Further Results on Low-Complexity Diversity Combining Schemes

Mohamed-Slim Alouini

University of Minnesota Minneapolis, MN 55455, USA

Outline

2

- Motivation and Goals
- Review of Switched Combining
- Switch-and-Examine Combining (SEC) Schemes
- Generalized SEC for Diversity Rich Environments
- Concluding Remarks

Diversity

- Effective fading mitigation technique.
- Reduce the occurrence of deep fades by
 - Providing the receiver with multiple faded replicas of the same information bearing signal.
 - Taking advantage of the low probability that all diversity paths experience simultaneously a deep fade.
- Antenna reception diversity comes at no cost of spectrum efficiency.

Diversity Combining Schemes

- Maximum ratio combining (MRC).
- Equal gain combining (EGC).
- Selection combining (SC).
- Switched combining.

Tradeoff between performance and complexity!

Switched Combining

- Use current branch and switch when it becomes unacceptable.
- Check branch quality by comparing with a fixed threshold.

- Complexity savings with respect to SC
 - Only one branch needs to be monitored.
 - Comparison with a fixed threshold.
 - Reduced frequency of branch switching.
- Switch and stay combining (SSC) and switch and examine combining (SEC).

Multi-Branch Switched Diversity

- Multiple antennas \Rightarrow Multi-branch switching.
- SSC: in general does not not benefit for more than two branches.
- Switch and examine combining (SEC)
 - Use current branch and switch only when it becomes unacceptable.
 - Unlike SSC scheme, the combiner examines the channel for the switch-to branch and switches again if unacceptable.
 - The combiner will repeat this process until either an acceptable branch is found or no branch left to be examined.
 - * Three possible termination strategies for SEC (traditional SEC, post-selection (SECps), and scan and wait combining (SWC)).

– SEC benefits from more than two branches.

Error Performance with SEC

Model and Mode of Operation of SWC

- Information transmission is done on a time-slot based fashion: Guard period + Data burst.
- Block fading channel model: Data burst is assumed to experience roughly the same fading as that which occurs in the preceding guard period.
- Mode of operation:
 - If the current path is not of acceptable quality then the combiner switches and examines the quality of the next path.
 - Switching and examining process is repeated until either an acceptable path is found or all diversity paths have been examined.
 - In the latter case, the receiver just waits for a one coherence time and then re-start after that period the switching and examining process on all the diversity paths.

Output SNR

• The probability density function of the SWC output SNR can be written as

$$p_{\gamma_{\text{swc}}}(\gamma) = \sum_{n=0}^{\infty} P_L^n \left(\xi_1 p_{\gamma_1}^T(\gamma) + \xi_2 p_{\gamma_2}^T(\gamma) + \dots + \xi_L p_{\gamma_L}^T(\gamma)\right)$$
$$= \frac{\xi_1 p_{\gamma_1}^T(\gamma) + \xi_2 p_{\gamma_2}^T(\gamma) + \dots + \xi_L p_{\gamma_L}^T(\gamma)}{1 - P_L},$$

where

- $p_{\gamma_l}^T(\gamma)$ is the conditional PDF of the truncated (above the threshold γ_{T_l}) random variable (RV) γ_l given that $\gamma_1 < \gamma_{T_1}, \gamma_2 < \gamma_{T_2} \cdots, \gamma_{l-1} < \gamma_{T_{l-1}}$. - $P_l = P_{\gamma_1, \gamma_2, \cdots, \gamma_l}(\gamma_{T_1}, \gamma_{T_2}, \cdots, \gamma_{T_l})$, where $P_{\gamma_1, \gamma_2, \cdots, \gamma_l}(\cdot, \cdot, \cdots, \cdot)$ is the joint CDF of $\gamma_1, \gamma_2, \cdots, \gamma_l$. - $\xi_l = P[\gamma_1 < \gamma_{T_1}, \gamma_2 < \gamma_{T_2}, \cdots, \gamma_{l-1} < \gamma_{T_{l-1}}, \gamma_l \ge \gamma_{T_l}] = P_{l-1} - P_l$ for $l = 2, \cdots L$.

AWACCS Research Group

Average Probability of Error

• The average BEP $P_b(E)$ in the case where the paths are independent but not necessarily identically distributed is given by

$$P_b(E) = \frac{\sum_{l=1}^{L} \prod_{n=1}^{l-1} P_{\gamma_n}(\gamma_{T_n}) (1 - P_{\gamma_l}(\gamma_{T_l})) P_b(E_l)}{1 - \prod_{l=1}^{L} P_{\gamma_l}(\gamma_{T_l})},$$

where

$$P_b(E_l) = Q\left(\sqrt{2\gamma_{T_l}}\right) - \sqrt{\frac{\overline{\gamma}_l}{1 + \overline{\gamma}_l}} Q\left(\sqrt{2\gamma_{T_l}}\frac{1 + \overline{\gamma}_l}{\overline{\gamma}_l}\right) e^{\gamma_{T_l}/\overline{\gamma}_l},$$

for binary phase-shift-keying (BPSK) operating over Rayleigh fading paths with average SNRs $\overline{\gamma}_l$ ($l = 1, 2, \dots, L$).

Delay Statistics

• Average number of coherence time before access

$$\overline{N}_c = \frac{P_L}{1 - P_L},$$

which reduces when the fading is independent across the diversity paths to

$$\overline{N}_{c} = \frac{\prod_{l=1}^{L} P_{\gamma_{l}}(\gamma_{T_{l}})}{1 - \prod_{l=1}^{L} P_{\gamma_{l}}(\gamma_{T_{l}})},$$

• Dropping probability

$$P_d = P[N_c > n_{\rm th}] = P_L^{1+n_{\rm th}}$$

which reduces when the fading is independent across the diversity paths to

$$P_d = \left(\prod_{l=1}^L P_{\gamma_l}(\gamma_{T_l})\right)^{1+n_{\rm th}}$$

Estimation Statistics

• Average number of path estimates before access

$$\overline{N}_e = \frac{1 + \sum_{l=1}^{L-1} P_l}{1 - P_L}$$

which reduces when the fading is independent across the diversity paths to

$$\overline{N}_e = \frac{\sum_{l=0}^{L-1} \prod_{n=1}^{l} P_{\gamma_n}(\gamma_{T_n})}{1 - \prod_{l=1}^{L} P_{\gamma_l}(\gamma_{T_l})}.$$

• Excess estimation

$$P_{e} = P[N_{e} > N_{th}] = 1 - P[N_{e} \le N_{th} = n_{th}L + l_{th}]$$

= $P_{L}^{n_{th}} P_{N_{th} - n_{th}L}$.

Comparison of Traditional SEC and SWC

Figure 1: Comparison of the average BEP of BPSK with SEC (using optimal switching threshold) and SWC (using a switching threshold yielding the same average number of path estimations as SEC for a fixed *L*).

SWC strategy outperforms the traditional SEC strategy !

Average Time Delay for SWC

Figure 2: Average number of coherence times required for SWC before channel access as a function of the SNR per path and for various values of *L*.

Negligible time delay !

Dropping Probability for SWC

Figure 3: Dropping probability of SWC as a function of the SNR per path and for various values of *L*.

Negligible dropping probability !

Comparison with SC and MRC

Figure 4: Comparison of the average BEP of BPSK with MRC, SC, and SWC over i.i.d. Rayleigh fading paths as a function of the SNR per path and for various values of *L*.

SWC can outperform MRC and SC !

AWACCS Research Group

Non IID Environment

Figure 5: Comparison of the average BEP of BPSK with SWC ($\gamma_T = 8 \text{ dB}$ and L = 5) over an i.i.d. Rayleigh fading environment and a non-i.i.d Rayleigh fading environment (exponentially decaying power delay profile with $\delta = 0.3$).

Statistical information helps !

Combining in Diversity Rich Environments

- Performance of diversity combining schemes improve with additional combined diversity paths.
- Emerging and proposed wireless systems will operate in diversity rich environments (Examples: Ultrawideband, millimeter-wave, and MIMO systems).
- For best performance: MRC
 - Requires one RF chain for each diversity path.
 - Mandates complete knowledge of channel conditions.
 - Sensitive to channel estimation errors.
- To reduce complexity and be less sensitive to channel estimation errors: Only ``good" diversity paths are MRC combined.

Generalized Selection Combining

- •Hybrid scheme which bridges between the two extreme combining techniques offered by SC and MRC [Kong and Milstein, ICUPC'95].
- •Combine the Lc strongest paths among the L available ones.
- •Performance analysis of GSC received a great deal of attention over the last couple of years.
- •Variant of GSC was proposed recently:
 - •Minimum Selection GSC [Kim et al., ISCAS'03 and Gupta et al. ICC'04]
 - •Same hardware complexity and same number of channel estimates as GSC but less combined paths in average.

Minimum-Estimation-Combining (MEC) GSC

Average Number of Channel Estimates

Average Number of Combined Paths

Outage Probability Comparison

Average BER Comparison

Average BER Comparison

10

Concluding Remarks

- Switched-based diversity schemes offer adaptive low-complexity solutions for fading mitigation.
- Switch/scan and wait lead to tremendous performance gain at the expense of negligible time delay.
- MEC-GSC minimizes the average number of channel estimates and average number of combined paths while still approaching the performance of GSC.
- Applications of these schemes in multiuser diversity and multiuser OFDM (OFDMA).