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Abstract

The effect of input saturation in linear time invariant control systems is
addressed. We utilize a controller in polynomial form, with a three degrees of
freedom structure. This makes it possible to add a saturation compensator
(an anti-windup filter) separately, after tuning of the controller properties
for unsaturated signals.

Our aim is that the effect of a saturation event should decay as quickly as
possible after desaturation, while the tendency for repeated re-saturations,
due to nonlinear oscillations, should be supressed. This is achieved by mod-
ifying the relevant loop gain by a safety margin. The modified loop gain is
then adjusted, so that it touches the describing function of the saturation
nonlinearity. The construction of the safety margin takes the magnitude
of exogenous signals into account. The method requires only simple calcu-
lations. It can be automated, using a one~dimensional numerical search.
Furthermore, the effect of D/A-quantization in digital feedback systems is
also controlled by the same antiwindup scheme. The presence of unstruc-
tured errors in a linear plant model can be taken into account.

We also provide a discussion on how the frequency domain viewpoint can

improve the understanding of previously suggested anti-windup methods,
such as the observer-based approach, and the conditioning technique.

Report UPTEC 93024R, Department of Technology, Uppsala University.




1 INTRODUCTION

Linear feedback design is such a common tool, that we often forget to notice the
mystery in why such methods do work at all. We adjust linear controllers, and
expect them to function in a nonlinear environment. This paper describes a small
step towards a more realistic approach. It develops a simple and systematic ways
of handling the most common nonlinearity: the saturation of the control signal.

When a controller is adjusted without taking input saturation into account, se-
vere performance loss, large overshoots, or even limit cycle oscillations may re-
sult, if the control system saturates. Such problems are sometimes referred to as
windup phenomena. The reduction of achievable performance due to saturation
has been studied by Lozier (1981). Saturation typically happens in regulators
during startup, or at major setpoint changes. In high performance servo systems,
saturation occurs frequently, since it is normally considered uneconomical to over—
dimension the actuator so that saturation events become infrequent.

There do exist methods, such as classical optimal control, or infinite horizon Model
Algorithmic Control (Garcia et.al. 1989), that take both stability and constraints
into account. However, due to the computational difficulty with all such schemes,
the effect of input saturation is frequently checked by simulation only.

In PID control, windup problems are of central interest. Many modifications have
been suggested, which change the structure of the controller when the control signal
saturates. They are called safety nets, or anti-windup modifications. See Hanus
(1988), Rundqwist (1991) and Walgama (1991) for good surveys. Two methods for
more general control laws are the observer principle by Astrém and Wittenmark
(1984) and the conditioning technique, see Hanus et.al. (1987). These schemes
often work well, but neither of them is guaranteed to provide a satisfactory result.

The windup phenomenon has often been interpreted as due to errors in the con-
troller states, in particular the integrator state. Windup problems are, however,
not restricted to integrating control laws. They are not really properties of the
controller states at all. Instead, windup phenomena are better viewed as problems
encountered when a linear system (controller and linear plant) works in closed loop
with a static nonlinear feedback (the saturation).

The aim of our present research has been to investigate how far the windup problem
can be handled by simple, essentially linear, methods. Anti-~windup adjustment
should be a natural additional step in any linear feedback design. That situation
will, however, become a reality only if simple tools are available, and are adequate.
To attain simplicity, an anti-windup modification should not alter the control prop-
erties in the linear region. It should be possible to design the linear-range feedback
separately, in a first step. In a later step, the properties at saturation are adjusted.

What, then, should be the goal of an anti-windup design? We have focused on
a basic compromise, which has previously hardly received attention. Peformance
degradation may last for a considerable time after desaturation. It is advantageous




if saturation events end as soon as possible, and their effect decays quickly. This
may, however, result in deep resaturation and nonlinear oscillations, limit cycles.
We search for a way of obtaining both a fast transient and avoidance of limit cycles.

It is hard to address this issue with presently available methods. Several of them,
such as the conditioning technique, lack adjustable parameters. When problems
occur, they leave no alternative but to modify the linear feedback design. Others,
such as the observer-based method, do have adjustable parameters, but there exist
no tools for adjusting them in a systematic way.

A novel method is therefore outlined in the present paper. It is based on the fol-
lowing choices of regulator structure, criterion and design tools:

o As regulator structure, we consider a controller in polynomial form. It includes
the general anti-windup modification of Rénnback et.al. (1992), by which windup
control can be discussed in conventional linear pole placement terms. The control
law has three degrees of freedom, as also suggested by Horowitz (1983). We intro-
duce a scalar parameter for adjusting windup properties.

o The criterion for adjusting this parameter is that the recovery transient after
desaturation should be fast, while nonlinear oscillations should not occur.

e The tool for attaining this aim is to place the loop gain on a “sufficient distance”
from the describing function of the saturation nonlinearity.

The describing function was used as an antiwindup design tool also in a recent
paper by Wurmthaler and Hippe (1991). We use the tool differently from their
work, in that we adjust only the anti-windup part, not the whole feedback sys-
tem. Thus, we avoid loss of performance in the linear range. We also suggest an
improved safety margin between the loop gain and the describing function.

The methodology is, in this paper, restricted to linear time—invariant control laws
for SISO systems. It can easily be generalized to state feedbacks. The method
works for stable or marginally stable systems, with static input nonlinearities which
are invertible (except for the saturation). As an added bonus, the effect of D/A-
quantization in a digital feedback system is also controlled. Errors in the linear
plant model can be taken into account in the anti-windup design.

The paper is organized as follows. The system and regulator structure is presented
in Section 2. The use of linear analysis, by regarding the saturation effect as an
equivalent disturbance, and of describing function analysis to predict nonlinear
oscillations, is outlined in Section 3. These methods are utilized in Section 3.3 to
understand the properties of some anti-windup schemes. This discussion comple-
ments that of Ronnback et.al. (1992). In Section 4, our design method is outlined.
Key issues are how to introduce the adjustable parameter, and how to construct a
safety margin for the loop gain. In Section 5, different anti—windup strategies are
compared for three different systems, all controlled by LQG-designed regulators.
Section 6 describes how model errors and quantization effects can be handled.




2 A REGULATOR IN POLYNOMIAL FORM
WITH WINDUP COMPENSATION

A modification of the controller structure of Figure 1 will be considered. The
process subjected to control is assumed linear and time—invariant (LTT), except
for a static saturation nonlinearity, representing the actuator constraint.

B
y = z+8) 5 gm = y+7 (2.1)
Vmax if %> Umax
v o= sat[u]z:;‘: a u i Vmin < U < Vmax (2.2)

Umin 1 % < Umin -

Here, y is the scalar controlled output, « and v are control signal before and after
saturation, B and « are process and measurement disturbances, and y,, is the
measured signal. The limits vyay and Vmin are defined with respect to the working
point of the control system, which is here set to zero. If the system contains a
general invertible input nonlinearity f(-), we assume that it has been reduced to
a simple saturation. This can be done by applying a model of its inverse on a
saturated control signal,
o = fH satlulm)

and sending the modified signal u’ to the actuator v = f(u').

The basic linear controller structure has two degrees of freedom. It is parametrized
by polynomials {R, S,T}, as

Ru = —Syp+Tw (2.3)

where w is the reference for y. Above, A and R are assumed to be monic polyno-
mials, i.e. to have highest degree coefficients equal to 1.
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Figure 1: A SISO-process with actuator constraints and a ‘polynomial controller’

are the main parts of the system.

Both the continuous-time and the discrete-time cases will be trcated simulta-
neously. The reader should think of polynomial arguments as being either the
derivative operator p (= d/dt), the forward shift operator ¢ or, when appropriate,
the corresponding transform variables s or z. The é—operator form, advocated by

4




Middleton and Goodwin (1990), can also be used. Furthermore, the polynomials
are presumed to satisfy the following causality /properness restrictions

deg[R] > deg[T] ; deg[R] >deg[S] ; deg[A] > deg[B] .

We assume B/A to have no hidden modes, and to have all poles inside or on the
limit of the stability region. A controller with actuator constraints can then sta-
bilize the system. See e.g. Theorem 6 of Tsirukis and Morari (1992).

We complement (2.3) with a compensation, which becomes active only due to satu-
ration. The technique is called windup compensation, and the controller is referred
to as an anti~windup compensator. It controls the properties of the system during
saturation, and the transient effects after leaving saturation. A key to windup
compensation is that the true, saturated control signal v is taken into account.

Assume that the saturated output v can be either acccurately measured or accu-
rately reconstructed, using a model of the saturation. Following Ronnbéack et.al.
(1992), we suggest the use of the regulator structure of Figure 2:

Fu= (F — PR)v— PSy,, + PTw (2.4)

This structure includes many previously suggested windup compensation schemes
as special cases, see Rénnbéck (1992) and Section 3.3 below. In particular, (2.4)
reduces to the unmodified control law (2.3) when F' = R and P = 1.

......Controller with anti-windup Process ...
.w_g“ PT _L u R Umax .t/_. v é- Ymax :E/—‘ v —@- g _
F _'4 Umin —/l’ A §
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Figure 2: Windup compensation is introduced by complementing the controller in
Figure 1 with two stable polynomials F' and P. Here, an internal model of the
saturation is used to generate v. The “process saturation” can thus be ignored in
the calculations.

In the modified controller (2.4), two new polynomials F' and P have been intro-
duced. They are denoted anti-windup polynomials and are assumed stable. The
regulator (2.4) introduces a local feedback around the saturation. In order to avoid
algebraic loops, and to preserve causality/properness, F' and P must satisfy

deg[F] = deg|PR] (2.5)




and have the same highest degree coefficients.

When the control signal does not saturate, the controller (2.4) provides the same
closed-loop dynamics as does (2.3). Substitution of (2.4) into (2.1), using v = u,
gives the nominal (unsaturated) output as

Po ynom = P(BTw + BRS — BS7) . (2.6)

Here,

a & AR+ BS (2.7)

is the closed loop characteristic polynomial which would have been obtained if
(2.3) had been used. The (stable) polynomial P contributes hidden modes. When
the control signal saturates, the dynamics change radically. The nonlinearity (2.2)
and the expression (2.4) together constitute a variable structure system.

The three degrees of freedom of the controller (2.4) can be utilized as follows.

e The desired feedback properties (stabilization, disturbance rejection and ro-
bustness) determine the nominal feedback polynomials R and S. The con-
troller is typically tuned so that the required amplitude of u is not much
larger than the limits, in normal operation. The design is made as if (2.1)
and (2.3) were used, with v = u.

e The polynomial T is then adjusted, with respect to a desired servo response.

o Finally, I and P are utilized for obtaining acceptable behaviour when the
system saturates and comes out of saturation.

In the next section, we present some concepts useful for understanding the last
step. A design methodology for that step will be outlined in Section 4.

3 TOOLS FOR AN APPROXIMATE ANALYSIS
OF WINDUP PHENOMENA

The effect of a saturation may be regarded as an equivalent (time domain) dis-
turbance on the control input. That approach was discussed in Ronnback et.al.
(1992) and is presented in Section 3.1 below. Such a point of view can e.g. be
utilized to predict if the recovery after saturation is dominated by slow or oscilla-
tive modes. It is, however, difficult to predict the most severe problem: repeated
saturations, due to stable or damped limit cycle oscillations. For this, describing
function analysis is a useful tool, as is outlined in Section 3.2. It should be em-
phasized that neither of these methods constitutes an exact way of analyzing the
nonlinear system. However, when utilized together, the properties resulting from
possible choices of F' and P in the regulator (2.4) can be understood in general
terms. This is discussed briefly in Section 3.3.




3.1 Saturation seen as an equivalent disturbance
Define

Vmax — U 1f U Z Vmax
A .
6 = v—u = 0 if Vmin < U < Vmax
Vmin — % 1f © < vgin .

The saturated signal can then be viewed as the original signal, plus the “distur-
bance” §

v=u-+6 . (3.1)

The transfer functions from é to all signals in the loop are linear (the nonlinearity
is hidden in the fact that § depends on u in a nonlinear way). Superposition may
therefore be used in order to express the output y as

Y = Ynom + Ys (3'2)

where y;om is given by (2.6) and ys is the contribution from saturation effects. The
use of (3.1) in (2.4) gives

Fu=F(u+6)— PRv— PSy, + PTw

or

PRv=F§— PSyn,+ PTw . (3.3)
The use of (3.3) in (2.1) gives (3.2), where ynom is given by (2.6) and where

BF
ys=—56 & 6 (3.4)

When the system has gone out of saturation, § = 0. The transient of the filter
Hs = BF/aP will then determine how fast the saturation effect on y decays. Note
that by selecting F' and P, we can control these transient dynamics.

When the system is in saturation, then § # 0. The “disturbance” § is then given
by

o

P BS
6—’0—'11,— F[szat_Tw—}_S’y-l__Zﬂ} (35)

where v,y denotes either vmay OF Umin. For example, when vy=pf =0 and w
is a large positive step input, the term —T'w gives a negative contribution to
6. It strives to hold the signal v in the saturated region. The term (a)A)vsa
increases 0, i.e. it strives to take the system out of saturation. (This will succeed if
Tetatw < (t/A)statVmaxs Where (+)seae denotes the static gain.) The balance between
these two effects determines the depth and length of saturation.




3.2 The describing function

The describing function, see e.g. Atherton (1975), is a useful approximative method
for analyzing feedback systems which contain a static nonlinearity. The nonlin-
earity is represented by an amplitude-dependent gain, Yy, of the main harmonic
of the feedback signal. By comparing —1/Y} to the Nyquist curve, the presence of
nonlinear oscillations (limit cycles) is indicated. See Figures 3 and 4.
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Figure 3: Redrawing of the block diagram of the control system in Figure 2, for
the purpose of describing function analysis.
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Figure 4: When the Nyquist curve £, of the linear system does not cross the
describing function of the saturation, stable limit cycles will not occur (left—hand
sketch). If they cross (right—-hand sketch), an oscillation of frequency ~ w; and
amplitude ~ C; may develop, provided the initial transient is large enough.

The use of describing function analysis, according to Figures 3 and 4, is based on
two assumptions. First, £,(w) should be low—pass, so that higher harmonics are
damped. This will mostly be the case. Second, the system should be autonomous,
1.e. ue = 0 in Figure 3. This will not be true in a realistic situation. The dual
input describing function can be used to predict the result, if u, is a sinusoid or a
stochastic process. See e.g. Gibson (1963). For small amplitudes of ., not much
changes, compared to an autonomous system. For larger amplitudes |ue| > Vimax,
the effective gain of the saturation is reduced, as if the endpoint of —1/Y}(C)
moved to the left from —1. See Figures 9.55 and 9.61 in Gibson (1963). Thus, a
reasoning based on the single-input describing function (u. = 0) may be somewhat
conservative, if exogenous signals have large amplitudes. We have chosen to use it
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anyway, for simplicity reasons.

Consider the describing function Y; of a saturation nonlinearity, with unit linear
gain and symmetrical saturation limit vmax = —Vmin. Assume u, = 0. If C is the
amplitude of a sinusoidal u, then Y;(C) =1 for C < vpay and

2
Y;(C) = '?E (a,rcsin (”"(}) 4 ey [y e ) C>vpax - (3.6)

The function —1/Y}(C) starts at —1 and approaches —co as ¢ — oco. The loop
gain L, is obtained by opening the loop at u in Figure 2. The use of (2.1) in (2.4)
gives

Fu=(F—PR)v+PTw—PS*y—PS§ﬂ—PS§v

Thus, (cf Figure 3)

u = —Lyv+Hoyw+Hyvy+Hs B (3.7)
where PT Ps PSB
Ho=—7 3 Hy=—7F Hp=——~ (3.8)
and where the loop gain L, is
P 1o

Above, rational functions are denoted by script letters. Note the difference between
(3.9) and the loop gain

SB
RA

of the feedback (2.3) and system (2.1). Within the degree restriction (2.5), the
polynomials P and F' provide complete authority over the properties of the loop
gain L,. In particular, note that the choice F' = o and P = A (if A is stable)
gives L, = 0. This would completely eliminate the risk for nonlinear oscillations.
However, according to (3.4), the choice P = A may lead to unacceptable transients
after the system leaves saturation, if the open—loop system has slow or oscillatory
modes. As has already been emphasized, a compromise often has to be made be-
tween a fast decay of the transient and a low tendency for repeated saturations.

L=

3.3 Some specific choices of anti-windup polynomials

Let us briefly investigate what the expressions (3.4) and (3.9) reveal about spec1ﬁc
cases of the general controller structure (2.4).




No windup compensation.

In the case of no feedback around the saturation, the controller (2.4) reduces to
(2.3), and we have

BR a SB
F=R ; P=1 = y5—75 ; ‘Cv_ﬂmlb—R—A' (3.10)
For high—gain regulators S/ R, the loop gain will often cross the negative real axis,
as in the right—hand part of Figure 4. Limit cycle oscillations result. For an illus-
tration, see Example 1 in Section 5. Regulators with unstable denominators R,
or multiple integrators, may also give rise to oscillations. Badly located (stable)
zeros of R may also result in unacceptable transient behaviour of ys.

The observer—based method of Astrém and Wittenmark.

In cases where I is specified and P = 1, the dynamics of a saturation observer in
a state-space controller realization corresponds to the zeros of F'. See Walgama
(1991) or Walgama and Sternby (1990). An observer—based modification of (2.3)
was originally suggested in Astrom and Wittenmark (1984). In discrete time,

a frequently used special case is the deadbeat observer. With nr 2 deg R, it
corresponds to
Bg¢™ e

5 v = -1. .
S ;o L A 1 (3.11)

F:an ; P:]_ —g Ys =

A deadbeat observer simply corresponds to feedback of the saturated control sig-
nals in the controller recursion

¢""u=(¢""—Rv— Sym +Tw .

Deadbeat anti-windup often works well. Regulators with unstable poles can be
allowed. The transient ys after desaturation has the same time constants as the
unsaturated feedback system. However, problems may result when high gain feed-
backs are used on a high order system. Such feedbacks increase the bandwidth
significantly. They result in a large phase difference between the closed loop char-
acteristic polynomial « and the open-loop denominator A. If

|arg(L, + 1)) = | arg(a(e®)) — arg(“ A(e¥)] > 7 (312)

at some frequency, the describing function will be crossed, or encircled, and limit
cycles may occur. A case where deadbeat anti-windup leads to limit cycles (but
where the use of no windup compensation works well!) is discussed in Example 3
of Section 5. Deadbeat anti—-windup is also unsatisfactory when « contains zeros
corresponding to slow modes, since this leads to a slow transient y5. The use of an
observer polynomial F' # ¢™, which cancels these modes, improves this situation.

The model-based approach of Irving and Internal model control.

As mentioned in Section 3.2 above, the risk for limit cycle oscillations can be
eliminated completely for open—loop stable systems with the choice
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F=a ; P=A = y5=~§6 i L,=0 . (3.13)

This controller can be expressed as

Ru= -8 [ym - %s] +Tw . (3.14)
Since, due to (3.2) and (3.13), the term (B/A)6 disappears in (3.14), the feedback

signal is modified so that the saturation is eliminated, as seen from the controller.
The method is called model-based anti-windup. It was suggested by Irving (in
a somewhat more general form), and is mentioned in Hanus (1988). This con-
troller makes no effort to modify the saturation dynamics. It is not “aware” of any
saturation. Thus, the decay of ys after saturation is governed by the open-loop
dynamics. That, of course, may leave much to be desired, as is illustrated by
Example 2 in Section 5. Since the model-based scheme is open—loop by nature,
one could argue that it does not constitute any windup compensation at all.

Internal model control IMC, see Morari and Zafiriou (1989), has similar windup
properties. In IMC, (B/A)v is subtracted from ¥,, inside the controller. This also
leads to open—loop desaturation dynamics ys = (B/A)é and zero loop gain £, = 0.

The conditioning technique of Hanus.

The conditioning technique, see Hanus (1988) and Hanus et.al. (1987), can also
be seen as a special case of the present framework. See Rénnbéck et.al. (1992) or
Walgama and Sternby (1990). Let the polynomial T' have leading coefficient ¢,
and let the characteristic polynomial o contain a factor Ty of T' as observer modes

T/to = T1T2 ) o == O!1T2 .

Let degT = deg R. Then, the conditioning technique corresponds to the use of
(2.4), with

BTl [64]
F=T/t, ;, P=1 = =—¢6 ; Ly,=——-1. 3.15
/ ) Ys o y v AT1 ( )
Compared to the use of deadbeat anti-windup, a faster transient ys is in general
obtained, since observer poles T do not affect ys. The risk of nonlinear oscillations
is often increased, due to this speed—up. In Example 2 in Section 5, deadbeat anti-

windup works well, while the use of conditioning results in limit cycle oscillations.

4 SYSTEMATIC ANTI-WINDUP DESIGN

Let us now outline a new class of methods for selecting the anti-windup polyno-
mials F' and P in (2.4). They are based on the following principles.

o The structure of F' and P is chosen with regard to the properties of both (3.4)
and the loop gain (3.9). The structure contains a single tuning parameter c.
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e The parameter ¢ is adjusted so that the loop gain L£,, plus a safety margin,
touches the describing function of the nonlinearity, if possible. This gives the best
transient ys, for the given choice of controller structure and of safety margin.

The methods can be used in conjunction with any describing function, not only
that of a limiter. The choices of controller structure and of safety margin which
presently seem most promising are discussed in Section 4.1 and 4.2, respectively.

4.1 The choice of antiwindup polynomials

We now aim at selecting a suitable structure for F' and P, which depends on a
scalar parameter ¢ in an intuitively attractive way. It is of advantage to have the
alternative F' = o, P = A as one member of the admissible set, since this choice
guarantees the absence of limit cycles. A value of ¢ for which some norm of Hj
in (3.4) is minimized is useful as another alternative. The following optimization
problem turns out to be a suitable formalization of these requirements:

Select monic and stable polynomials F' and P, with degrees (2.5), which minimize
the Hy—criterion

I=|Hslz +ecll (Lo+1)7" =113
B l BF |? AF 2

= — —— -1
aP aP

When ¢ = 0, (4.1) represents the minimization of the energy in the impulse re-
sponse of Hs. When ¢ — oo, we place high priority on the second term, which is
minimized by £, = 0. That extreme case will guarantee absence of limit cycles. In-
termediate values of ¢ provide a compromise between these two (often conflicting)
requirements. For ¢ > 0, the structure of the last term heavily penalizes closeness
of Ly to the critical point —1. (This would not be the case if e.g. || £, ||2 were
used instead.) This property helps us to keep a safety margin to —1/Y;(C) in the
region of low amplitudes C.

(4.1)

+C‘

2 2

The solution to the optimization problem (4.1) is given by the following result.
Theorem 1.

If « is stable and monic, the criterion ({.1) is minimized by

| F = a = AR+ BS | (4.2)
resulting in
B P—-A
Ys = P 6 3 Ly= A (4.3)
and P given by the stable and monic solution to the spectral factorization
| rPP* = BB* 4 cAA* | (4.4)
Here, r is scalar, while B* denotes B(z™') in discrete time, and B(—s) in contin-
uous time ]
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Proof: The result follows from straightforward H, minimization with respect
to a feedforward filter F'/P. It is demonstrated for the discrete-time case in
Appendix A, using the variational method of Sternad and Ahlén (1993a). The
continuous-time proof is analogous. A somewhat complicating feature in the min-
imization is that both of F' and P are required to be monic and stable.

The spectral factorization (4.4) is of the same type as the one used for designing L.Q
feedback control laws in polynomial form (without integration). See e.g. Astrém
and Wittenmark (1984), or Sternad (1991). The polynomial P will be stable for
all ¢ > 0 (and also for ¢ = 0, if B has no zeros on the stability limit). The degree
condition (2.5), deg[F] = deg[PR], is fulfilled for all ¢ > 0, since deg[P] = deg[A].
When ¢ = 0, P will be a stabilized version of B; thus, Hs = B/P will be an
all-pass link, with norm || Hs ||2 = r.

There do, of course, exist other alternatives for selecting P. A simpler choice,
which avoids the need to solve any spectral factorization, is the use of the poles of
A, shifted radially by a factor c:

P(z) = 2"+ a1c2™ 1 4t a1 2 + @ (4.5)

where na 2 deg[A]. This choice gives a good performance if A is sufficiently well-
damped and the zeros of B are not “badly” located, and thus need not be canceled
by P. A continuous-time variant is the use of A(s), with poles shifted a distance
c into the left half-plane: P(s) = A(s + ¢). Both the use of (4.4) and (4.5) may,
however, give transients ys = Hsd which have some overshoot. If this is deemed
unacceptable, one may use P—polynomials of order na with real multiple poles

Plz) = (z—¢)™ or P(s) = (s+c)™ . (4.6)

This choice was suggested in Rénnback ef.al. (1992). Nevertheless, one must be
aware that when (4.6) is used, for some systems nonlinear oscillations might occur
for any value of c.

4.2 The choice of safety margin for the loop gain

If the loop gain L, crosses the negative real axis to the left of —1, limit cycle
oscillations may occur, for sufficiently large initial transients. If £, does not cross
the axis, but come close to it (as in the left-hand part of Figure 4), then it may
result in repeated resaturations, due to a damped nonlinear oscillation. The fre-
quency of the oscillation approximately corresponds to the value of w at which
L,(w) is closest to the describing function. We should therefore strive for some
sort of safety margin between the loop gain and the describing function.

Wurmthaler and Hippe (1991) have investigated a continuous-time state-space
method (it can be shown to be equivalent to the conditioning technique, see
Ronnbéck and Sternby (1993)). Based on many simulation experiments, they
suggest that the loop gain should avoid a cone with opening angle v = 40° around
the describing function, see Figure 5. In other words,

|arg(L, + 1)| < 140° . (4.7)
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Figure 5: Safety margin as suggested by Wurmthaler and Hippe (1991).

Wurmthaler and Hippe (1991) strive to attain this goal by modifying the whole
feedback. In the present scheme, we adjust the anti-windup polynomials only. The
parameter c is adjusted until £, touches the cone at some point, i.e. |arg((P —
A)/A)| = 140° for some w. In our experience, this method often works well, but
it also has several drawbacks.

e For some important types of systems, it is impossible to avoid violating the
safety margin (4.7). Plants containing double integrators are one example.

o The safety margin seems inadequate around the point —1.1,

e The safety margin (4.7) is not related to the expected magnitude of the
excitations. In frequency regions where disturbances have low amplitude,
there is no danger in £, coming close to —1/Y¢(C). Even intersections
between the loop gain and the describing function could be allowed, if all
intersections correspond to excitation amplitudes, €', which never appear in
the practical system.

It seems reasonable that the expected excitation magnitude should be taken into
account. We have obtained a suitable safety margin by heuristic means.

Assume a symmetrical saturation, and assume that the maximal RMS values of v
and [ are known. Their exact spectral distribution is, however, not known. Define
the excitation function

[ Hu (@) 15 1| W) 11} What I| Hp(w) 113 Bt [| Hy(w) I3 Yol

l VUmax I

flw) =
(4.9
where frax and Ymax are the maximal RMS values. The function (4.8) indicates

the excitation, weighted by the transfer functions (3.8) of the closed-loop system.
The signals v and B are treated as white, with maximum (i.e worst case) power.

1This may be less of a problem. By using P from (4.4), the loop gain will tend to keep a
distance from —1. This is also the case in Wurmthaler and Hippe (1991), due to their choice of
LQ feedback.
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The spectral density of the reference, || W(w) ||3 w2,,, may e.g. be white, with

RMS value wmay, Or represent step inputs, with W being an integrator and wpay
being the maximal step amplitude?.

We now add and subtract a phase margin ¥(w), specified below, to the loop gain.?
Two loop gain safety limits are then obtained, see Figure 6.

Ayl(w) — Iﬁv(w)Iei[arg(ﬂu(w))—‘l’(“’)] ; L’wz(w) — |£u(w)[ei[arg(ﬂu(w))+‘1’(w)] ) (4_9)

The general properties of the function ¥(w) should be intuitively clear; the higher
the possible excitation f(w) at w, the larger safety margin is reqired. There exist
many functions which could be used. When working with systems containing at
most two integrators, we have obtained excellent results with

U(w) = %max[ 0 ,arctan(*log(f(w))] . (4.10)

This function maps f(w) €]0,00[ onto ¥(w) €]0°,45°(. Higher margins than 45°
are hardly ever required, cf. Wurmthaler and Hippe (1991). We have chosen not
to allow negative values of ¥, since they could lead to intersections between £,
and the describing function?.

Im
~1/¥,(0) —1 4 Re
0""" o -'."71. .o'o‘?' 5

W1 v’ i4

Figure 6: The loop gain £,(w), the safety limits Ly;(w), the phase margin ¥(w)
and the describing function Y;(C). The P-polynomial in (2.4) is adjusted opti-
mally when either one of Lg;(w) touches (but does not intersect) —1/Y;(C).

The properties of this anti-windup design depend on the selected values wmayx, Smax
and Ymax, as was intended. Since approximations are involved, and the structure

2If information about the spectral distribution of the disturbances v or 3 is available, this can
of course be included. If the saturation is asymmetrical, one could substitute min(|vmin |, [Vmax|)+
€, where € > 0 to prevent division by zero, for |vmax| in (4.8).

3The addition of an amplitude margin would be ineffective; it would shift £, mainly along the
direction of the describing function, not perpendicular to it Normally, a phase decrease margin is
of most interest. For loop gains located in the upper half of the complex plane, a phase increase
margin is, however, more critical.

4For systems containing more that two integrators, such intersections should, however, be al-
lowed, since they are inevitable in some cases. The aim is then to make them occur at amplitudes
C which never appear in the system of interest. Thus, oscillations are never excited.
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of (4.10) is somewhat arbitrary, these values should be regarded as tuning knobs
rather than exact modeling tools. The general design rule is that, if any one of
Wmax, Pmax O Ymax 18 increased, then the safety margin will be increased, at rele-
vant frequencies. Thus, a P closer to A will be selected®.

Let us summarize the class of methods. The simplest variant is to use F' = a and
P given by (4.5) or (4.6), and then tune the parameter ¢ by utilizing the fixed
margin (4.7). Only trivial calculations, and the plotting of the loop gain L,, is
required. A somewhat more elaborate scheme is specified below.

Anti—-windup design algorithm.

1. Utilize the controller structure (2.4). Determine R,S,T from linear design
considerations.

2. Use F' = AR + BS, and choose P based on e.g. (4.4)%. Define an allowed
parameter range ¢ € [Cmin, Cmax). Initialize ¢ so that P ~ A. Determine
reasonable maximal RMS values for the reference w, the disturbance 8 and
the noise 7.

3. Compute the margin ¥(w) from (3.8), (4.8) and (4.10), and the loop gain
safety limits Lg;(w) from (4.9).

4. Check for intersections between any of Lg;(w) and the describing function
of the nonlinearity.

By repeating Steps 3 and 4, change the parameter ¢ in the direction of a “faster”
Hs, until one of the limits Lyg;(w) touches (but does not intersect) the describing
function. If no such bound can be found, (i.e. if all ¢ € [cmin, Cmax] are allowed),
we terminate by using the “fastest” P, using ¢ = cmin in (4.4). A Matlab m-file
which performs this optimization can be obtained from the authors.

SNote that the choice of P does not only affect the loop gain. It also, via (3.8) and (4.8),
affects the phase margin ¥(w). Thus, even when a change of the parameter ¢ does not alter the
shape of £y, we may still find a reasonable tradeoff. This would not be the case with the fixed
margin (4.7). The linear feedback design also influences the anti-windup design, through (4.2)
and via the presence of S in (3.8)

80Other constructions of P can be used, such as (4.5) or (4.6). The initialization of ¢ is different
in (4.6) (¢ = “slow value”).
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5 EXAMPLES

The different anti-windup strategies, introduced in Section 3 and 4, will be com-
pared using three different systems, all controlled by LQG-designed feedbacks
R,S,T. For a discussion of LQG design using polynomial methods, see e.g. Ster-
nad (1991). In all examples, we utilize a symmetric nonlinearity, with vmay = 10,
VUmin = —10.

Example 1.

For a discrete-time system, with four real poles and two zeros close to the unit
circle, a high gain linear feedback has been designed. The polynomials are given
in Appendix B. No integration is-used in the feedback. The loop gain £L = BS/AR
intersects the describing function of the nonlinearity. Thus, limit cycle oscillations
result when no antiwindup precaution is used (Figure 7a). In this case, deadbeat
antiwindup works well (Figure 7h). The safety margin Ly; slightly intersects the
describing function, but the output y and the saturated input v behave well”. The
conditioning technique gives almost the same result as deadbeat antiwindup, since
the observer dynamics is fast.

Figures 7c,d demonstrate the use of the novel method, with F' = o and P from
(4.4). When the parameter c is chosen too small, the loop gain comes too close to
the describing function. This is indicated by the dotted safety margin in Figure 7c,
which intersects the describing function. Damped nonlinear oscillations result. An
even smaller value of ¢ would result in limit cycles. When c is adjusted correctly, so
that the safety margin Ly just touches the describing function, we obtain a good
response y and u (Figure 7d). It is similar in this example to that with deadbeat
antiwindup (Figure 7b). The use of the fixed margin (4.7) would have resulted
in a similar design in this example. In case the overshoots are undesirable, they
could be avoided by choosing P according to (4.6) instead of (4.4).

Example 2

The model considered here is oscillative. It represents the belt tension dynamics of
a Coupled Electric Drives laboratory process, sampled with a period of 20 ms. For
a description of an early version of the process, see Wellstead (1979). A good linear
model for one operating point was obtained by system identification, and a belt
tension regulator (R, S,T") was designed by LQG optimization. See Appendix B.

Figure 8a exemplifies the result of using model-based anti-windup. Since the
open-loop dynamics is oscillative, desaturation transients become oscillative, as
(3.13) predicts. The result of using deadbeat anti-windup (Figure 8b) is better.

When the conditioning technique is used (Figure 8c), this results in a limit cycle
oscillation. In contrast, the novel method, with F' = o and P from (4.4), works

"In all figures, the safety margin ¥(w) is computed from the largest step size of w utilized
in the simulations: fBmax = 0,Ymax = 0 and W = 1/(e** ~ 1), with wmax = 80 in example 1,
Wmax = 40 in example 2 and wmax = 25 in example 3.
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well (Figure 8d). The transients resulting from the use of both (4.5) and (4.6) are
considerably worse, in this example.

Example 3.

We now consider a model of the temperature dynamics in a chemical analysis
instrument, developed by Pharmacia Biosensor in Uppsala, Sweden. In Wagman
(1989), the sampled model was obtained by a prediction error identification method,
and a temperature controller (R,S,T) with integration was designed by LQG
methods. See Appendix B.

To the surprise of the control system designers, limit cycle oscillations were ob-
tained when deadbeat antiwindup was utilized (Figure 9b), while the system was
stable without antiwindup (Figure 9a). These effects can, however, be understood
by the behaviour of the corresponding loop gains.

When the suggested anti-windup method is utilized, with P either from (4.4) or
(4.5), the saturation behaviour becomes satisfactory (Figures 9c and 9d).
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Figure 7a: Example 1, with no feedback around the saturation (3.10): F' = R,
P = 1. The loop gain intersects the describing function, so we obtain limit cycle

oscillations.
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Figure Tb: Example 1, with deadbeat antiwindup (3.11): F' = ¢™, P = 1. The step

response is satisfactory.
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Figure 7c: Example 1, with F' = « and P from (4.4), using ¢ = 0.02. The loop gain
has come too close to the describing function, as indicated by the safety margin.

There are damped nonlinear oscillations in the input v.
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Figure 7d: Example 1, with F' = « and P from (4.4), using ¢ = 0.10. This is the
value for which one of the safety margins (dotted) touches the describing function.
The loop gain avoids the point —1 more than in Figure 7b, but the step responses
are rather similar.
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Figure 8a: Example 2, with model-based anti-windup (3.14): F = o, P = A.
Since the open—loop system is oscillatory, the same is true for the transient ys(t) =
Y(t) — Ynom(t) after desaturation.
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Figure 8b: Example 2, with deadbeat antiwindup (3.11): F' = ¢", P = 1. Since F'
does not cancel the slow modes of Hs, these modes are noticeable in the output.
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Figure 8c: Example 2, with use of the conditioning technique (3.15): F = Ty/to ,
P = 1. The loop gain intersects the describing function, so we obtain limit cycle
oscillations.
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Figure 8d: Example 2, with F' = « and P from (4.4), using ¢ = 0.25. This
is the value for which one of the safety margins (dotted) touches the describing
function. The transient ys(¢) = y(¢) — Ynom(t) after desaturation looks good. The
saturated control signal v(¢) has some oscillative tendencies, mainly because the
control signal would be oscillatory even without saturation.
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Figure 9a: Example 3, with no feedback around the saturation (3.10): F = R,
P = 1. The system is stable, but the desaturation transient is far too slow.
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Figure 9b: Example 3, with deadbeat antiwindup (3.11): F = ¢"", P = 1. The loop
gain intersects the describing function, so we obtain limit cycle oscillations.
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Figure 9c: Example 3, with F' = o and P from (4.4), using ¢ = 0.0003. One of the
safety margins (dotted) touches the describing function of the nonlinearity. The
saturated input and resulting output behaves satisfactory.
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Figure 9d: Example 3, with F' = « and P from (4.5), using ¢ = 0.32. When
this P-polynomial is tuned, using the safety margin, we obtain in this example
essentially identical properties as with the use of P from (4.4) (Figure 9c).
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6 QUANTIZATION EFFECTS AND MODEL
ERRORS

6.1 The control of quantization effects.

When digital controllers are used in servo systems, the finite resolution of analog—
digital (A/D) and digital-analog (D/A) converters influence the achievable preci-
sion. Feedback systems may amplify quantization effects. The controlled signal
may also settle in a stable nonlinear oscillation around the reference value. De-
scribing function analysis can be used to predict such phenomena.

Consider the describing function of a roundoff quantizer, with 2A quantization steps
of magnitude d, symmetrical with respect to v = 0. It is zero for 0 < C < d/2 and

4d & 1 17 -1 on + 1
=T X 1_[ %0 ] g 4 <0<

=1

d. (6.1)

Seee.g. Astrom and Wittenmark (1984). This function is real-valued, with smallest
value zero and largest value 4/7 ~ 1.27. Thus, —1/Y};(C) covers the range —oo
to —0.78. If the control signal saturates when C' > hd, the describing function
changes into that of a saturation for larger C, i.e. ¥;(C) — 0 when C — co. From
this, the following conclusions can be drawn.

¢ The regulator structure (2.4) can be used for controlling the effect of not
only saturation, but also of quantization, of the control signal. A condition
is that the feedback v in (2.4) is the saturated and quantized control signal.

e In (3.4), one may use
6=26,+6,

where §, is the “disturbance” due to saturation, and §, is quantization noise.
It has rectangular distribution and variance d?/12.

e The analysis in Section 3 and the synthesis procedure in Section 4 remain
valid. The only difference is that we should refer all results to a describing
function starting in —0.78 instead of in —1. By tuning F and P, we obtain a
control system which suppresses the amplification of D/A quantization noise,
under the constraint that nonlinear oscillations are avoided.

The situation is different with respect to quantized measurements y,,. It is straight-
forward to show that the polynomials F' and P are of no help if unacceptable
nonlinear oscillations occur; the design of R and S will then have to be modified.

6.2 Unmodelled dynamics

Errors are unavoidable in linear models. The model errors can be large in some
situations of particular interest in an anti-windup design. An example is the
transfer between operating points with differing linearized dynamics, if one nominal
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linear model is used for all points. Assume that the model (2.1) is corrupted by
an unknown additive model error

B B

Z = 24 A .2

1 A + AG (6.2)
where B,/A, denotes the nominal model and Ag is assumed to be stable. Define

the nominal characteristic polynomial
a, = AR+ B,S . (6.3)
Furthermore, assume that a (deterministic or probabilistic) frequency domain

bound
|AG(w)] < |L(w)] (6.4)

i1s known for the model error.

If the uncertainty set (6.4) is not too large, the design method of Section 4 can
be modified so that nonlinear oscillations are avoided for the whole set. Assume
that R and S can be chosen so that the linear dynamics is stable for the whole set
(6.4). Thereby choosing F' = a,, the set of possible (true) loop gains becomes

B,
(o 2 PUREDS | PRPS(B gy
o' A O a, \A,
(6.5)
P
= __1+PSAQ = £00+P8Ag
A, a, o

The expression above is affine in the model error AG. It is therefore easy to
compute the largest phase shift which can be caused by an admissible model error.
This occurs when (PS/a,)AG is perpendicular to £,, = P/A, — 1, pointwise in
the complex plane. For P # A,, the maximal phase shift is therefore given by

|PS/ao|| L(w)]
|P/A, — 1]

wa(w) = arctan (6.6)

In the anti-windup design, we simply use this extra safety margin. Thus, (4.9) is
modified into

Loj(©) = [Loo(w)|eBslent)Foa@TI@) 19 (67)

When computing the excitation function f(w) from (4.8), the worst case gain of
B/A should be used in || Hg ||2 = || PS/F |2 || B/A ||, if a worst case design is
desired. It is perhaps more realistic to assume a soft, statistical, bound in (6.4),
rather than a hard, guaranteed, bound. We then have to accept a higher risk of
unsatisfactory performance of the control system.

There do, of course, exist other possible objectives for optimizing F, P in (2.4)
with respect to the set (6.4). A further modification could be to exchange the
use of the nominal model in (4.1) for a minimization of the Hy~norm, averaged
over the set (6.4). The design method for robust feedforward control presented in
Sternad and Ahlén (1993b) can be utilized to solve this problem.
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7 CONCLUSIONS

We have presented a frequency domain approach to anti—-windup compensator de-
sign. It utilizes the loop gain, modified by a phase margin ¥(w). That principle
is somewhat analogous to the adjustment of linear controllers for unsaturated sys-
tems based on phase margin considerations. We have found the methodology to be
easy to work with, and to function reliably in simulation examples. The windup
problem can indeed be handled well by using simple, essentially linear, concepts.

The describing function was, in general, found to be a remarkably reliable indica-
tion of system behaviour, even though it was doubtful if the basic assumptions on
which its use is based were strictly fulfilled. However, the method can certainly
be improved. We conclude by indicating a number of restrictions, and directions
for further research.

o It is straightforward to generalize the method to regulators with multiple
measurements, such as state feedbacks. The main principles are outlined in
Rénnbéck and Sternby (1993). As long as we have only a single saturated
control signal v, both Hs and £, remain scalar functions. Generalization to
systems with multiple saturated control signals would be more complicated.

o Other variants of the saturation margin (4.8)—-(4.10) could certainly be con-
ceived. It would be of interest to compare them with the present suggestion.

o If the saturated signal v utilized by the controller (2.4) is measured directly,
it might be corrupted by noise. In cases when it is obtained by using a model
of an input nonlinearity f(-), errors in that model could corrupt the result. A
useful extension would be to quantify the performance degradation resulting
from these two problems.

o Generalization to systems with poles strictly outside the stability limit is
of interest. There are two problems here: the presence of the open loop
denominator A in L,, and the fact that stability can be guaranteed only for
limited disturbance amplitudes.

o Actuator signals are sometimes not only limited in amplitude, but also lim-
ited in rate. The presence of both amplitude and rate constraints would
complicate the design considerably.

Finally, since our method is based on a model of the plant, it is not suitable in
situations where no model is available. This is e.g. often the case when PID
regulators are adjusted. The requirement for a model should not, however, be sur-
prising. The more performance and safety we demand from a design methodology,
the more knowledge and insight will the method require from us.
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APPENDICES

A Proof of Theorem 1.

Consider the discrete-time case, and let the polynomials be expressed in backward

shift operator form, to obtain correspondence with the notation in Sternad and
Ahlén (1993a,b). Thus,

A(z™h) = 14 az7 4o anez™ 5 Au(2) & 1daz4... +a,z™
etc. In the time domain, ¢=* is substituted for 2=, Define the (artificial) signals

ys(t) = gm(t) ;oz2(t) = §7n(t) —e(t) ; m(t)= %e(t) (A.1)

where e(t) is white, with unit variance. Minimization of (4.1) then corresponds to
minimization of the LQG criterion

J = Elys(t)* + cz(t)’] (A.2)

with respect to stable monic polynomials F' and P. Any admissible alternative to
the signal m(¢) can be expressed as

() = Tel) = me)+nl®) i nl) = Met)  (A3)

where 7(t) is a variational term. Note that the numerator F” is preserved monic if
and only if this term includes a pure delay ¢='. The rational function M is stable,
and is such that F' has stable zeros, but otherwise it is arbitrary. When (A.3) is
substituted into (A.1), this results in the modified signals

ys() = yso(t) + Ays(t) 5 2(t) = z(t) + Ax(2)

where ys,(t) and 2z,(t) result from the use of (A.1), while Ays(t) and Az(t) are
caused by the variation n(t). The criterion can then be expressed as

J = Jo+2Ji+ J;
where
Jo = Ely}, +c2Z] ; J1 = ElyseAys + cz,Az2] 5 Jp = E[Ay? + cAZ?] .

The aim is now to select F/P so that J; vanishes. Then, the filter F/P is optimal;
no perturbation 7(t) could improve the performance, since J, does not depend on

n(t) and J; > 0. Using (A.1) and (A.3), the term J; can be expressed as

5= {BE VB o) 4 e .4]53—1 eV { Aq 1 Met)
a P o «@ o .

Since « is stable and P must be stable, Parsevals formula can be used, to give
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L]{ BFB*zM* te (AF — oP) A*zM* d_z .
|zl=1 z

1= 5
21 aPo, aP Oty

By inserting the spectral factorization

rDD, = BB, + cAA. (A.4)
we obtain

—M.dz .

alP Gy

1= -
211

1 j{ (FrDD, — caPA,) 1
|zj=1

Now, J; = 0 is fulfilled if all poles in |2z| < 1 of the integrand are canceled by zeros.
Since M and « are stable, (1/a.)M. will have poles only in |z| > 1. Since P must
be stable, all other poles are in |2| < 1. Thus, we require

FrDD, — caPA, = L.aP (A.5)

for some polynomial L.(z). There are three undetermined polynomials in this
equation: F(z71), P(z7') and L.(2). It is obvious from (A.5) that « must be a
factor of FrDD,. Since rDD, is determined, this can only be fulfilled if

F=a. (A.6)

Since « is monic and stable, such an assignment is always admissible. Canceling
F =« in (A.5) reduces that expression to

rDD, = P(cA«+ L) .
Now, P must be a factor of rDD,. Since P must be stable and monic, we obtain

P =D (A7)

from which it can also be concluded that Ly(z) = rD.(2)—cA.(2). With (A.4),(A.6)
and (A.7), the theorem has been proved. Multiply D(27!), B(#71) and A(z7!) in
(A4) by 2™ and D,(z),B.(z) and A.(z) by z7™*. We then obtain the spec-
tral factorization (4.4), in which polynomials are defined as A = 2™ + ... + dpa,
A* =27 4 .. + a,, etc. O

B Systems and regulators utilized in Section 5
Example 1:
Discrete-time systems, in backward shift operator form:

B(¢™1) = 0.0625¢~" — 0.0625¢~2 + 0.038125¢2

Alg™) 1—3.100¢" + 3.560¢2 — 1.796¢~2 — 0.3360¢~* .
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The system has zeros in z = 0.5 & 0.6 and poles in z = 0.6,z = 0.7,z = 0.8 and
z = 1. The utilized regulator has rather high gain:

S(g71) = 25.382—65.189¢7" + 64.672¢ 2 — 29.035¢73 + 4.9414¢~*

R(¢™Y) 1 —1.8349¢~' 4+ 1.4179¢72 — 0.5830¢ 2

T(g™Y) = 1.5746 —0.94478¢ 1 +0.14172¢7% .

It results in pole placement in 2z, = 0.68 & 0.46, 234 = 0.48 £ 0.24i, 24 =
0.42, z56 = 0.30. The poles in 0.30 are observer poles. They are canceled by the
polynomial T in the reference input.

Example 2:
Discrete-time system, in backward shift operator form:

B(¢™') = 0.1189¢7% 4 0.0095¢~* + 0.0879¢~"

A(g™1) = 1-2.9782¢7" 4 3.8606¢% — 2.4964¢™2 + 0.6677¢~* .

The regulator was obtained by LQ pole placement with integration, using an input
penalty of 0.01 and an observer with observer dynamics T = (1 — 0.6¢71)%:

S(g™') = 0.2193 - 2.2156¢1 + 4.9970¢™2 — 4.3614¢2 + 1.4167¢*
R(g™') = 1-0.8141¢~' 4 0.6294¢™2% — 0.5505¢2 — 0.0722¢™* — 0.1927¢~°
T(¢™") = Ta(gh)/S(1) .
The polynomial R(z7') has roots in z = 1, z = 0.16 £0.82¢ and z = —0.25 £ 0.465.
Example 3:

Discrete-time system, in backward shift operator form:

B = 0.0099051¢~% — 0.0055312¢7% + 0.0009423¢~7

A = 1-2.25837¢%+ 1.37059¢° + 0.10603¢* — 0.21743¢° .

The regulator was obtained by L.Q pole placement with integration, combined with
an observer with multiple pole in z = 0.8, of order 6.

S(g7') = 0.00835407 — 0.0186703¢~ + 0.0111755¢2 4 0.000948547¢~2 — 0.00178950¢*

R(g™') = (1-¢Y)(1 - 4.597380¢~1 + 8.849137¢~% — 9.118080¢ 3
+5.301231¢™* — 1.648092¢7° + 0.21396777¢~6)

T(g™') = 0.274015— 1.315270¢7" + 2.63054¢~2 — 2.80591¢~2 + 1.683545¢ %
—0.5387347¢7% + 0.07183129¢7° .
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