Joint source channel image coder for transmission over flat fading channels WIP/CUBAN/BEATS workshop, Sidi Bau

Greg Håkonsen, Tor Ramstad

Saïd. Tunisia

{hakonsen,ramstad}@iet.ntnu.no

Norwegian University of Science and Technology

Outline

- System overview.
 - Decorrelation.
 - Selection of image quality.
 - Channel model.
 - Transmission algorithm.
 - Transmission using joint source channel coding.
- Example/results.
- Further research/discussion/conclusion/.

System overview

Filter bank structure

- Image is decorrelated by using a *tree structured filter* bank.
 - Eight uniform bands.
 - Lowpass band further filtered using a two band filter bank in a tree structure, *dyadic splitting*.

-			

Filter bank structure

- Image is decorrelated by using a *tree structured filter bank*.
 - Eight uniform bands.
 - Lowpass band further filtered using a two band filter bank in a tree structure, *dyadic splitting*.
- Filter bank is maximally decimated.

η				

Filter bank structure

- Image is decorrelated by using a *tree structured filter bank*.
 - Eight uniform bands.
 - Lowpass band further filtered using a two band filter bank in a tree structure, *dyadic splitting*.
- Filter bank is maximally decimated.
- Different *subbands* organized as shown, low frequency bands are placed to the top left.

Description of filtered image

Mean of lowpass-lowpass band is removed to reduce power.

Description of filtered image

- Mean of lowpass-lowpass band is removed to reduce power.
- Calculate variance from blocks of size $k \times l$ from filtered image, resulting in variances of N blocks.

Description of filtered image

- Mean of lowpass-lowpass band is removed to reduce power.
- Calculate variance from blocks of size $k \times l$ from filtered image, resulting in variances of N blocks.
- Given a target *signal to noise ratio*(SNR) value, a parameter μ can be found from

$$D = \sum_{i=0}^{N-1} \min(\mu, \sigma_{X_i}^2),$$
 (2)

where

$$D = \frac{\sum_{i=0}^{N-1} \sigma_{X_i}^2}{\mathbf{SNR}}$$

Consider a frequency-flat, correlated fading channel.

- Consider a frequency-flat, correlated fading channel.
- Assume that the received signal y(k) can be written as

$$y(k) = \alpha(k)x(k) + n(k) \tag{3}$$

where $\alpha(k)$ is the channel gain, x(k) is the sent signal and n(k) is additive white gaussian noise(AWGN). Assumed $\mathcal{N}(0, 1)$.

- Consider a frequency-flat, correlated fading channel.
- Assume that the received signal y(k) can be written as

$$y(k) = \alpha(k)x(k) + n(k) \tag{3}$$

where $\alpha(k)$ is the channel gain, x(k) is the sent signal and n(k) is additive white gaussian noise(AWGN). Assumed $\mathcal{N}(0, 1)$.

• Split *channel signal-to-noise ratio*(CSNR γ) into M regions, assign a representation value γ_j for each region. $\gamma < \gamma_0 \Rightarrow$ outage.

- Consider a frequency-flat, correlated fading channel.
- Assume that the received signal y(k) can be written as

$$y(k) = \alpha(k)x(k) + n(k) \tag{3}$$

where $\alpha(k)$ is the channel gain, x(k) is the sent signal and n(k) is additive white gaussian noise(AWGN). Assumed $\mathcal{N}(0, 1)$.

- Split *channel signal-to-noise ratio*(CSNR γ) into M regions, assign a representation value γ_j for each region. $\gamma < \gamma_0 \Rightarrow$ outage.
- Optimize region thresholds and representation points with Lloyd-max algorithm, using MSE as distortion measure.

Given a channel state γ_j , and transmitted block variance $\sigma_{X_i}^2$ the needed channel samples per source sample is given by

$$r_{i,j} = \frac{\log\left(\frac{\sigma_{X_i}^2}{\mu}\right)}{\log\left(\frac{\gamma_j}{\gamma_0}\right)}$$

(4)

Given a channel state γ_j , and transmitted block variance $\sigma_{X_i}^2$ the needed channel samples per source sample is given by

0,

$$r_{i,j} = \frac{\log\left(\frac{\sigma_{X_i}^2}{\mu}\right)}{\log\left(\frac{\gamma_j}{\gamma_0}\right)}$$
Block with $\sigma_{X_i}^2 < \mu$ is not transmitted.

(4)

Given a channel state γ_j , and transmitted block variance $\sigma_{X_i}^2$ the needed channel samples per source sample is given by

$$r_{i,j} = \frac{\log\left(\frac{\sigma_{X_i}^2}{\mu}\right)}{\log\left(\frac{\gamma_j}{\gamma_0}\right)}$$

- Block with $\sigma_{X_i}^2 < \mu$ is not transmitted.
- M channel states gives M possible rates per block.

4

Given a channel state γ_j , and transmitted block variance $\sigma_{X_i}^2$ the needed channel samples per source sample is given by

$$r_{i,j} = \frac{\log\left(\frac{\sigma_{X_i}^2}{\mu}\right)}{\log\left(\frac{\gamma_j}{\gamma_0}\right)}$$

- Block with $\sigma_{X_i}^2 < \mu$ is not transmitted.
- M channel states gives M possible rates per block.
- Finite set of practical mappings.

4

Given a channel state γ_j , and transmitted block variance $\sigma_{X_i}^2$ the needed channel samples per source sample is given by

$$r_{i,j} = \frac{\log\left(\frac{\sigma_{X_i}^2}{\mu}\right)}{\log\left(\frac{\gamma_j}{\gamma_0}\right)}$$

- Block with $\sigma_{X_i}^2 < \mu$ is not transmitted.
- M channel states gives M possible rates per block.
- Finite set of practical mappings.
- Want combination of source and channel state to give lowest possible rate.

(4)

- Split channel into 4 channel states.
- $\gamma_4 > \gamma_3 > \gamma_2 > \gamma_1$.

Split channel into 4 channel states.

• $\gamma_4 > \gamma_3 > \gamma_2 > \gamma_1$.

• $\sigma_{X_1}^2 > \cdots > \sigma_{X_{12}}^2$

$$\begin{array}{c|c} \gamma_4 & \overline{\sigma_{X_1}^2} \\ \gamma_3 & \overline{\sigma_{X_2}^2} & \overline{\sigma_{X_3}^2} & \overline{\sigma_{X_4}^2} \\ \gamma_2 & \overline{\sigma_{X_5}^2} & \overline{\sigma_{X_6}^2} & \overline{\sigma_{X_7}^2} & \overline{\sigma_{X_8}^2} \\ \gamma_1 & \overline{\sigma_{X_9}^2} & \overline{\sigma_{X_{10}}^2} & \overline{\sigma_{X_{11}}^2} & \overline{\sigma_{X_{12}}^2} \end{array}$$

Split channel into 4 channel states.

- $\gamma_4 > \gamma_3 > \gamma_2 > \gamma_1$.
- $\sigma_{X_1}^2 > \cdots > \sigma_{X_{12}}^2$
- Number of blocks per state depends on probability of state.

Split channel into 4 channel states.

- $\gamma_4 > \gamma_3 > \gamma_2 > \gamma_1$.
- $\sigma_{X_1}^2 > \cdots > \sigma_{X_{12}}^2$
- Number of blocks per state depends on probability of state.
- Transmit blocks with highest variance within each channel state first.

Split channel into 4 channel states.

- $\gamma_4 > \gamma_3 > \gamma_2 > \gamma_1$.
- $\sigma_{X_1}^2 > \cdots > \sigma_{X_{12}}^2$
- Number of blocks per state depends on probability of state.
- Transmit blocks with highest variance within each channel state first.
- If channel state set is empty, choose blocks from set for better channel states.

Side information

To be able to decode the transmitted information some side information is needed.

- The variance of blocks.
- The mean value of the lowpass lowpass band.

Used mappings

• $\hat{r}_{i,j} \in \{0, \frac{1}{4}, \frac{1}{2}, \frac{2}{3}, 1, 2\}.$

Each mapping is optimized for a given *γ_j*(CSNR).
 Comparable to BER in adaptive coded modulation.

Used mappings

- $\hat{r}_{i,j} \in \{0, \frac{1}{4}, \frac{1}{2}, \frac{2}{3}, 1, 2\}.$
- Each mapping is optimized for a given *γ_j*(CSNR).
 Comparable to BER in adaptive coded modulation.
- Transmitter and receiver use same configuration.

Used mappings

- $\hat{r}_{i,j} \in \{0, \frac{1}{4}, \frac{1}{2}, \frac{2}{3}, 1, 2\}.$
- Each mapping is optimized for a given *γ_j*(CSNR).
 Comparable to BER in adaptive coded modulation.
- Transmitter and receiver use same configuration.
- Optimization/robustnes for $\hat{r}_{i,j} = \frac{1}{2}$ shown.

- Given avarage transmission power \overline{P} .
- Given representation points γ_j , $j = 1, \ldots, M$.

- Given avarage transmission power \overline{P} .
- Given representation points γ_j , $j = 1, \ldots, M$.
- Transmission power P_j set according to water filling which results in received/design CSNR

$$\gamma_{j_{\rm des}} = \frac{P_j}{\bar{P}} \gamma_j. \tag{6}$$

- Given avarage transmission power \overline{P} .
- Given representation points γ_j , $j = 1, \ldots, M$.
- Transmission power P_j set according to water filling which results in received/design CSNR

$$\gamma_{j_{\rm des}} = \frac{P_j}{\bar{P}} \gamma_j. \tag{6}$$

• Assumed channel gain found by $|\alpha_j|^2 = \gamma_j/\bar{P}$.

- Given avarage transmission power \overline{P} .
- Given representation points γ_j , $j = 1, \ldots, M$.
- Transmission power P_j set according to water filling which results in received/design CSNR

$$\gamma_{j_{\rm des}} = \frac{P_j}{\bar{P}} \gamma_j. \tag{6}$$

• Assumed channel gain found by $|\alpha_j|^2 = \gamma_j/\bar{P}$.

• Compensate for channel gain mismatch in receiver $|\alpha|^2$

$$\gamma_{j_{\text{des}}} \approx \gamma_{j_{\text{rec}}}(k) = \underbrace{P_j}_{\text{transmitter}} \underbrace{|\alpha(k)|^2}_{\text{channel}} \underbrace{\frac{|\alpha_j|^2}{|\alpha(k)|^2}}_{\text{receiver}} \quad (6)$$

where $\alpha(k)$ is actual channel gain.

Image Example

- Rayleigh fading channel.
- $\mathbf{CSNR} = 15 \, \mathbf{dB}.$
- Total rate $r_{avg} \approx 0.05$. (Schannel samples/Source samples).
- Targeted SNR is 16 dB.
- Blocksize 8×8

Channel regions/probabilities

$\gamma_{j_{\rm des}}$ (dB)	p_{calc}	p_{actual}	region (dB)		
Outage	0.08	0	-∞ - 3.0		
10.8	0.49	0.63	3.0 - 14.1		
16.0	0.28	0.11	14.1 - 17.6		
19.0	0.12	0.26	17.6 - 20.4		
21.6	0.03	0	20.4 - ∞		
Assumed rate	0.05				
Actual rate	0.057				

1 CSNR region, AWGN channel

AWGN PSNR = 30.13 dB

Gain compensation PSNR = 29.46 dB

Joint source channel image coder for transmission over flat fading channels - p.14/20

1 CSNR region

No gain compensation PSNR = 23.97 dB

Gain compensation PSNR = 29.46 dB

Joint source channel image coder for transmission over flat fading channels - p.15/20

4 CSNR regions

No gain compensation PSNR = 28.8 dB

Gain compensation PSNR = 30.2 dB

Joint source channel image coder for transmission over flat fading channels - p.16/20

Artifacts

Due to low dimensionality of mappings, certain artifacts may appear for poor channels.

Further research

- Look at side information, effects of quantizing block variances.
- Insert pilots, pilot spacing?
- Predictor, estimator.
- Find CSNR regions and representation points more optimal.
- Compensate for the nonoptimality of the different mappings.
- Surving robustness of mappings?
- Scalability, how early should important info be sent?
- Better gain mismatch compensation?