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Abstract— This paper presents a technique to improve the
performance of TCP and the utilization of wireless networks.
Wireless links exhibit high rates of bit errors, compared
to communication over wireline or fiber. Since TCP cannot
separate packet losses due to bit errors versus congestion,
all losses are treated as signs of congestion and congestion
avoidance is initiated. This paper explores the possibility
of accepting TCP packets with an erroneous checksum, to
improve network performance for those applications that can
tolerate bit errors. Since errors may be in the TCP header as
well as the payload, the possibility of recovering the header
is discussed. An algorithm for this recovery is also presented.
Experiments with an implementation have been performed,
which show that large improvements in throughput can be
achieved, depending on link and error characteristics.

I. INTRODUCTION

The ubiquitous transport protocol on the Internet, TCP,
was designed to operate over a large span of heterogenous
network technologies. However, wireless links provide new
challenges. The bit error rate is much higher over wireless
links compared to wireline links. This results in corrupted
frames that are discarded at the link layer or at the TCP
receiver if the link layer delivers erroneous frames. This
poses problems for both TCP and the wireless link. TCP
uses lost packets as an indication of congestion, which
is not the cause of loss in this case. Thus, TCP initiates
congestion control unnecessarily. This causes TCP perfor-
mance to degrade, and the wireless link to be sub-optimally
utilized. Also, the damaged packet is retransmitted over
the link, leading to less spectral efficiency. The problems
of TCP over wireless networks are noted by [1], [2],
[3] and others. The solutions proposed so far to support
TCP over wireless can be coarsely classified into three
categories. The split-connection/proxy approach uses one
TCP connection to the base station, and another TCP
connection from the base station to the mobile unit. This
is for instance used by Indirect-TCP[4]. The transparent
inspection/link-layer approach is located at the base station
and keeps track of the packets flowing by. This is used by
Snoop[1] and others to do local retransmission when it is
determined that the receiver has not received all packets
the base station has forwarded. The third approach, end-
host modification, requires modifications in one or both of
the communicating end-points. This is done for example in
FreezeTCP[5] and TCP-HACK[6].

Most of the work to date optimizes the performance of
TCP while keeping the paradigm of fully reliable trans-
port. The Partially Reliable Transport Protocol[7] (PRTP)
instead allows controlled loss in a modified version of TCP.

The application can set a reliability level which indicates
the amount of data loss the application can accept. Another
example of accepting possibly erroneous data is the UDP-
Lite[8] protocol. In UDP, the checksum covers either the
entire packet or nothing at all. With UDP-Lite, the UDP
length field semantic is changed to instead mean checksum
coverage. This means that the checksum can cover for
example UDP/RTP headers, while allowing errors in the
RTP payload.

Building on these ideas, this paper presents a tech-
nique to accept TCP packets that have been damaged
by bit errors. Accepting and acknowledging, instead of
discarding, damaged packets means that losses due to bit
errors and congestion are separated. Especially multimedia
applications may benefit from trading bit errors to get better
network performance1. For example, some pixels wrong
in a picture will be compensated for by the human eye.
Likewise for audio, the human ear will compensate for a
few wrong sound samples. These applications could then
benefit from an increased throughput and reduced jitter by
doing a tradeoff for quality.

UDP is often used for transporting multimedia, depend-
ing on the needs of real time interactive communication.
However, UDP lacks for example the congestion control
features of TCP, and may therefore take an unfair amount
of the available bandwidth, compared to TCP-friendly
streams. This makes TCP an alternative for multimedia ap-
plications with soft real time constraints, such as streaming.
TCP can be used for multimedia streaming by for example
RealAudio[9] and Microsoft Windows Media Player[10].
The case for multimedia streaming with TCP is further
argued in [11], [12].

To determine what gains can be made by accepting
bit errors, an initial implementation of the idea has been
performed in the Linux kernel. This modification is called
“TCP-L”, as an indication of a more lightweight (fewer
retransmissions) version of TCP.

For the modification to be useful, it should be easy
to employ. Therefore it only requires modification on the
receiving side. Compared to having to modify both the
sender and receiver, it is easier for the end-user to deploy a
solution which is not dependent upon the service provider
to make changes. This approach can then be classified
as an end-host modification, relating to the classifications

1The underlying assumption is that the application using this modified
TCP can handle errors, but this is subject to other research areas such as
image coding. Also, the link layer must be able to deliver erroneous data
to the transport layer.



discussed earlier. The advantages of this class of mod-
ifications are analogous to the “end-to-end” arguments
presented in [13]; end-points have the best knowledge
of its communication, so that is where logic should be
implemented. Applications need to inform TCP-L whether
bit errors can be accepted or not, which is another reason
for modifying the end-point. At the same time, it could be a
disadvantage to have to modify end-user terminals if they
are many and require manual intervention. Implementing
a modification as an update to the wireless infrastructure
could sometimes be easier.

The remainder of this paper is organized as follows.
Section II discusses the possibilities of recovering the
header, by classifying the header content. The chapter
further presents a recovery technique and the possible con-
sequences of making a bad decision. Section III presents
experiments done with a simple (no header recovery)
implementation of TCP-L, from the setup of the emulation
environment to the results. Finally, Section IV presents the
conclusions.

II. HEADER DECODING/RECOVERY

The idea to make use of damaged TCP packets is at
a first glance easily realized by accepting invalid TCP
checksums. However, since the checksum covers both the
TCP header and the data payload, it is not obvious if the
error/errors is/are in the header or payload. This separation
is important because the header contains (among other) in-
formation to deliver the data to the correct application, and
in the correct order. For the initial experiments described
in the next section, the header was kept intact except
for the checksum (meaning that no header recovery was
necessary). However, if the technique is to be used over a
real network, then the problems with potential errors in the
header must be taken into account. This section discusses
the issues with decoding and recovery of a possibly corrupt
TCP header.

A. TCP header overview

The TCP header (Figure 1) contains information to de-
liver the data to the correct application; when an application
wishes to communicate with TCP, it uses the concept of
ports which multiplex the communication endpoints at a
host. The header also contains information (the sequence
number) to fit its payload into the data stream delivered
to the application, control information to establish/close
a connection, and a checksum covering the header and
payload.

As earlier header compression research has
determined[14], [15], many fields in the header are
constant or can be derived from other packets belonging
to the same stream. The terminology nochange, inferred,
delta and random is used in [15]. They refer to fields
that are constant throughout the session, can be derived
from other information, can be calculated from an earlier
value plus a delta value, and fields whose content vary in
a random fashion, respectively.
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Fig. 1. The TCP header

We reuse these definitions2 in Table I. It depicts the
initial classification of the TCP header fields into the
mentioned categories. The assumptions behind this clas-
sification are that every packet carries the same amount
of data (to have delta-spaced sequence numbers), and the
meaning of “random” is more like “unpredictable”. Further,
to simplify the discussion, it is assumed that TCP options
are not used (which gives a constant header length).

nochange source port, destination port, header length
delta sequence number, ack number, adv. window
random checksum, URG, ACK, PSH, RST, SYN,

FIN, urg. pointer

TABLE I
CLASSIFICATION OF TCP HEADER FIELDS

There seems to be a lot of randomly varying fields
which will cause problems when errors occur. However,
by making some assumptions, the table can be extended
with an additional category, dontcare, and reconstructed
as in Table II.

nochange source port, destination port, header length,
URG, ACK, RST, SYN

delta sequence number
random
dontcare ack number, adv. window, checksum,

PSH, FIN, urgent pointer

TABLE II
A RE-CLASSIFICATION OF TCP HEADER FIELDS

The reasoning behind the additions to the nochange
category is the following. The URG flag is used mostly by
terminal traffic type applications, i.e. not the multimedia
application target. It is also the choice of the application to
use this flag, so it can be assumed that it is not used. Only
packets with non-empty data payloads are recovered3. This
means that the SYN flag will always be set to zero, and the
ACK flag always set to one[16] since the connection has
been established and data is being communicated. When

2Except “inferred”, because this is e.g. used for frame sizes derived
from link layer information.

3If a packet has an empty payload, it is of no use to the application.
Further, if the checksum is incorrect, it means that all errors are in the
header. Therefore it would be better to get a retransmission of this packet
than to try to recover it.



the RST flag is set, the packet contains no data. Therefore
it is safe to always clear it if there is data in the payload.

The reasoning for the classification of the dontcare
header fields is the following. The cumulative acknowl-
edgement number in a broken packet can be safely replaced
with the most recently correctly received acknowledgement
number. Data is assumed to flow mainly in one direction,
to the receiver, which acknowledges packets. This causes
the advertised window to change minimally, as the sender
does not get any data to fill its buffers4. The TCP checksum
has already failed verification, so it is irrelevant to the
decoding. PSH is a recommendation to the receiver to
deliver any buffered data to the application, and it is
reasonable to believe that an error in this flag would not
cause harm. The FIN flag should always be zero until the
connection is to be closed down. If it is set to one in a
damaged packet, it could either be in error, or it could
be a true FIN. In both cases, it is safe to set it to zero,
since it consumes one sequence number. A true FIN will
then not be acknowledged, causing a retransmission of the
FIN which hopefully will be delivered correctly. Since we
assumed that no urgent data would be sent, the urgent
pointer then becomes irrelevant as well.

The reconstructed classification makes it easier to handle
errors in the header, since only the sequence number need
to be recovered. As long as the corresponding connection
can be found, the other fields can be found (or set to safe
values) through other means.

B. Phases of Recovery
This section presents the steps that are taken in order to

detect errors, locate connections and salvage errors in the
header. A graphical overview is presented in Figure 2, and
a discussion follows below.

Localize

Pass on

csum invalid

Discard

csum correct

Header repaired

Corresponding connection not found

Connection found

Risk analysisSalvage

Detect

Fig. 2. Recovery procedure overview

a) Detect: The first step is to detect that an error has
occurred. This is normally done by verifying the checksum
of the segment, but may also be determined from the
link layer, depending on the possibilities of information
exchange between the layers. If the checksum is correct,
the segment is passed on normally. Otherwise, the segment
is processed to localize the corresponding TCP connection.

4Consideration has not been taken to other causes of advertised window
changes, such as Freeze-TCP[5].

b) Localize: When a segment has been determined to
contain errors, the corresponding connection for the packet
must be found. This is necessary to make use of constant
and temporal information for the connection, such as ports
and previous sequence numbers. This localization can be
carried out with help of the header characteristics discussed
in Section II-A. This is done for example by trying to match
port and sequence numbers to the active connections in
the system. However, too much effort should not be spent
trying to find a match. If a lot of the header has been
damaged, it is probable that the payload is also severely
damaged and not that useful to the application.

c) Risk analysis: If a header field does not correspond
to an expected value, there are two options. Either the
value is kept, or a presumably better value is chosen. This
choosing implies a risk, and the risk analysis must consider
the consequences of changing a given header.

The recovery algorithm works by first matching the
packet to an existing connection. This is a critical step,
because choosing the wrong connection may cause data to
be injected into a completely foreign stream. If there are
few streams to different hosts and varying port numbers,
the chances of mapping a packet to the wrong connection
is minimized. However, if there is a set of connections
that share one end point and have consecutive local port
numbers, the risk of mapping to the wrong connection is
increased.

Another critical issue is the sequence number. This
determines where in the stream the payload belongs. How
critical depends on the applications. Can it tolerate “data
reordering”, or “data truncation” for example?

Some of these choices may have to be controlled by the
application, because it knows what kind of errors that are
acceptable.

d) Salvage: In this step, the packet has been deter-
mined to contain errors, and if they are in the header they
should be salvaged. The actual algorithm is described in
section II-C below. After the header has been salvaged, the
segment is passed on as if the checksum was correct.

e) Discard: In the salvation phase, chances are that
the header could not be satisfactorily salvaged. For exam-
ple, when doing the risk analysis a change may be deemed
too risky to perform, but also too risky to not perform.
One solution that can always be used in these cases is to
simply discard the packet. This is what happens normally
when the checksum is invalid, and causes a retransmission
of the packet.

C. Recovery Algorithm

Given the assumptions outlined earlier with regard to
the header field properties, a possible way to implement
the recovery phases is outlined below:

1) A faulty packet (tcp segment) is detected by an
invalid checksum.

2) The packet is mapped to an existing connection,
identified by {src addr, dest addr, src port, dest port}.



If no exact match is found, an approximate matching
is tried. That is, removing src port from the matching
or doing bit-level matching. If several connections
are found to be possible candidates, sequence and
acknowledgement numbers are used to choose the
most probable connection.
If no connection is found to be a close enough match,
the packet is discarded.

3) If the constant header fields (Table II) are incorrect,
they are changed to match those of the found con-
nection. The “dontcare” fields are set to safe defaults.

4) The sequence number is checked to see if it is the
expected one, in relation to earlier received packets.
If it is not expected, there may be two causes.

a) The sequence number may be corrupt
b) The packet may have arrived out of sequence

These causes could also be combined, i.e. a packet
out of order has a corrupt sequence number.
If the sequence number equals the last sent ac-
knowledgement, we assume it is correct. From the
assumption that the sequence number is delta spaced,
multiples of packet sizes can be added to the last
sent acknowledgement to see if it matches. Then, the
packet may be assumed to be delivered out of order.
However, if the sequence number does not meet the
criteria above, the packet should be discarded. This
is to minimize the risk of placing data at the wrong
position in the data stream, which may be harder to
handle for the application compared to bit errors.

III. EXPERIMENTS

Experiments aimed to compare the performance of reg-
ular TCP to TCP-L, from a protocol point of view, have
been performed. The performance was believed beforehand
to be improved, but the degree of improvement would
be shown through experiments. It was also the intention
to get an indication if performance improvement differed
between different types of networks. Therefore, a num-
ber of link profiles with different bandwidth and delay
characteristics were used. To see the impact of different
error characteristics, a number of loss profiles were defined.
This implementation of TCP-L did not include the header
recovery algorithm mentioned above.

A. Experiment Setup

The physical experiment setup consisted of three net-
worked computers (Figure 3). One sender, one gateway
which emulated the wireless link models and created errors
in passing packets, and one receiver containing the TCP-L
modification.

The wireless link emulator was set to emulate three
different link profiles. To get a more concrete vision of the
links, they may be thought of as a GSM telephone link, a
third generation telephone system link and finally a WiFi
802.11b LAN network.
� Low bandwidth and high delay; 9.6kbit/s, 150ms delay

(“GSM”)

Sender Receiver using TCP−LWireless link emulator

Fig. 3. Experiment setup

� Medium bandwidth and medium delay; 384kbit/s,
70ms delay (“UMTS”)

� High bandwidth and low delay; 11Mbit/s, 10ms delay
(“802.11b”)

These link profiles were used together with a range
of loss profiles (Table III). The loss profiles used a two-
state markov model to simulate error bursts, with different
timing values for a ”good” state (no errors occurring) and a
”bad” state where errors hit every packet. This is a standard
model used by [8], [17], [18], and others to simulate errors
on wireless links. The resulting packet error rates ranged
from 0 to about 5 percent. Note that in these experiments
the position of the corruption is not taken into account.
Except for the checksum, the header was always correct.

Loss profile ��� ��� Bad Packet Rate
0 	 0 0
1 2.0s 30ms 1.5%
2 10.0s 30ms 0.3%
3 2.0s 60ms 2.9%
4 2.0s 100ms 4.8%
5 5.0s 100ms 2.0%
6 5.0s 200ms 3.8%

TABLE III
LOSS PROFILES USED IN THE EXPERIMENTS

The experiment consisted of sending bulk data from the
sender to the receiver, while capturing the network traffic
with the tcpdump network packet capturer. This data was
then analyzed with the tcptrace[19] tool. The results of this
analysis is summarized in the next section. Further analysis
is available in [20].

B. Experiment Results

Figures 4-6 show the results in a graphical form, and they
are constructed as follows. On the y-axis, the throughput is
shown. The x-axis is marked 0 to 6, corresponding to the
loss profiles in Table III. Two values are shown within each
loss profile, the leftmost representing the results from the
experiments with TCP-L enabled and the rightmost with
TCP-L disabled (i.e. an unmodified TCP). Each result is
then presented as a box plot, to also show the extreme
values and quartiles of measurements instead of only the
mean and median value.

f) GSM Profile: The throughput graph of the GSM
profile experiments can be found in Figure 4. We see
that for loss profile 0, the results are the same whether
TCP-L is enabled or not. This is the expected result, as
this profile should generate zero errors. This shows that
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Fig. 4. GSM profile results

TCP-L behaves like unmodified TCP when there are no
errors. When errors are introduced, TCP-L continues to
maintain the same throughput, whereas regular TCP starts
to degrade.

We note that in the experiments where TCP experiences
packet loss, the mean/median degradations vary from about
1 to 6 percent. The performance degradations can be seen
proportional to the “bad packet rate” presented in Table III.
A final observation of the results within each loss profile
reveals that TCP-L enabled shows no variation, while the
variation in throughput degradation with original TCP is
large. For example, in loss profile 4 it varies from 3 to 15
percent.
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Fig. 5. UMTS profile results

g) UMTS Profile: The throughput graph for the
UMTS profile is displayed in Figure 5. As for the GSM
profile, enabled TCP-L delivers constant throughput and
no variation. When regular TCP experiences packet loss,
the degradations of mean/median throughputs varies from 3
to 17 percent. Also, we note that the throughput variations
within the loss profiles are large. For example, a throughput
degradation between 6 to 26 percent is seen in loss profile
4.
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Fig. 6. 802.11b profile results

h) 802.11b Profile: Figure 6 shows the results for the
802.11b profile. As before, loss profile 0 is the same for
TCP-L enabled and disabled, as it should. Using TCP-
L gives a constant throughput with almost no variation.
When TCP-L is not used, we see a degradation in average
throughput in the range of 20 to 56 percent, for loss profiles
1 to 6. This means that in some cases, enabling TCP-L
yields a 100% throughput increase.

However, it should be noted that these experiments were
done with the assumption that all packets could be used by
TCP-L. It is likely that an error burst destroys the sensitive
header information, rendering the packet useless. It must
then be discarded, and a retransmission would occur. This
retransmission would then cause a performance degradation
for TCP-L as well. The experiments do, however, indicate
the maximum gains that can be made, if all headers can be
recovered.

IV. CONCLUSIONS

This paper explores the idea of allowing bit errors to
improve the performance of TCP in a wireless environment.
From the presented experiments we conclude that large
improvements in network performance may be gained,
depending on link and error characteristics. For this to
be possible, some conditions must be met. The link layer
should deliver erroneous data to the transport layer. The
application should also be able to handle errors, and to
communicate to TCP-L when errors are acceptable or not.
We are currently extending our TCP-L implementation to
handle header recovery, using the presented recovery algo-
rithm. Future work involves improving the implementation
by utilizing “soft information” from the link layer frame
decoding process to correct as many errors as possible.
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