Partial Feedback-Based Opportunistic Scheduling

Presentation to KTH/S3 Dept Stockholm, March 2005

David Gesbert, Marios Kountouris

Mobile Communications Dept., Eurecom Institute www.eurecom.fr/~gesbert Sophia Antipolis, France gesbert@eurecom.fr

Cross-Layer Design for resource allocation

access point. We consider a network of N independent users communicating with a single

- Resource allocation is done at LINK/MAC layer
- Goal of cross-layer R.A. is nel state information and given certain constraints (e.g. QoS, max power) optimal assignement of resource (power, time, frequency, codes) given chan-
- Two schools of thought:
- Information theory
- Queuing theory

Multiuser Information Theory

- Establishing multiuser capacity regions (for MAC and BC)
- Devising R.A. schemes allowing to reach certain points of the CR
- For instance, the sum capacity point.

Sum capacity of the multiuser MIMO downlink [Caire03][Vishwanath03][Yu03]:

$$C_{sum} = \max_{Q_i, \sum \operatorname{Tr}(Q_i) \le P} \log_2 \|I + \sum_i H_i Q_i H_i^*\|$$

where H_i is channel matrix of user i, P is total TX power, Q_i is transmit covariance of user i

sum capacity is achieved by Dirty Paper Coding [Costa].

Multiuser Queuing Theory

queue of lengths $u_i(t)$, i=1..N at time t and bit arrival rate A_i . Consider a network with N users, exhibiting independent channels $H_i(t)$, with

- Establishing the multiple-access stability region (SR).
- The set of arrival rates $\{A_i\}$ for which there exists a resource allocation policy that keep all N queues lengths $\{u_i(t)\}$ stable
- Devising R.A. schemes allowing to reach certain point within the SR
- For instance, the optimal throughput under stability point. [Shakkottai][Yeh][Boche]

There are strong connections between capacity and stability region [Yeh 03]

Channel dependent scheduling

A few (of the many) critical issues

- Information theory advocates NON orthogonal access (unlike TDMA, CDMA) in MISO/MIMO case
- Multi-user resource allocation heavily relies of good feedback design
- Improving on fairness/performance trade-off
- Using multiple antennas in the right way (to avoid channel hardening)

On Feedback Design

Primary concerns

- Minimizing the load (hard to send full CSI of all users)
- Guaranteeing high quality of feedback (despite delays)
- Defining proper metrics for MIMO case (SNR not sufficient)

The multiple antenna case

- TDMA is optimal if BTS has one antenna only.
- If multple antennas at BTS, TDMA scheduling capacity is degraded [ISITA04]
- ⇒ Capacity achieving is TD+SDMA like (not TDMA like)!
- Feedback requirements can be heavy!

Solutions:

- Blind multi-user beamforming (Hassibi03)
- Selective multiuser diversity idea can used (extension to SDMA case)

MISO Broadcast Sum Capacity

With full feedback (N_t antennas at BTS, single antenna at mobiles):

$$C_{sum} \approx N_t \log \log N$$

Achieved by superposition coding

- Dirty Paper Coding QR decomposition [Caire, Shamai 00]
- Lattice Strategies [Erez, Shamai, Zamir 00], [Windpassinger et al. 04]
- Trellis Precoding [Yu, Cioffi 01]
- Vector Pertubation [Peel, Hochwald, Swindlehurst 03]
- Greedy ZF beamforming [Tu, Blum 03]

With no feedback: No gain!

Problem: What to do with a little feedback?

see [Sharif, Hassibi Subm. IT 03]

Opportunistic Unitary Beamforming

A low feedback, low complexity multi-user scheduler is obtained from:

$$C_u = E \left\{ \max_{Q, \mathbf{I}} SR(Q, H_{\mathbf{I}}) \right\} \tag{1}$$

Max done over the set of unitary matrices Q and scheduling vectors I.

SR is the rate summed over the users pointed by the scheduling vector, with combined channel $H_{
m I}$

10

Opportunistic multi-user beamforming (2)

Memory less Opportunistic Beamforming [Sharif, Hassibi]

At time slot t the transmitted signal is

$$s(t) = \sum_{m=1}^{N_t} q_m(t) s_m(t)$$
 (2)

Received signal is

$$y_k = \sum_{m=1}^{N_t} H_k q_m s_m + n_k, k = 1, \ldots, N$$

SINR calculation:

$$SINR_{k,m} = \frac{|H_k q_m|^2}{1/\rho_k + \sum_{j \neq m} |H_k q_j|^2}$$

Sum rate performance:

$$SR \approx E \left\{ \sum_{m=1}^{N_t} \log_2(1 + \max_{1 \le k \le N} SINR_{k,m}) \right\}$$

5

Memory less opportunistic BF performance

For very large number of users:

- ullet F the sum rate converges to C_u
- The scaling laws of C_u and of C_{sum} (with N_t, N) are identical!

For sparse networks (low number of users):

- Severe degradation
- Blind beamformer does not reach C_u nor C_{sum} .

:-(WHAT TO DO?

Robust opportunistic beamforming for Sparse Networks

- Opportunistic beamforming with beam power control (BPC) [SPAWC 2005]
- Exploiting channel memory [ISIT 2005]

Opportunistic beamformer with beam power control

Key Ideas:

- ullet Random BF Q might not reach 100% target in a sparse network.
- Major source of complexity/feedback is multiuser BF over entire user set.
- Q is good at helping detect linearly separable users, with good channel gains
- Once user set is decided with Q, MU BF can be refined at the cost of modest complexity/feedback
- Refinement can take form of recalculation of optimal BF, or power control over existing BF

SIR-based beam power control

We assume the transmitter knows all the SIRs $\gamma_{k,m} = |H_k q_m|^2$ and noise level

$$\max_{\mathbf{p}} \sum_{k \in \mathbf{I}(r)} \log \left(1 + \frac{P_m \gamma_{km}}{\sigma^2 + \sum_{j \neq m} P_j \gamma_{kj}}\right)$$
 subject to
$$\sum_{i=1}^{N_t} P_i = P$$

We propose

- closed-form solution for 2 antennas
- iterative solution for $N_t > 2$ antennas

Beam power control based on iterative waterfilling

Step 1 Calculate $\lambda_k = \frac{\gamma_{km}}{\sigma^2 + \sum P_j^{(n-1)} \gamma_{kj}}$, for $k \in \mathbf{I}^{(r)}$ For $n = 1, 2, \dots$ repeat

Step 2 Let $\mathbf{p}^{(n)}$ be the power allocation solution of:

$$\max_{\mathbf{p}}\sum_{k}\log\left(1+P_{m}\lambda_{k}\right)$$
, subject to $\sum_{m}P_{m}\leq P$ yielding $P_{m}^{(n)}=[\mu-1/\lambda_{k}]_{+}$, with $\sum_{k}[\mu-1/\lambda_{k}]_{+}=P$

SINR-based beam power control

Here we only use the knowledge of $SINR_{k,m}$.

The Beam-on Beam-off (BOBO) algorithm is proposed:

For $N_t=2$, we compute $\vartheta=SINR_{min}/SINR_{max}$. If ϑ is less than threshold,

then worse beam is turned off (with same total power), otherwise is kept on .

Memory based opportunistic beamformer

Define set of 'preferred' unitary beamformers

$$\mathbf{Q}_{pref} = [Q_1, Q_2, ..., Q_s]$$

At each time slot t,

- Generate a new random Q_{rand} , with sum rate $SR(Q_{rand})$
- Select from the Set of 'preferred' matrices, Q_i* , such that $i* = arg \max_{Q_i} SR(Q_i)$
- If $(SR(Q_{i*}) > SR(Q_{rand}))$ use Q_{i*} , else use Q_{rand}

Second phase (update of the Set)

If $(SR(Q_{rand}) > SR(Q_{imin}))$, replace Q_{imin} by Q_{rand} , where Q_{imin} is matrix with minimum sum rate $(i_{min} = arg \min_{Q_i} SR(Q_i))$

Asymptotic performance [ISIT 05]

tion Channel Memory: $M=rac{T_{coh}}{T_{slot}}$, where T_{coh} is coherence time, T_{slot} is slot dura-

Proposition

For $M \to \infty$, the 'best' beamforming matrix of the set, denoted Q_{i*} , converges to the optimal unitary beamforming matrix Q_{opt} .

Rate of convergence Can be analyzed theoretically (to be published)

Sum Rate

Simulated performance with multiuser PFS

Simulated performance with multiuser PFS

Conclusions

- Opportunistic multiuser beamforming is promising but rich in open prob-
- We showed low-feedback techniques for improving robustness based on
- Power control (from fine to coarse depending on feedback)
- memory
- We treated MISO case. Techniques may be extended and analyzed in multi-user MIMO case