

A CHANNEL PREDICTIVE PROPORTIONAL FAIR SCHEDULING ALGORITHM

Hans Jørgen Bang, Torbjörn Ekman, David Gesbert Tunisia May 2005

- Introduction
- Proportional Fair Scheduling
- Predictive Scheduling
 - Iterative algorithm
- Simulations
 - Fairness measure
- Conclusion

Introduction

- Multi-user diversity scheduling
 - The supported rates for each user vary
 - Schedule to increase system throughput
- Channel prediction
 - Future supported rates can be estimated
- Improved throughput-fairness trade-off

Throughput-fairness trade-off

- Fundamental trade-off between total cell throughput and fairness
- Max SNR scheduling
 - Max throughput
 - Relies only on the current channel state
 - Fair over infinite time horizon for equal channel statistics (otherwise normalized max SNR scheduling)
- Tighter fairness constraints
 - Leads to reduced throughput
 - Gains can be obtained by using fading predictions

A Qualitative Comparison

- Proportional Fair Scheduling (PFS) v.s. Predictive PFS
- Scheduling around the peaks instead for on the flanks.
- Improved throughput

Simulation

- Ten users with equal channel statistics
- Average SNR 0dB
- Time slot Doppler frequency product 0.01
- Prediction 20 time slots ahead
- The supported rate and scheduling instances for one user

PFS

Proportional Fair Scheduling

- Pick the user with the highest ratio between rate and local accumulated throughput in the next time slot $i^*(k) = \arg \max_{i=1...N} \frac{R_i(k)}{T_i(k)}$
- Optimized system utility function Sum of the log of the local throughputs
- Exponential window for local accumulated throughput (time constant t_c)

$$T_{i}(k+1) = \begin{cases} \left(1 - \frac{1}{t_{c}}\right) T_{i}(k) + \frac{1}{t_{c}} R_{i}(k) & i = i^{*}(k) \\ \left(1 - \frac{1}{t_{c}}\right) T_{i}(k) & i \neq i^{*}(k) \end{cases}$$

 $U(k) = \sum \log T_j(k)$

Predictive Proportional Fair Scheduling (P-PFS)

- In time slot k:
 - don't maximize U(k+1), maximize U(k+L)
- Scheduling vector $\mathbf{i}(k) = (i_1, i_2, \dots, i_L)$
- Schedule to maximize U(k+L)

$$\mathbf{i}^*(k) = \arg \max_{\mathbf{i} \in \mathcal{F}} \hat{U}(k+L|\mathbf{i})$$

• The estimated future system utility function U(k+L), assuming user i_l is served in slot k+l-1 is $\hat{U}(k+L|(i_1,i_2...i_L))$

Problems With Predictive Scheduling

- Future supported data rates are assumed known
 - Short range channel state predictions are good
 - Long rang predictions are quite poor
 - Don't schedule too far
 - Don't trust your schedule: Redo scheduling in each time step
- Full search of scheduling vectors to maximize a system utility function is computational demanding
 - Use possibly suboptimal iterative solutions

Cope With Prediction Uncertainty: Always Redo Scheduling!

_	k	<i>k</i> +1	<i>k</i> + <i>L</i> -2	k+L-1	Time step
	$R_{l}(k/k-1)$	$R_{l}(k+1/k-1)$	 $R_{l}(k+L-2/k-1)$	$R_{1}(k+L-1/k-1)$	Rate prediction
	$R_2(k/k-1)$	$R_2(k+1/k-1)$	 $R_2(k+L-2/k-1)$	$R_2(k+L-1/k-1)$	quality decrease
					with increasing
	$R_N(k/k-1)$	$R_N(k+1/k-1)$	 $R_{N}(k+L-2/k-1)$	$R_N(k+L-1/k-1)$	prediction range
	<i>i₁(k)</i>	<i>i</i> ₂ (<i>k</i>)	 $i_{L-l}(k)$	$i_L(k)$	Scheduling vector

Only effectuate the first component of the scheduling vector

New channel state information. Update rate predictions

Novt	$R_1(k+1/k)$	$R_l(k+2/k)$	 $R_1(k+L-1/k)$	$R_{l}(k+L/k)$
	$R_2(k+1/k)$	$R_2(k+2/k)$	 $R_2(k+L-1/k)$	$R_2(k+L/k)$
time				
step	$R_N(k+1/k)$	$R_N(k+2/k)$	 $R_N(k+L-1/k)$	$R_N(k+L/k)$
Redo scheduling	<i>i₁(k+1)</i>	<i>i</i> ₂ (<i>k</i> +1)	 $i_{L-1}(k+1)$	<i>i_L(k+1)</i>

Cope With Complexity: Iterative Search!

<i>i₁(k-1)</i>	<i>i</i> ₂ (<i>k</i> -1)		$i_{L-1}(k-1)$	$i_L(k-1)$	$\mathbf{i} = \mathbf{i}(k-1)$ Previous scheduling vector		
	<i>i</i> ₂ (<i>k</i> -1)	<i>i</i> ₃ (<i>k</i> -1)	•••	$i_L(k-1)$	1	$= \mathbf{i}^{0}(k)$ Initialization	
	<i>i</i> ₂ (<i>k</i> -1)	<i>i₃(k-1)</i>		$i_L(k-1)$	$i_L^1(k)$	$= \mathbf{i}^{I}(k)$ First iteration	
	<i>i</i> ₂ (<i>k</i> -1)	i ₃ (k-1)	•••	$i_{L-1}^2(k)$	$i_L^1(k)$	$= \mathbf{i}^2(k)$ Second iteration	
						_	
	$i_1^L(k)$	$i_2^{L-1}(k)$	•••	$i_{L-1}^2(k)$	$i_L^1(k)$	$= \mathbf{i}^{L}(k)$ L:th iteration	
	$i_1^L(k)$	$i_2^{L-1}(k)$		$i_{L-1}^2(k)$	$i_L^{L+1}(k)$	= $\mathbf{i}^{L+1}(k)$ L+1:th iteration	

Keep iterating until it converges

Each iteration one component of the vector is recomputed, all the others are held fixed

$$i_l^{n+1}(k) = \arg \max_{i=1,.,N} \hat{U}(k+L|\mathbf{i}^n(k) \leftarrow i)$$

Some Comments on the Algorithm

In the proposed frame work

- Any rate predictor can be used
 - It should be conservative
- Any utility function U can be used
 - Here a generalization of PFS leads to maximizing U(k+L).
 - It is feasible to redefine U to instead maximize U(k+1) taking past and future rates into account
- The iterations converge fast
 - A small amount of new channel state information is introduced at each time step
 - The initial scheduling vector is based on a vector obtaining a maximum in the previous time step

Prediction Leads to Higher Throughput

Simulation

- 15 users
- Equal channel statistics
- Average SNR 0dB
- Time slot Doppler frequency product 0.01
- Prediction range: 10 slots

How to Measure Fairness

- Jain's fairness index
- Measures spread of the users average throughput (rectangular window)
- J=1 absolute fairness
- J=1/N totally unfair (all resources to one user)
- *N* is the number of users

$$J = \frac{\left(\sum_{i=1}^{N} \mathcal{T}_{i}\right)^{2}}{N \sum_{i=1}^{N} \mathcal{T}_{i}^{2}}$$

Exploiting predictions doesn't compromise fairness

Simulation

- 15 users
- Equal channel statistics
- Average SNR 0dB
- Time slot Doppler frequency product 0.01
- Prediction range: 10 slots

- Introduced a wireless scheduling algorithm
- Exploiting fading predictions in a robust manner
- Reasonable increase in complexity
- Increased throughput without compromising fairness
- This activity will be continued within the MoPSAR project