A CHANNEL PREDICTIVE PROPORTIONAL FAIR SCHEDULING ALGORITHM

Hans Jørgen Bang,
Torbjörn Ekman, David Gesbert
Tunisia May 2005
Overview

• Introduction
• Proportional Fair Scheduling
• Predictive Scheduling
 ▪ Iterative algorithm
• Simulations
 ▪ Fairness measure
• Conclusion
Introduction

• Multi-user diversity scheduling
 ▪ The supported rates for each user vary
 ▪ Schedule to increase system throughput

• Channel prediction
 ▪ Future supported rates can be estimated

• Improved throughput-fairness trade-off
Throughput-fairness trade-off

- Fundamental trade-off between total cell throughput and fairness
- Max SNR scheduling
 - Max throughput
 - Relies only on the current channel state
 - Fair over infinite time horizon for equal channel statistics (otherwise normalized max SNR scheduling)
- Tighter fairness constraints
 - Leads to reduced throughput
 - Gains can be obtained by using fading predictions
A Qualitative Comparison

- Proportional Fair Scheduling (PFS) v.s. Predictive PFS
- Scheduling around the peaks instead for on the flanks.
- Improved throughput

Simulation
- Ten users with equal channel statistics
- Average SNR 0dB
- Time slot Doppler frequency product 0.01
- Prediction 20 time slots ahead
- The supported rate and scheduling instances for one user
PFS
P-PFS

![Graph showing supported rate in bps/Hz over time in slots.](image)
Proportional Fair Scheduling

• Pick the user with the highest ratio between rate and local accumulated throughput in the next time slot

\[i^*(k) = \arg \max_{i=1,\ldots,N} \frac{R_i(k)}{T_i(k)} \]

• Optimized system utility function

\[U(k) = \sum_{j=1}^{N} \log T_j(k) \]

• Exponential window for local accumulated throughput (time constant \(t_c \))

\[
T_i(k+1) = \begin{cases}
(1 - \frac{1}{t_c}) T_i(k) + \frac{1}{t_c} R_i(k) & i = i^*(k) \\
(1 - \frac{1}{t_c}) T_i(k) & i \neq i^*(k)
\end{cases}
\]
Predictive Proportional Fair Scheduling (P-PFS)

- In time slot k: don’t maximize $U(k+1)$, maximize $U(k+L)$
- Scheduling vector $i(k) = (i_1, i_2, ..., i_L)$
- Schedule to maximize $U(k+L)$

$$i^*(k) = \arg \max_{i \in \mathcal{F}} \hat{U}(k + L | i)$$

- The estimated future system utility function $U(k+L)$, assuming user i_l is served in slot $k+l-1$
 is $\hat{U}(k + L | (i_1, i_2 \ldots i_L))$
Problems With Predictive Scheduling

- Future supported data rates are assumed known
 - Short range channel state predictions are good
 - Long range predictions are quite poor
 - Don’t schedule too far
 - Don’t trust your schedule:
 Redo scheduling in each time step
- Full search of scheduling vectors to maximize a system utility function is computational demanding
 - Use possibly suboptimal iterative solutions
Cope With Prediction Uncertainty:
Always Redo Scheduling!

<table>
<thead>
<tr>
<th>k</th>
<th>$k+1$</th>
<th>$k+L-2$</th>
<th>$k+L-1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_1(k</td>
<td>k-1)$</td>
<td>$R_1(k+1</td>
<td>k-1)$</td>
</tr>
<tr>
<td>$R_2(k</td>
<td>k-1)$</td>
<td>$R_2(k+1</td>
<td>k-1)$</td>
</tr>
<tr>
<td>$R_N(k</td>
<td>k-1)$</td>
<td>$R_N(k+1</td>
<td>k-1)$</td>
</tr>
</tbody>
</table>

| $i_1(k)$ | $i_2(k)$ | ... | $i_{L-1}(k)$ | $i_L(k)$ |

Only effectuate the first component of the scheduling vector.

New channel state information. **Update rate predictions**

$R_1(k+1	k)$	$R_1(k+2	k)$...	$R_1(k+L-1	k)$	$R_1(k+L	k)$
$R_2(k+1	k)$	$R_2(k+2	k)$...	$R_2(k+L-1	k)$	$R_2(k+L	k)$
$R_N(k+1	k)$	$R_N(k+2	k)$...	$R_N(k+L-1	k)$	$R_N(k+L	k)$

| $i_1(k+1)$ | $i_2(k+1)$ | ... | $i_{L-1}(k+1)$ | $i_L(k+1)$ |

Rate prediction quality decrease with increasing prediction range.

Next time step

Redo scheduling
Cope With Complexity: Iterative Search!

\[i_1(k-1) \quad i_2(k-1) \quad \ldots \quad i_{L-1}(k-1) \quad i_L(k-1) = i(k-1) \quad \text{Previous scheduling vector} \]

\[i_2(k-1) \quad i_3(k-1) \quad \ldots \quad i_L(k-1) = i^0(k) \quad \text{Initialization} \]

\[i_2(k-1) \quad i_3(k-1) \quad \ldots \quad i_L(k-1) = i^1(k) \quad \text{First iteration} \]

\[i_2(k-1) \quad i_3(k-1) \quad \ldots \quad i_{L-1}(k) \quad i_L^1(k) = i^2(k) \quad \text{Second iteration} \]

\[\vdots \]

\[i_1^L(k) \quad i_2^{L-1}(k) \quad \ldots \quad i_{L-1}^1(k) \quad i_L^1(k) = i^L(k) \quad L:th \text{ iteration} \]

\[i_1^L(k) \quad i_2^{L-1}(k) \quad \ldots \quad i_{L-1}^2(k) \quad i_L^{L+1}(k) = i^{L+1}(k) \quad L+1:th \text{ iteration} \]

Keep iterating until it converges

Each iteration one component of the vector is recomputed, all the others are held fixed

\[i_{l+1}^{n+1}(k) = \arg \max_{i=1, \ldots, N} \hat{U}(k + L \mid i^n(k) \leftarrow i) \]
Some Comments on the Algorithm

In the proposed framework:

- Any rate predictor can be used
 - It should be conservative
- Any utility function U can be used
 - Here a generalization of PFS leads to maximizing $U(k+L)$.
 - It is feasible to redefine U to instead maximize $U(k+1)$ taking past and future rates into account

- The iterations converge fast
 - A small amount of new channel state information is introduced at each time step
 - The initial scheduling vector is based on a vector obtaining a maximum in the previous time step
Prediction Leads to Higher Throughput

Simulation
- 15 users
- Equal channel statistics
- Average SNR 0dB
- Time slot Doppler frequency product 0.01
- Prediction range: 10 slots
How to Measure Fairness

• Jain’s fairness index
• Measures spread of the users average throughput (rectangular window)
• \(J = 1 \) absolute fairness
• \(J = 1/N \) totally unfair (all resources to one user)
• \(N \) is the number of users

\[
J = \frac{(\sum_{i=1}^{N} T_i)^2}{N \sum_{i=1}^{N} T_i^2}
\]
Exploiting predictions doesn’t compromise fairness

Simulation
- 15 users
- Equal channel statistics
- Average SNR 0dB
- Time slot Doppler frequency product 0.01
- Prediction range: 10 slots
Conclusion

• Introduced a wireless scheduling algorithm
• Exploiting fading predictions in a robust manner
• Reasonable increase in complexity
• Increased throughput without compromising fairness

• This activity will be continued within the MoPSAR project