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Overview

• Introduction
• Proportional Fair Scheduling
• Predictive Scheduling

Iterative algorithm
• Simulations

Fairness measure
• Conclusion
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Introduction

• Multi-user diversity scheduling
The supported rates for each user vary
Schedule to increase system throughput

• Channel prediction
Future supported rates can be estimated

• Improved throughput-fairness trade-off 
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Throughput-fairness trade-off

• Fundamental trade-off between total cell 
throughput and fairness

• Max SNR scheduling
– Max throughput
– Relies only on the current channel state
– Fair over infinite time horizon for equal channel 

statistics (otherwise normalized max SNR scheduling)
• Tighter fairness constraints

– Leads to reduced throughput
– Gains can be obtained by using fading predictions
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A Qualitative Comparison  
• Proportional Fair Scheduling 

(PFS) v.s. Predictive PFS
• Scheduling around the peaks 

instead for on the flanks.
• Improved throughput

Simulation 
• Ten users with equal channel statistics
• Average SNR 0dB
• Time slot Doppler frequency product 0.01
• Prediction 20 time slots ahead
• The supported rate and scheduling 

instances for one user

PFS

P-FPS
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PFS
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P-PFS
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Proportional Fair Scheduling

• Pick the user with the highest ratio 
between rate and local accumulated 
throughput in the next time slot

• Optimized system utility function
Sum of the log of the local throughputs

• Exponential window for local 
accumulated throughput (time constant tc)
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Predictive Proportional Fair 
Scheduling (P-PFS)

• In time slot k:
don’t maximize U(k+1), maximize U(k+L)

• Scheduling vector  i(k)=(i1,i2,…,iL)
• Schedule to maximize U(k+L)

• The estimated future system utility function 
U(k+L), assuming user il is served in slot  k+l-1 
is
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Problems With Predictive 
Scheduling

• Future supported data rates are assumed known
Short range channel state predictions are good
Long rang predictions are quite poor
Don’t schedule too far
Don’t trust your schedule: 
Redo scheduling in each time step

• Full search of scheduling vectors to maximize a 
system utility function is computational demanding

Use possibly suboptimal iterative solutions
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Cope With Prediction Uncertainty:
Always Redo Scheduling!

k k+1 k+L-2 k+L-1         Time step
R1(k|k-1) R1(k+1|k-1) … R1(k+L-2|k-1) R1(k+L-1|k-1)

R2(k|k-1)

RN(k|k-1)

R2(k+L-2|k-1) R2(k+L-1|k-1)…R2(k+1|k-1)

RN(k+1|k-1) … RN(k+L-2|k-1) RN(k+L-1|k-1)

Rate prediction 
quality decrease 
with increasing 
prediction range

R1(k+1|k) R1(k+2|k) … R1(k+L-1|k) R1(k+L|k)

R2(k+1|k)

RN(k+1|k)

R2(k+L-1|k) R2(k+L|k)…R2(k+2|k)

RN(k+2|k) … RN(k+L-1|k) RN(k+L|k)

i1(k+1) i2(k+1) … iL-1(k+1) iL(k+1)

New channel state information. Update rate predictions

Redo scheduling

i1(k) i2(k) … iL-1(k) iL(k) Scheduling vector
Only effectuate the first component of the scheduling vector

Next 
time 
step
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Cope With Complexity:
Iterative Search!

i1(k-1) i2(k-1) … iL-1(k-1) iL(k-1) = i(k-1) Previous scheduling vector

i2(k-1) i3(k-1) … iL(k-1)

i2(k-1) i3(k-1) … iL(k-1) 1 = i0(k) Initialization

= i1(k) First iteration

…

1 ( )Li k

1 ( )Li k2
1( )Li k−

1
2 ( )Li k−

1 ( )Li k

…
= i2(k) Second iterationi2(k-1) i3(k-1) … 1 ( )Li k2

1( )Li k−

= iL(k) L:th iteration

Each iteration one component of the vector is recomputed,  
all the others are held fixed

Keep iterating until it converges
… 1( )L

Li k+2
1( )Li k−

1
2 ( )Li k−

1 ( )Li k = iL+1(k) L+1:th iteration
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Some Comments on the 
Algorithm

In the proposed frame work
• Any rate predictor can be used

It should be conservative
• Any utility function U can be used 

Here a generalization of PFS leads to maximizing U(k+L). 
It is feasible to redefine U to instead maximize U(k+1) taking past 
and future rates into account

• The iterations converge fast
A small amount of new channel state information is introduced at
each time step 
The initial scheduling vector is based on a vector obtaining a 
maximum in the previous time step
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Prediction Leads to Higher 
Throughput

Simulation
• 15 users 
• Equal channel 

statistics
• Average SNR 0dB
• Time slot Doppler 

frequency product 
0.01 

• Prediction range: 
10 slots
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How to Measure Fairness

• Jain’s fairness index
• Measures spread of the users average 

throughput (rectangular window)
• J=1 absolute fairness
• J=1/N totally unfair (all resources to one user)
• N is the number of users



16

Exploiting predictions doesn’t 
compromise fairness

Simulation
• 15 users 
• Equal channel 

statistics
• Average SNR 0dB
• Time slot Doppler 

frequency product 
0.01 

• Prediction range: 
10 slots
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Conclusion

• Introduced a wireless scheduling algorithm
• Exploiting fading predictions in a robust 

manner
• Reasonable increase in complexity 
• Increased throughput without compromising 

fairness

• This activity will be continued within the 
MoPSAR project
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