Exploiting Multiuser Diversity Using Multiple Feedback Thresholds

V. Hassel1, H. Koubaa1, M.-S. Alouini2, D. Gesbert3 and G. E. Øien1

1 Dept. of Electronics and Telecommunications
Norwegian University of Science and Technology, Norway
email: \{vegard,oien\}@iet.ntnu.no

2 Dept. of Electrical and Computer Engineering
University of Minnesota, USA
email: alouini@ece.umn.edu

3 Dept. of Mobile Communications
Eurecom Institute, France
email: gesbert@eurecom.fr

This presentation and the paper can also be found at http://www.tele.ntnu.no/projects/cuban/

Vegard Hassel © Tunis Workshop 24.05.2005
Outline

• **Background:**
 – System Model
 – MUD: Multiuser Diversity
 – The Feedback Problem
 – SMUD: Selective Multiuser Diversity

• **Multiple Feedback Thresholds:**
 – Main Idea
 – Why Should This Algorithm be Implemented?
 – How Should This Algorithm be Optimized?
 – Three different implementations for IEEE802.11
System Model

- Time Division Multiplexed (TDM) system with N mobile users
- Carrier-to-noise-ratios (CNRs) of the users’ channels are i.i.d.
- The time slots are smaller than a coherence time
- The users have always data to send/receive
Multiuser Diversity (MUD)

- *Diversity* in wireless systems arises because of independently fading channels
- Traditional forms of diversity: space, time, and frequency
- *Multiuser diversity*: With many users in a cell, there is high probability of finding a user with a good channel at any time
- Max CNR Scheduling: To obtain the highest *system* spectral efficiency, the user with the best channel has to be chosen at all times
- Observe: While traditional forms of diversity give better link spectral efficiency, multiuser diversity increases the system spectral efficiency
The Feedback Problem

• IDEALLY: We only need feedback from the best user!

• BUT: The users do not know if they are the best

• HENCE: In conventional MUD systems all users need to feed back their CNR values
SMUD: Selective Multiuser Diversity

- Algorithm to reduce the feedback load
- The scheduler asks for the instantaneous CNR level only from the users that have CNR above a threshold
- If none of the users feed back their CNR, a random user is chosen
- The algorithm is not rate-optimal, but gives a significant reduction in the feedback load
Main Idea

• Generalization of the SMUD algorithm: **We use multiple feedback thresholds**

• First, the users are asked if they are above the *highest* threshold value

• If none of the users feed back their CNR value, the base station asks if the users are above the second highest threshold value

• This process continues until one or more users feed back their CNR value

• If the lowest threshold value equals zero, the base station is guaranteed that one or more users feed back their CNR
Why Should This Algorithm be Implemented?

• PROS:
 – The time used to collect feedback is lower than for the full feedback algorithm. This will increase the total system capacity!
 – Reduced feedback from the mobile users will reduce their power consumption

• CONS:
 – Higher system complexity
How Should This Algorithm be Optimized?

• The feedback collection process should have the following properties:
 – The duration of the process should be as short as possible
 – In order to maximize the MUD gain we should collect the CNR value of the best user

• The time used to collect feedback is a function of:
 – The number of jumps before the successful interval is reached
 – The number of users giving feedback from the successful interval

• Tradeoff between time it takes to look for the successful interval and the time the users use to feed back their CNR values
How Should This Algorithm be Optimized?

- We cannot find sensible threshold values which minimizes the number of jumps
- We therefore choose find the threshold values which minimizes the feedback load
- The optimization process can now be done in two stages:
 - Find optimal threshold values for a given number of thresholds, \(L \)
 - Find optimal number of thresholds, \(L \)
- The optimal \(L \) can be found for a set of system parameters. The optimum will be where the advantage of introducing a new threshold is less than the disadvantage
NFL Using a Rayleigh Channel with Average CNR of 15 dB

Feedback Load Relative to Full Feedback [%]

Number of CNR Thresholds, L

2 Users

5 Users

10 Users

50 Users

Vegard Hassel © Tunis Workshop 24.05.2005
Implementations for IEEE802.11 Ad Hoc

Assumptions:

- To maximize the MUD gain, a user wants to transmit to the user which has the highest CNR.
- Both feedback and user data will be transmitted on a contention channel.
- The collection of feedback will be done within a guard time.
- The first part of the guard time consists of a broadcast message.
- All users can hear each other.
Implementations for IEEE802.11 Ad Hoc

- The threshold is successively lowered until the *successful interval* is found.
- The time used to switch from receive to send, T_{MS}, is used for each unsuccessful trial.
- If there is only one user within the successful interval, feedback will be transmitted and data transmission can start directly afterwards.
- If two or more users are trying to submit feedback at the same time, we will have a *contention problem*.

Our proposed solution to the contention problem is based on two principles:

- Ranking (indexing) of the users
- Exponential backoff
Ranking of Users

- After the successful interval is found, every user within this interval will have a possibility to transmit feedback.
- The user with the highest rank (index) is allowed to transmit first, then the user with the second lowest rank, etc.
- The time used by a user within the successful interval: $T_{FB}=160 \, \mu s$.
- The time used by a user NOT within the successful interval: $T_{MS}=50 \, \mu s$.
- Can choose to collect feedback from only the first user or from all users within the successful interval.
Exponential Backoff

- After the successful interval is found, we half the transmission probability if collisions occur.

- If no collision occur, we will have an unchanged transmission probability.

- Data transmission will start after one user has transmitted feedback successfully.
Implementations for IEEE802.11 Ad Hoc

We compare our 3 proposed algorithms with the following schemes:

- Full feedback
- No guard time + Full MUD
- Round Robin
MUD Degradation due to Guard Time for 4 Users and Short Packet Duration

- Full FB
- Contention-Based Ranked Full FB
- Contention-Based Ranked Single-User FB
- Exponential Backoff
- No Guard Time
- Round Robin

\[\text{MASSSE} \; \langle R \rangle / N \; [\text{Bits/sec/Hz}] \]

\[\text{Number of Thresholds, } L \]
MUD Degradation due to Guard Time for 4 Users and Long Packet Duration

- Full FB
- Contention-Based Ranked Full FB
- Contention-Based Ranked Single-User FB
- Exponential Backoff
- No Guard Time
- Round Robin

Number of Thresholds, L

MASSF $<R>/N$ [Bits/Sec/Hz]
MUD Degradation due to Guard Time for 10 Users and Long Packet Duration

MASSSE $<R>/N$ [Bits/Sec/Hz]

Number of Thresholds, L
Conclusion

- By using multiple feedback thresholds, we obtain an increase in the system spectral efficiency compared to full feedback.
- This algorithm will be most efficient for a fast fading channel, i.e. for short coherence times.