Further Results on Low-Complexity Diversity Combining Schemes

Mohamed-Slim Alouini

University of Minnesota
Minneapolis, MN 55455, USA

Outline

- Motivation and Goals
- Review of Switched Combining
- Switch-and-Examine Combining (SEC) Schemes
- Generalized SEC for Diversity Rich Environments
- Concluding Remarks

Diversity

- Effective fading mitigation technique.
- Reduce the occurrence of deep fades by
- Providing the receiver with multiple faded replicas of the same information bearing signal.
- Taking advantage of the low probability that all diversity paths experience simultaneously a deep fade.
- Antenna reception diversity comes at no cost of spectrum efficiency.

Diversity Combining Schemes

- Maximum ratio combining (MRC).
- Equal gain combining (EGC).
- Selection combining (SC).
- Switched combining.

> Tradeoff between performance and complexity!

Switched Combining

- Use current branch and switch when it becomes unacceptable.
- Check branch quality by comparing with a fixed threshold.

- Complexity savings with respect to SC
- Only one branch needs to be monitored.
- Comparison with a fixed threshold.
- Reduced frequency of branch switching.
- Switch and stay combining (SSC) and switch and examine combining (SEC).

Multi-Branch Switched Diversity

- Multiple antennas \Rightarrow Multi-branch switching.
- SSC: in general does not not benefit for more than two branches.
- Switch and examine combining (SEC)
- Use current branch and switch only when it becomes unacceptable.
- Unlike SSC scheme, the combiner examines the channel for the switch-to branch and switches again if unacceptable.
- The combiner will repeat this process until either an acceptable branch is found or no branch left to be examined. * Three possible termination strategies for SEC (traditional SEC, post-selection (SECps), and scan and wait combining (SWC)).
- SEC benefits from more than two branches.

Error Performance with SEC

SEC benefits from additional branches!

Model and Mode of Operation of SWC

- Information transmission is done on a time-slot based fashion: Guard period + Data burst.
- Block fading channel model: Data burst is assumed to experience roughly the same fading as that which occurs in the preceding guard period.
- Mode of operation:
- If the current path is not of acceptable quality then the combiner switches and examines the quality of the next path.
- Switching and examining process is repeated until either an acceptable path is found or all diversity paths have been examined.
- In the latter case, the receiver just waits for a one coherence time and then re-start after that period the switching and examining process on all the diversity paths.

Output SNR

- The probability density function of the SWC output SNR can be written as

$$
\begin{aligned}
p_{\gamma_{\mathrm{swc}}}(\gamma) & =\sum_{n=0}^{\infty} P_{L}^{n}\left(\xi_{1} p_{\gamma_{1}}^{T}(\gamma)+\xi_{2} p_{\gamma_{2}}^{T}(\gamma)+\cdots+\xi_{L} p_{\gamma_{L}}^{T}(\gamma)\right) \\
& =\frac{\xi_{1} p_{\gamma_{1}}^{T}(\gamma)+\xi_{2} p_{\gamma_{2}}^{T}(\gamma)+\cdots+\xi_{L} p_{\gamma_{L}}^{T}(\gamma)}{1-P_{L}}
\end{aligned}
$$

where
$-p_{\gamma_{l}}^{T}(\gamma)$ is the conditional PDF of the truncated (above the threshold $\gamma_{T_{l}}$) random variable (RV) γ_{l} given that $\gamma_{1}<\gamma_{T_{1}}, \gamma_{2}<$ $\gamma_{T_{2}} \cdots, \gamma_{l-1}<\gamma_{T_{l-1}}$.
$-P_{l}=P_{\gamma_{1}, \gamma_{2}, \cdots \gamma_{l}}\left(\gamma_{T_{1}}, \gamma_{T_{2}}, \cdots, \gamma_{T_{l}}\right)$, where $P_{\gamma_{1}, \gamma_{2}, \cdots \gamma_{l}}(\cdot, \cdot, \cdots, \cdot)$ is the joint CDF of $\gamma_{1}, \gamma_{2}, \cdots, \gamma_{l}$.
$-\xi_{l}=P\left[\gamma_{1}<\gamma_{T_{1}}, \gamma_{2}<\gamma_{T_{2}}, \cdots, \gamma_{l-1}<\gamma_{T_{l-1}}, \gamma_{l} \geq \gamma_{T_{l}}\right]=P_{l-1}-P_{l}$ for $l=2, \cdots L$.

Average Probability of Error

- The average BEP $P_{b}(E)$ in the case where the paths are independent but not necessarily identically distributed is given by

$$
P_{b}(E)=\frac{\sum_{l=1}^{L} \prod_{n=1}^{l-1} P_{\gamma_{n}}\left(\gamma_{T_{n}}\right)\left(1-P_{\gamma_{l}}\left(\gamma_{T_{l}}\right)\right) P_{b}\left(E_{l}\right)}{1-\prod_{l=1}^{L} P_{\gamma_{l}}\left(\gamma_{T_{l}}\right)}
$$

where

$$
P_{b}\left(E_{l}\right)=Q\left(\sqrt{2 \gamma_{T_{l}}}\right)-\sqrt{\frac{\bar{\gamma}_{l}}{1+\bar{\gamma}_{l}}} Q\left(\sqrt{2 \gamma_{T_{l}} \frac{1+\bar{\gamma}_{l}}{\bar{\gamma}_{l}}}\right) e^{\gamma_{T_{l}} / \bar{\gamma}_{l}},
$$

for binary phase-shift-keying (BPSK) operating over Rayleigh fading paths with average SNRs $\bar{\gamma}_{l}(l=1,2, \cdots, L)$.

Delay Statistics

- Average number of coherence time before access

$$
\bar{N}_{c}=\frac{P_{L}}{1-P_{L}},
$$

which reduces when the fading is independent across the diversity paths to

$$
\bar{N}_{c}=\frac{\prod_{l=1}^{L} P_{\gamma_{l}}\left(\gamma_{T_{l}}\right)}{1-\prod_{l=1}^{L} P_{\gamma_{l}}\left(\gamma_{T_{l}}\right)}
$$

- Dropping probability

$$
P_{d}=P\left[N_{c}>n_{\mathrm{th}}\right]=P_{L}^{1+n_{\mathrm{th}}}
$$

which reduces when the fading is independent across the diversity paths to

$$
P_{d}=\left(\prod_{l=1}^{L} P_{\gamma_{l}}\left(\gamma_{T_{l}}\right)\right)^{1+n_{\mathrm{lt}}} .
$$

Estimation Statistics

- Average number of path estimates before access

$$
\bar{N}_{e}=\frac{1+\sum_{l=1}^{L-1} P_{l}}{1-P_{L}}
$$

which reduces when the fading is independent across the diversity paths to

$$
\bar{N}_{e}=\frac{\sum_{l=0}^{L-1} \prod_{n=1}^{l} P_{\gamma_{n}}\left(\gamma_{T_{n}}\right)}{1-\prod_{l=1}^{L} P_{\gamma_{l}}\left(\gamma_{T_{l}}\right)} .
$$

- Excess estimation

$$
\begin{aligned}
P_{e} & =P\left[N_{e}>N_{\mathrm{th}}\right]=1-P\left[N_{e} \leq N_{\mathrm{th}}=n_{\mathrm{th}} L+l_{\mathrm{th}}\right] \\
& =P_{L}^{n_{\mathrm{th}}} P_{N_{\mathrm{th}}-n_{\mathrm{th}} L} .
\end{aligned}
$$

Comparison of Traditional SEC and SWC

Figure 1: Comparison of the average BEP of BPSK with SEC (using optimal switching threshold) and SWC (using a switching threshold yielding the same average number of path estimations as SEC for a fixed L).
SWC strategy outperforms the traditional SEC strategy!

Average Time Delay for SWC

Figure 2: Average number of coherence times required for SWC before channel access as a function of the SNR per path and for various values of L.

Negligible time delay !

Dropping Probability for SWC

Figure 3: Dropping probability of SWC as a function of the SNR per path and for various values of L.
Negligible dropping probability!

Comparison with SC and MRC

Figure 4: Comparison of the average BEP of BPSK with MRC, SC, and SWC over i.i.d. Rayleigh fading paths as a function of the SNR per path and for various values of L.
SWC can outperform MRC and SC!

Non IID Environment

Figure 5: Comparison of the average BEP of BPSK with SWC ($\gamma_{T}=8 \mathrm{~dB}$ and $L=5$) over an i.i.d. Rayleigh fading environment and a non-i.i.d Rayleigh fading environment (exponentially decaying power delay profile with $\delta=0.3$).

Statistical information helps!

Combining in Diversity Rich Environments

- Performance of diversity combining schemes improve with additional combined diversity paths.
- Emerging and proposed wireless systems will operate in diversity rich environments (Examples: Ultrawideband, millimeter-wave, and MIMO systems).
- For best performance: MRC
- Requires one RF chain for each diversity path.
- Mandates complete knowledge of channel conditions.
- Sensitive to channel estimation errors.
- To reduce complexity and be less sensitive to channel estimation errors: Only "good" diversity paths are MRC combined.

Generalized Selection Combining

-Hybrid scheme which bridges between the two extreme combining techniques offered by SC and MRC [Kong and Milstein, ICUPC'95].
-Combine the Lc strongest paths among the L available ones.
-Performance analysis of GSC received a great deal of attention over the last couple of years.
-Variant of GSC was proposed recently:
-Minimum Selection GSC [Kim et al., ISCAS'03 and Gupta et al. ICC'04]
-Same hardware complexity and same number of channel estimates as GSC but less combined paths in average.

Minimum-Estimation-Combining (MEC) GSC

Average Number of Channel Estimates

Average Number of Combined Paths

Outage Probability Comparison

Average BER Comparison

Average BER Comparison

Concluding Remarks

- Switched-based diversity schemes offer adaptive low-complexity solutions for fading mitigation.
- Switch/scan and wait lead to tremendous performance gain at the expense of negligible time delay.
- MEC-GSC minimizes the average number of channel estimates and average number of combined paths while still approaching the performance of GSC.
- Applications of these schemes in multiuser diversity and multiuser OFDM (OFDMA).

