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Diversity

e Effective fading mitigation technique.

e Reduce the occurrence of deep fades by

~

— Providing the receiver with multiple faded replicas of t
same information bearing signal.

—Taking advantage of the low probability that all diversi

paths experience simultaneously a deep fade.

e Antenna reception diversity comes at no cost of spectrum

efficiency.
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Diversity Combining Schemes

e Maximum ratio combining (MRC).
e Equal gain combining (EGC).

e Selection combining (SC).

e Switched combining.

Tradeoff between performance and complejity!
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Switched Combining

e Use current branch and switch when it becomes unaccepta
e Check branch quality by comparing with a fixed threshold.
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e Complexity savings with respect to SC

—Only one branch needs to be monitored.
— Comparison with a fixed threshold.
— Reduced frequency of branch switching.

e Switch and stay combining (SSC) and switch and examine

ble.

combining (SEC). )
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Multi-Branch Switched Diversity

e Multiple antennas=- Multi-branch switching.
e SSC: Iin general does not not benefit for more than two branches.
e Switch and examine combining (SEC)

— Use current branch and switch only when it becomes

unacceptable.

— Unlike SSC scheme, the combiner examines the channel for
the switch-to branch and switches again if unacceptable,

— The combiner will repeat this process until either an
acceptable branch is found or no branch left to be examined.

x Three possible termination strategies for SEC (traditional
SEC, post-selection (SECps), and scan and wait compin-
iIng (SWCQC)).
. —SEC benefits from more than two branches. D
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Error Performancewith SEC
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Average SNR, y bar (dB)

SEC benefits from additional branchps!

N /

AWACCS Research Group 6 ISCCSP’2004




University of Minnesota Dept. of Electrical and Computer Engineering

4 N
Model and M ode of Operation of SWC

e Information transmission is done on a time-slot based fashjon:
Guard period + Data burst.

e Block fading channel model: Data burst is assumed to experi-
ence roughly the same fading as that which occurs in the pre-
ceding guard period.

e Mode of operation:

— If the current path is not of acceptable quality then the caom-

biner switches and examines the quality of the next path.

— Switching and examining process is repeated until either an
acceptable path is found or all diversity paths have been ex-
amined.

—In the latter case, the receiver just waits for a one coherence
time and then re-start after that period the switching and|ex-
\_ amining process on all the diversity paths. .
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Output SNR

e The probability density function of the SWC output SNR ¢
be written as

oY) = ip{‘ (E1pT.(y) + €207 (y) + -+ E0T (V)

&Py (V) &Py, (V) + -+ ELpy (V)
- 1-P ’

where

= p; (y) is the conditional PDF of the truncated (above t
thresholdy ) random variable (RW; given thaty; < v, Y2 <
yTz Y1 < yT|_1-

—R =Ry oy (Ym0, Y-+, ¥ ), whereRy, oy (-, -+, -) is the
joint CDF ofvyy, Vo, -+, V.

al

he

— & =Pyi<V¥r, o<Vn, - Yi—1<Vr_,Yi >V =R_1—HR
forl =2,---L. .
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Average Probability of Error

e The average BEP,(E) in the case where the paths are inde-
pendent but not necessarily identically distributed is given by

S =1 [Tt P (Yr) (1= Ry (vr)) Po(En)

PD(E) 1- |_|I =1 VI(yTI)

?

where

R (E) = Q(/277) - %\_/‘Q <\/2yﬂ1+\7.> i

for binary phase-shift-keying (BPSK) operating over Rayleigh
fading paths with average SNRs(l =1,2,--- ,L).
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Delay Statistics

e Average number of coherence time before access
P
1-RB’
which reduces when the fading is independent across the d
sity paths to

NC:

N, — |_||L:1Pv| (Yn)
1‘_[1t:1FM(VT)7

e Dropping probability
Py=P[N. > ng =P
which reduces when the fading is independent across the d

Sity paths to
L 1+,
Pa=| [ ]Rulyn) -
(1170 )
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Estimation Statistics

e Average number of path estimates before access
N 1T3iR
° 1-R
which reduces when the fading is independent across the d
sity paths to

N — Z:_:_01|_||n:1 P (Ym)
e — L .
1- |_|I:1PV| (yTI)
e EXxcess estimation
Pe = P[Ne > Nth] =1-— P[Ne < Nip = npL 4 Ith]
— Pl?th PNth_nthl—'
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Comparison of Traditional SEC and SWC

0 Average BEP of BPSK with SEC and SWC over i.i.d. Rayleigh Fading

Average BEP
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Figure 1. Comparison of the average BEP of BPSK with SEC (using optimal switching threshold) and SWC (using a switching thr

eshold
yielding the same average number of path estimations as SEC for d_jixed

SWC strategy outperforms the traditional SEC stratel;y !
\_ /
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Average Time Delay for SWC

Average Number of Coherence Times for SWC over i.i.d. Rayleigh Fading
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Figure 2: Average number of coherence times required for SWC before channel access as a function of the SNR per path and for various

Negligible time delay !|
o J
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Dropping Probability for SWC

Dropping Probability of SWC over i.i.d. Rayleigh Fading

107 : : -
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Figure 3: Dropping probability of SWC as a function of the SNR per path and for various values of

Negligible dropping probability I
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Comparison with SC and MRC

~

0 Average BEP of BPSK with SC, MRC, and SWC over i.i.d. Rayleigh Fading

Average BEP
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per path and for various values lof

SWC can outperform MRC and Sg |
\_

Figure 4: Comparison of the average BEP of BPSK with MRC, SC, and SWC over i.i.d. Rayleigh fading paths as a function of th

e SNR
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Non |1 D Environment

. Average BEP of BPSK with SWC over non-i.i.d and i.i.d Rayleigh Fading
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Figure 5: Comparison of the average BEP of BPSK with SWiC£ 8 dB andL = 5) over an i.i.d. Rayleigh fading environment and g
non-i.i.d Rayleigh fading environment (exponentially decaying power delay profiledtl.3).

Statistical information helps |!
o
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Combining in Diversity Rich Environments

Performance of diversity combining schemes improve
with additional combined diversity paths.

Emerging and proposed wireless systems will operate
in diversity rich environments (Examples: Ultra-
wideband, millimeter-wave, and MIMO systems).

For best performance: MRC
Requires one RF chain for each diversity path.

Mandates complete knowledge of channel
conditions.

Sensitive to channel estimation errors.

To reduce complexity and be less sensitive to channel
estimation errors: Only "good" diversity paths are
MRC combined.



Generalized Selection Combining

eHybrid scheme which bridges between the two extreme
combining techniques offered by SC and MRC [Kong and
Milstein, ICUPC95].

eCombine the Lc strongest paths among the L available ones.

ePerformance analysis of GSC received a great deal of attention
over the last couple of years.

eVariant of GSC was proposed recently:

eMinimum Selection GSC [Kim et al., ISCAS'03 and Gupta et
al. ICC'04]

eSame hardware complexity and same number of channel
estimates as GSC but less combined paths in average.



Minimum-Estimation-Combining (MEC) GSC
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Average Number of Channel Estimates

Average Number of Estimated Paths with MEC-GSC

7 T T T

Average Number of Estimated Paths
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Average Number of Combined Paths
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Outage Probability Comparison

Comparison of MEC-GSC, MS-GSC, and GSC (L=7, Yr =6 dB, y =3 dB)
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Average BER

Average BER Comparison

Comparison of the Average BER of BSPK with SEC, MEC-GSC, and MS-GSC (L=6 and yT=10 dB)
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Average BER Comparison

Comparison of the Average BER of BSPK with MEC-GSC and MS-GSC (L c=4 and y=3 dB)

Average BER

Output Threshold, Yo dB
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Concluding Remarks

Switched-based diversity schemes offer adaptive
low-complexity solutions for fading mitigation.

Switch/scan and wait lead to tremendous
performance gain at the expense of negligible
time delay.

MEC-GSC minimizes the average number of
channel estimates and average number of
combined paths while still approaching the
performance of GSC.

Applications of these schemes in multiuser
diversity and multiuser OFDM (OFDMA).
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