Block Diagram of a MIMO Mobile Communication System

Transmitter Receiver
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• Channel coefficients: The channel coefficient hij(t) describes the transmission behavior of the

channel from the jth transmit antenna to the ith receive antenna.

• Channel matrix: H(t) = [hij(t)] ∈ C
MR×MT

• Channel capacity: C(t) = log2 det

(

IMT
+

SBS, total

MTNnoise
H(t)HH(t)

)

[bits/s/Hz]

(MR ≥ MT )
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Generalized Principle of Deterministic Channel Modelling

Step 1: Starting point is a geometrical model with an infinite number of scatterers, e.g.,

(a) one-ring model (b) two-ring model (c) elliptical model

BS MS BS MS BS MS

Step 2: Derive a stochastic reference model from the geometrical model.

Step 3: Derive an ergodic stochastic simulation model from the reference model by using

only a finite number of N scatterers.

Step 4: Determine the deterministic simulation model by fixing all model parameters of the

stochastic simulation model.

Step 5: Compute the parameters of the simulation model by using a proper parameter

computation method, e.g., the Lp-norm method (LPNM).

Step 6: Generate one (or some few) sample functions by using the deterministic simulation

model with fixed parameters.
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Illustration of the Generalized Principle of Deterministic Channel Modelling

3 4 6

5

21

Infinite complexity

(N → ∞)

⇒ ⇒
sample functions sample functions

Non-realizable Realizable⇒
sample functions

Non-realizable

Reference model

E{·} E{·} < · >

Statistical properties

Deterministic SoS
simulation model

computation
Parameter

Simulation of
sample functions

Fixed
parameters

Stochastic SoS
simulation model

Finite complexity

One (or some few)Infinite number ofInfinite number of

Finite complexity

(N ≈ 25) (N ≈ 25)

Lp-norm method (LPNM)

Geometrical model
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Application of the Generalized Principle of Deterministic Channel Modelling

A Geometrical Model for a MIMO Channel

Dn2

Dn1
ABS

1

δBS

A
2
MS

αMS

δMS

0MS

BSα

n
BSφ

AMS
1

D2n

BSφmax

Sn

v

y

0BS

D

2
ABS

φMS

D

n

1n

x

R

v

α

• The geometrical model is known as the one-ring model for a 2 × 2 channel.

• The local scatterers are laying on a ring around the MS.

• If the number of scatterers N → ∞, then the discrete AOA φMS

n tends to a continuous RV φ MS with

a given distribution p(φ MS), e.g., the uniform distribution, the von Mises distribution, the Laplacian

distribution, etc.
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The Reference Model

• Channel coefficients: h11(t) = lim
N→∞

1√
N

N
∑

n=1
anbne

j(2πfnt+θn)

h12(t) = lim
N→∞

1√
N

N
∑

n=1
a∗nbne

j(2πfnt+θn)

h21(t) = lim
N→∞

1√
N

N
∑

n=1
anb

∗
ne

j(2πfnt+θn)

h22(t) = lim
N→∞

1√
N

N
∑

n=1
a∗nb

∗
ne

j(2πfnt+θn)

where the phases θn are i.i.d. RVs and

an = e jπ(δBS/λ)[cos(αBS)+φBS
max sin(αBS) sin(φMS

n )]

bn = e jπ(δMS/λ) cos(φMS
n −αMS)

fn = fmax cos(φMS
n − αv)

• Channel matrix: H(t) = [hij(t)] =

(

h11(t) h12(t)

h21(t) h22(t)

)

• Channel capacity: C(t) = log2 det

(

I2 +
SBS, total

2Nnoise
H(t)HH(t)

)

[bits/s/Hz]
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Statistical Properties of the Reference Model

• Space-time CCF: ρ11,22(δBS, δMS, τ ) := E{h11(t)h
∗
22(t + τ )}

= lim
N→∞

1

N

N
∑

n=1

a2
n b2

ne
−j2πfnτ

=

π
∫

−π

a2
n(δBS)b

2
n(δMS)e

−j2πfnτp(φMS)dφMS

• Time ACF: rh11(τ ) := E{h11(t)h
∗
11(t + τ )}

=

π
∫

−π

e −j2πfmax cos(φMS−αv)τp(φMS) dφMS

Relationships: rh11(τ ) = rh12(τ ) = rh21(τ ) = rh22(τ ) = ρ11,22(0, 0, τ )

• 2D space CCF: ρ(δBS, δMS) := ρ11,22(δBS, δMS, 0)

=

π
∫

−π

a2
n(δBS)b

2
n(δMS)p(φMS)dφMS
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The Stochastic Simulation Model

• Channel coefficients: ĥ11(t) = 1√
N

N
∑

n=1
anbne

j(2πfnt+θn)

⇒ The phases θn are i.i.d. RVs

• Channel matrix: Ĥ(t) =

(

ĥ11(t) ĥ12(t)

ĥ21(t) ĥ22(t)

)

⇒ Stochastic channel matrix

• Channel capacity: Ĉ(t) = log2 det

(

I2 +
SBS, total

2Nnoise
Ĥ(t)ĤH(t)

)

[bits/s/Hz]

⇒ Stochastic process

⇒The analysis of Ĉ(t) has to be performed by using statistical aver-

ages, e.g., Cs = E{Ĉ(t)}.
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Statistical Properties of the Stochastic Simulation Model

• Space-time CCF: ρ̂11,22(δBS, δMS, τ ) := E{ĥ11(t)ĥ
∗
22(t + τ )}

=
1

N

N
∑

n=1

a2
n(δBS)b

2
n(δMS)e

−j2πfnτ

• Time ACF: r̂h11(τ ) := E{ĥ11(t)ĥ
∗
11(t + τ )}

=
1

N

N
∑

n=1

e −j2πfmax cos(φMS

n −αv)τ

Relationships: r̂h11(τ ) = r̂h12(τ ) = r̂h21(τ ) = r̂h22(τ ) = ρ̂11,22(0, 0, τ )

• 2D space CCF: ρ̂(δBS, δMS) := ρ̂11,22(δBS, δMS, 0)

=
1

N

N
∑

n=1

a2
n(δBS)b

2
n(δMS)

=
1

N

N
∑

n=1

e j2π(δBS/λ)[cos(αBS)+φBS

max sin(αBS) sin(φMS

n )]·e j2π(δMS/λ) cos(φMS

n −αMS)
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The Deterministic Simulation Model

• Channel coefficients: h̃11(t) = 1√
N

N
∑

n=1
anbne

j(2πfnt+θn)

⇒ The phases θn are constant quantities

• Channel matrix: H̃(t) =

(

h̃11(t) h̃12(t)

h̃21(t) h̃22(t)

)

⇒ Deterministic channel matrix

• Channel capacity: C̃(t) = log2 det

(

I2 +
SBS, total

2Nnoise
H̃(t)H̃H(t)

)

[bits/s/Hz]

⇒ Deterministic process

⇒The analysis of C̃(t) has to be performed by using time averages,

e.g., Ct =< C̃(t) >.
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Statistical Properties of the Deterministic Simulation Model

• Space-time CCF: ρ̃11,22(δBS, δMS, τ ) := < h̃11(t)h̃
∗
22(t + τ ) >

=
1

N

N
∑

n=1

a2
n(δBS)b

2
n(δMS)e

−j2πfnτ

• Time ACF: r̃h11(τ ) := < h̃11(t)h̃
∗
11(t + τ ) >

=
1

N

N
∑

n=1

e −j2πfmax cos(φMS

n −αv)τ

Relationships: r̃h11(τ ) = r̃h12(τ ) = r̃h21(τ ) = r̃h22(τ ) = ρ̃11,22(0, 0, τ )

• 2D space CCF: ρ̃(δBS, δMS) := ρ̃11,22(δBS, δMS, 0)

=
1

N

N
∑

n=1

a2
n(δBS)b

2
n(δMS)

=
1

N

N
∑

n=1

e j2π(δBS/λ)[cos(αBS)+φBS

max sin(αBS) sin(φMS

n )]·e j2π(δMS/λ) cos(φMS

n −αMS)
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Parameter Computation Method

Parameters: The model parameters to be determined are the discrete AOAs φMS
n (n = 1, 2, . . . , N).

Aim: Determine the model parameters φMS
n such that

ρ11,22(δBS, δMS, τ ) ≈ ρ̃11,22(δBS, δMS, τ ) .

Solution: Lp-norm method

E
(p)
1 :=

{

1
τmax

τmax
∫

0

|rh11(τ ) − r̃h11(τ )|pdτ

}1/p

E
(p)
2 :=

{

1
δBS
max δMS

max

δBS
max
∫

0

δMS
max
∫

0

|ρ(δBS, δMS) − ρ̃(δBS, δMS)|pdδMS dδBS

}1/p

Two alternatives: (i) Joint optimization: E(p) = w1E
(p)
1 + w2E

(p)
2

w1, w2: weighting factors

(ii) Using two independent sets {φ′MS
n } and {φMS

n }
in r̃h11(τ ) and ρ̃(δBS, δMS), respectively.

⇒ Orthogonalization of the optimization problem.
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Structure of the Simulation Model

+

. . .

. . .

. . .

. . . . . .

. . .

. . .
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. . .. . .

. . .

. . .

. . .
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.  . 
  .

.  . 
  .

1/
√

N

1/
√

N

1/
√

N

s2(t)

r1(t) r2(t)

bN
∗b∗

2
b∗
1bNb2b1

a1 a2 aN

s1(t)

a∗
N

a∗
2

a∗
1

ej(2πfN t + θN )

ej(2πf2t + θ2)

ej(2πf1t + θ1)
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Performance Evaluation

• Comparison of the time ACFs rh11(τ ) (reference model) and r̃h11(τ ) (simulation model)
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Reference model: Based on the one-ring model with uniformly distributed AOAs φMS.

Simulation model: Designed by using the Lp-norm method (N = 25 , p = 2, τmax = 0.08 s, fmax = 91 Hz).
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Reference model Simulation model

2-D space CCF ρ(δBS, δMS) 2-D space CCF ρ̃(δBS, δMS)
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Reference model: Based on the one-ring model with uniformly distributed AOAs φMS.

Simulation model: Designed by using the Lp-norm method with N = 25

(p = 2, δBS
max = 30λ, δMS

max = 3λ, αBS = αMS = 90◦, φBS
max = 2◦).
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IV. Simulation of MIMO Channels

• Channel capacity: C̃(t) := log2 det

(

I2 +
SBS, total

2Nnoise
H̃(t)H̃H(t)

)

[bits/s/Hz]
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Parameters: N = 25, MBS = MMS = 2, δBS = δMS = λ/2, SNR = 17 dB
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Scattering Scenario

Geometrical one-ring model:

scatterers
Cluster of

δBS

y

xδMS

αvφBS
max

v

≈ 2√
κ

Parameters:

MBS = MMS = 2

δBS = δMS = λ/2

φBS
max = 2◦

αv = φMS
0 = 180◦

fmax = 91 Hz

Reference model: assuming the von Mises distribution for the AOA φMS :

p(φMS) =
1

2πI0(κ)
e κ cos(φMS−φMS

0 )

κ = 0 : p(φMS) = 1/(2π) (isotropic scattering)

κ → ∞ : p(φMS) → δ(φMS − φMS
0 ) (extremely nonisotropic scattering)

Simulation model: designed by using the LPNM with N = 25.
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PDF of the Channel Capacity C̃(t)
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Observations: • κ influences the PDF p̃C(r) of the capacity C̃(t)

• If κ ↑; angular spread of the AOA φMS ↓; Var{C̃(t)} ↑
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Normalized LCR of the Channel Capacity C̃(t)
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Observations: • κ has a strong influence on the LCR ÑC(r) of the capacity C̃(t)

• If κ ↑; angular spread of the AOA φMS ↓; ÑC(r) ↓
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Normalized ADF of the Channel Capacity C̃(t)
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Observations: • κ has a strong influence on the ADF T̃C(r) of the capacity C̃(t)

• If κ ↑; angular spread of the AOA φMS ↓; T̃C(r) ↑.
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The Effect of κ on the BER Performance
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Coding system: 4-D 16QAM linear 32-state space-time trellis code with 2 transmit and 2 receive

antennas (δBS = 30λ and δMS = 3λ).

Observations: • κ ↑; angular spread ↓; BER ↑
• If κ decreases from 40 to 0, then a gain of ca. 1.5 dB can be achieved at a BER

of 2 · 10−3.
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The Effect of the Antenna Spacing on the BER Performance
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Coding system: 4-D 16QAM linear 32-state space-time trellis code with 2 transmit and 2 receive

antennas.

Observations: • δBS, δMS ↑; spatial correlation ↓; BER ↓
• A large spacing among the antennas at the BS provides a better performance

than a large antenna spacing at the MS.
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VI. Conclusion

a The principle of deterministic channel modelling has been generalized.

a The generalized concept has been applied on the geometrical one-ring scattering model.

a It has been shown how the parameters of the simulation model can be determined by using the

Lp-norm method (LPNM).

a The designed deterministic MIMO channel simulator with N = 25 scatterers has nearly the

same statistics as the underlying stochastic reference model with N = ∞ scatterers.

a The new MIMO space-time channel simulator is very useful in the investigation of the PDF,

LCR, and ADF of the channel capacity C(t) from time-domain simulations.

a Finally, it has been demonstrated that the system performance decreases if the spatial correlation

increases.
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