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Introduction

e \When channel state information is available at the transmitter, the
capacity of a MIMO channel can be attained by:

— decoupling the MIMO channel into independent subchannels
(linear precoding), and

— distributing the available power between these subchannels
(water-filling solution)

e Objective: calculating the SNR distributions which arise when
decoupling a MIMO system as above
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Introduction

e Possible application: adaptive coded modulation combined with
time-varying MIMO systems:

— Computing the maximum attainable spectral efficiency

— Finding the optimal switching thresholds si,...,sy

| i i i SNR

N N Sn+1
MASA = Z CnP, = Z log, (1 + sp,) / py(y) dy
n=1 n=1 sn

(Mazimum Average Spectral Efficiency for Adaptive Coded Modulation)
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MIMO System Model

n
S X y \'id
— F » H G ——
N transmitting antennas m = min{M, N}
M  receiving antennas n £ max{M, N}
s € C™*': transmitted symbol vector, E[ss'] = I,.xm.
F € CN*™: [inear precoder matrix
G € C"™*M: linear decoder matrix
H ¢ CM*Y: MIMO channel matrix (i.i.d. Gaussian entries; independent,
variance % real and imaginary parts) = Rayleigh fading
n € CM*!: Zero-mean, circularly symmetric complex Gaussian noise vector
w € C™ ! receiver estimate for s

[5]
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Maximising the Information Rate

HH if N<M

° Letw:{ HH' if N>M

and Eig(W) ={\1,.... \n}

e T he distribution law of W is a called the Wishart distribution

e The singular value decomposition of H can be written

UG(CMXM
H =UAVT A € RMxN
V e CN*N
with
V1 0 0 0O --- 0
A — 0 NIV EEEE 0 0O --- 0
0 e VXS 0 e 0

(represented here for M < N)
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Maximising the Information Rate

e To maximise the information rate, one should set F = V& and
G = <I>9VTHT, where

b1 0 0 \
0 sy - 0

=] O e rm [ € RV, (TR
0 . 0

: (water-filling sol.)

¢g,1 0 0 0 0

0 ce 0 o ... 0
0 o Pgm O -0 (full rank)
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Subchannel SNR

e The constant y is determined by the power constraint:
— tr(FF") = P (constant power constraint)

— E[tr(FF))] =P (average power constraint)

e The original MIMO channel w = GHF's + Gn is decoupled into m
independent subchannels:

& A AD s+ 1 n = Gn
W = 1, e
9 / E[nn'] = ®,ATA®]

e The SNR v, on the kth among m subchannels is given by

E[(®,ATA®s)(®,ATAD )] 2
Elanes = M0

Tk =
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Objective

o Compute p., (7x), for K =1,...,m, where

Ve = Ak(b?f,k

07 p = (L — A1) = max{p — A", 0}

and
r(FFT) Z gb?:’q (constant power constraint)
Etr(FFT)] = ZEW%CI] =P (average power constraint)
g=1
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Objective

e We consider only the cases m =1 and m = 2

e \When m = 2, we have

o~ A=A

n— D(n —2)

Pag(Ay da) = ( (A= A2)2(AAg)" 2

where A1 > Ao (ordered eigenvalue distribution), and

tr(FFY) = ¢% 1 + 67,
= (u—A g+ (=24
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Constant Power Constraint

e Computation of the SNR distribution on the best subchannel, p., (v1):

LAY i X > Ap
A A
H = \ )\1P — p>\11_|_1
P if A2 < Arp,
and hence
7= (pAr—1)p =pA -1
CL(PA -1+ MAY) 0 A > Agp

P\ if Ao < Aip
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Constant Power Constraint

e We finally obtain

Pr(1) =P [5 (P =14+ MAy

DA > Aip] Prde>Aip] +

p'yl[P)\l ‘ Ao < )\1]3] - Pr [)\2 < >\1p]

where a,,, = (n — 1)!(n — 2)!
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Constant Power Constraint

A 1
Ao I
|
|
|
PAf — 14+ 2Ly — | \
s(PAM—l+x5)=2 — | | /=
|
|
2z | o _____ I
P I
|
| 1
L
1
L
1
L
!
]
1 D
I I A A L
P X ]
2 el _____ : :
Pz+P . L
: D!
: : I A2 = A\ip
: !
1 ! |
z 2z 142z >
e 5 P A1

(PA1 =14+ X271 | A2 > Aip)

Calculation of p., |3
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Average Power Constraint

e |n order to respect the power constraint
Eltr(FF)] = Bl(n - A4 + (1= Ay Y)4] = P,

(. must be the solution of

2
q_l /OO -1\ ,—x, . n—2[1n—2 2
- L dz = P,
qz:; (n+q-3 /M(M v e q_1(93)] '

a 1 x,.—ad? ( —x, .a+q) : '
where Lg(z) = jje"a™ “g5(e”"27?) is the associated

Laguerre polynomial of order q.
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Average Power Constraint

e Since v = (uAr — 1)1, the SNR distribution on the kth subchannel is:

D (V) = Doy (A — 1| pphe — 1> 0) - Pr (uhp —1>0) +
pvk(0|,u)\k—1<O)-Pr(,u)\k—1<0)

(Do (A — 1) + (k) - Pr (pAe — 1 <0) if 4, >0

0 otherwise

( 1/p
_ + 1 .
M 1pAk (%M ) +5(%)/ pa(z)de if v, >0
0

0 otherwise,

where py (-) denotes the distribution of the kth largest eigenvalue of W
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Remarks

e Constant power constraint:
— Difficult to generalise the results to m > 2

— Some definite integrals seem not to admit closed form solutions

e Average power constraint:

— Results valid for all m, but the marginal distributions py, () are
difficult to obtain:

p)\1,...,>\m<)\1, .. '7>\m) — K_ POYERPY H)\n m H

1<7,<]<m
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SNR Probability Distributions

Probability [-]

08 T T T T T T T T T
ﬁ c.2,2 .
py” (v;) (constant power constraint)
!
0.7F - .
p;"z'2 (v,) (average power constraint)
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0.6 .
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2
O 5H - 222 .
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SNR Cumulative Distributions
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Approximations

e Approximation for p*%(v1):

~c,2,2

Py (71) = be_b%[(b%)Q — 2by1 + 2] — 2be 20,

where b is chosen such that ||e( = [y 1522 () — P52 () |2 dm
IS minimised

o Satisfies [~ p5%2(v1) dyi =1 and p5*2(0) = 0
e Inspired from
P32 () = () - {1 — p e (1 + 2 (2 - e‘”“))}

+ ! :e_zl(zf — 2214+ 2) — 26_221],

where v; > 0 and z; = (v, +1)/u
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Approximations
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Approximations

Probability [-]
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Conclusions

e We have established expressions for the SNR distributions which arise
from

— decoupling a MIMO channel into independent subchannels, and

— using water-filling to distribute the available power between these
subchannels

e Results for

- m=min{M,N} =1, and m = 2

— Constant and average power constraint cases
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Future work

e Consider the cases where m > 2, find a recursion for the largest
eigenvalue of a Wishart matrix

e Find approximations for expressions involving definite integrals without
closed form solutions
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On the Eigenvalues of Complex Wishart Matrices

Let H € CM*N he 3 matrix with

— 1.1.d. zero-mean Gaussian entries

1

— independent, variance 5 real and imaginary parts

Let m = min{M, N} and n = max{M, N}

LetW:{

HH if N<M

HH' if N> M and Eig(W) ={\1,..., \n}

We are interested in the distribution of the largest eigenvalue of W,

p>\1(>‘1)
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Smallest Eigenvalue Distribution

o Edelman (1989): p} (An) = km,n Al ™e 2™/ 2P, o (A)

2
e Initial case: P, ., := ;n—/
e Recursion
SO = Pm,n—l
forio:=1tom—1
2N, dS;_ —2)(72 — 1
Si = (Am 4 2n — 2i + 2)S;_ 1 — B PV Lol | Chit P
m — 1 dA, m — 1
end
Pm,n — Sm—l,
- _ 1 9,1
with kp, , = (DT 2 [T (= (=) and  px,,(Am) = 2py (2An)
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Distribution of One Unordered Eigenvalue

e Telatar (1999):

where L§(\) are the associated Laguerre polynomials, given by

a 2\) = 1 )x)\—a dk —)x)\a—i—k
k( )_He d—Ak[e ]
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Largest Eigenvalue Distribution

e Kang and Alouini (2003):

1
(M) [T/ Tn—k+)0(m—k+1)
()|t (T A1) @A) U(N),
with
INQ Gamma function
() : m X m real matrix, with entries

{@()\1)}7;7‘7' = ”7(77, —m -+ —I—] — 1, )\1), where ’7(-, )
is the incomplete gamma function

P(-): m X m real matrix, with entries
{®)}iy = AT e
U(-): Unit step function
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Largest Eigenvalue Distribution

e Wennstrom (2002):

P (A1) Z¢k (Ap)e R,

where ¢ (-) are polynomials

e No general expression for the polynomials ¢ (-) known for arbitrary m
and n
e Conjecture:

— ¢m(A1) is the polynomial appearing in the corresponding smallest
eigenvalue distribution py_ (An,)

— ¢1(A1) is the polynomial appearing in the corresponding unordered
eigenvalue distribution py(\)
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