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Source-channel mapping in general.
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Performance measure.

• Compare the mappings to OPTA to determine their 
performance:
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Bandwidth expansion and “Twisted 
modulation”.

• The following figure shows a general 1:n bandwidth 
expanding system.



Bandwidth expansion and “Twisted 
modulation”.

• If the source has an infinite alphabet, the mapping operation 
will be a (piecewise) continuous curve.

• For a linear system this curve will be a straight line trough the 
origin (BPAM). These systems are quite far from the optimum 
bound (except for very low CSNR). 

• To make the system get closer to the optimum bound, the 
curve needs to be nonlinear.

• If we have a nonlinear signal curve and modulates it’s given 
values onto n orthonormal waveform functions, we get what is 
referred to as ”twisted modulation”.



Some History.
• The Russian V. A.Kotel’nikov considered ”optimum noise immunity” in 

the ’mse’ sense in his doctoral thesis [Kotel’nikov 59].                           
This thesis gives some pretty good ideas on how to construct bandwidth 
expanding systems that get quite close to the optimum bounds, although 
information theoretical considerations are absent.

• Kotel’nikov’s thesis dates back to 1947, but was not known in the west 
until 1959, when a translation of his thesis was published. Shannon  treated 
this type of schemes in 1949 [Shannon49]!

• Kotel’nikov considered optimum noise immunity for:
i)  Amplitude and time discrete sources.
ii) Amplitude continuous and time discrete sources.
iii) Amplitude and time continuous sources.    

In this presentation we will be concerned with ii) only.



Influence of noise when transmitting 
separate parameter (continuous alphabet) 

values.

• In  its shown that the conditional probability for receiving  
the parameter value λ, when the signal x(t) is received, is 
given by (Gaussian noise case):

• Where ‘s’ is the channel signal (some ”signal curve”), and        
is some constant dependent on x(t), but independent of λ
and t. 
We recognise this as the a posterior probability. This will 
be have a maximum for some         .
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Optimum noise immunity in the 
presence of weak noise.

• In the low intensity noise case “signal curve” s  can be 
approximated by the tangent space at the transmitted point:

• Minimising the mse:

gives the minimum low noise error:
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Optimum noise immunity in the 
presence of weak noise.

• This result tells us, that given a small noise variance, the mse can be made 
smaller by increasing the signal curves ”stretch factor” (length of tangent 
vector). 

• So for a dimension n ≥ 2 and a given channel power constraint, we need to 
make the signal curve as long as possible, i.e.  it has to be ”twisted” around 
in the given constrained region. We have a nonlinear system!



Noise immunity in presence of strong 
noise.

• There is a certain limit (CSNR) where the low noise approximation is no 
longer valid (not the case for linear systems). We will encounter what is 
called the ”threshold effect”. 

• The ”threshold effect” makes the system break down and is fundamentally 
unavoidable when using nonlinear signal curves. 
One need to keep two parts of the curve large enough, so that this effect 
occur with a very small probability. This gives a trade-off between weak-
and strong noise considerations.



1:2 Bandwidth expansion. 
Archimedean spiral.

• As we have seen previously the spiral works very well as a bandwidth 
reducing system (spiral in the source space). Its therefore tempting to see if 
this is the case for bandwidth expansion as well (spiral in the channel 
space).

• This was motivated by a comment in [Cover & Thomas91]: 
A good rate- distortion code is in general a good  channel code, and vice 
versa (duality)

• Its also a convenient structure for a power constrained Gaussian channel 
because of its circular symmetry. 
From the previous low noise analysis it should also be convenient.



Bandwidth expansion. 
Archimedean spiral.

Structure in the receivers channel space.
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Bandwidth expansion. 
Archimedean spiral.

• I will use the approximation to the inverse curve length 
function to map the source onto the spiral. 

• This will make the velocity vector’s norm equal for all λ. This 
again yields independence between signal and noise after 
reception.
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Reference system. HSQLC
[Coward2001]

• System

• HSQLC structure in channel space.



Archimedean spiral.
Performance.

• This system outperforms the HSQLC system for CSNR above 
13dB.

Simulation (n=0.88)                           Comparison (several n)
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Calculation of the performance of the 
Archimedean spiral.

• The channel CSNR is given by:

• The received SNR is given by:

• We need to calculate:
i) The mean square carrier power.
ii) The low noise error.
iii) The threshold error.

(the calculations are based on [Thomas et. al. 75]).
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Calculation of the performance of the 
Archimedean spiral

• Will assume a Gaussian input signal. The signal will be truncated at ±1. 
The truncation error can be neglected if we choose the signals standard 
deviation small enough. We assume an AWGN channel.

• i) The mean square carrier power:

• ii) Low noise error:
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Calculation of the performance of the 
Archimedean spiral.

• iii) The threshold error is quite difficult to calculate. The 
following figure shows how it’s done approximately :



Calculation of the performance of the 
Archimedean spiral.

• Since the spiral is uniform, the probability for the threshold 
effect to occur, is the same for all given λ. We get the 
following expression:
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Calculated vs. simulated results for the 
Archimedean spiral.
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Comparison to other techniques.
[McRae71]

• This comparisation is for a recieved SNR of 40dB.



Summary/conclusions.
• In a bandwidth expanding system we must consider 

both weak and strong noise immunity, and there is a 
trade-off between them.

• To get close to the optimum bound, one need to use 
nonlinear systems. 

• When using nonlinear expanding  systems the 
”threshold effect” is fundamentally unavoidable. 

• A systems has been found, and verified both 
mathematically (partly) and by simulation for 1:2 
expansion.
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