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Abstract

Linear feedforward regulators can be designed by solving a spectral fac-
torization and a linear polynomial equation. A quadratic criterion with
penalty on a filtered control signal is then minimized. This constitutes a
simple systematic way to design feedforward regulators for non-minimum
phase systems. The approach is discussed for disturhbances modelled by
systems with poles on the stability limit. Regulators can be designed for
shape-deterministic disturbances, such as random step and ramp sequences,
in the same way as for stochastic disturbances.
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I Introduction

Feedforward regulators utilize measurements of important disturbances. When
there is a delay between a measurable disturbance and the controlled output, a
feedforward regulator can react on the disturbance before it begins to affect the
controlled variable. Sometimes, virtually complete disturbance cancellation may
be achieved.

LQG optimization is an attractive framework for studying feedforward design
problems. It provides tradeoffs between input energy and disturbance rejection.
Control of systems with input delay or non-minimum phase dynamics becomes
straightforward. The design of combined feedback-feedforward regulators using
LQG optimization based on polynomial equations [5] has received considerable
interest recently [4],(9], [11], [13],[14].

Feedforward control is in general complemented with output feedback. Improved
robustness, the need to reject unmeasurable disturbances and to stabilize unsta-
ble systems are three motives for this. In this note, we will however discuss dis-
turbance feedforward without output feedback for scalar discrete time systems.
Measurement of controlled variables may sometimes be expensive or impossi-
ble. Furthermore, the simplicity of the solution provides many insights into the
controller structure. The LQG feedforward regulator also has a close correspon-
dence to other optimal open loop filters, such as servo controllers [7], [11], [15]
and deconvolution or input estimation filters [1], [6], [12].

The feedforward filter is calculated via a spectral factorization and a linear poly-
nomial equation. This design procedure has been derived previously for station-
ary stochastic disturbances [10], [18]. It is here being applied also to shape-
deterministic and deterministic signals. This includes random step sequences,
ramp sequences and sinusoids. Besides of their frequent occurence in practice,
these cases are of some theoretical interest. With disturbance models having
poles on the stability limit, they represent the very limit of applicability of LQG
design methods.

I The feedforward control problem

Let the plant be described by the following linear discrete time model

A(g)y(t) = B(¢7")u(t — k) + D(¢ 7" w(t - d) (1)

where the output y(t), input »(t) and measurable disturbance w(t) are all scalar
signals. The polynomials A, B and D in the backward shift operator ¢~ have
degrees na, nb and nd. While A(g™!) is assumed monic and stable, B(¢™!) may
be unstable. The delays £ > 0 and d > 0 may be such that & > d ; perfect




disturbance cancellation is then impossible.

The disturbance w(t) is modelled as a filtered white and zero mean stationary
sequence v(t)

wit) = ) 2)

with H(¢"!) = H,(¢"")Hu(¢"?). The polynomials G(¢~!) and H,(¢g™?) are sta-
ble and monic, while H,(¢™!) has zeros exclusively on the unit circle. See also
Section III below.

The goal is to design a stable and causal time-invariant feedforward regulator

uft) =~ L) 3)

J = lim =3 Ey(t)’ + pE(A(g7M)u(t))? (4)

is minimized. The input penalty p > 0 and the pol&nomial A(q"l) in (4) are
chosen by the designer. A(g~!) =1 — ¢! for example represents a differential
input penalty.

The solution to one special case of the problem is evident: if maximal disturbance
rejection is desired (p = 0), and if B(¢™!) is stable and d > k, the standard
feedforward filter

o) = o du) ®)

solves the problem by achieving perfect feedforward control (y(t) = 0). A solu-
tion to the general problem is presented in Section IV.

IIT The disturbance model

Let us enumerate the classes of disturbances covered by the model (2)

1. Stationary stochastic disturbances. With H, = 1 and v(t) being a white
noise with variance A,, we have an ARMA model for w(t).

2. Drifting stochastic disturbances. If w(t) e. g. has stationary increments, it
is modelled by H,=1—¢ 12 A(g™1), and a white noise sequence v(t).




3. Shape-deterministic or piecewise deterministic signals. Such disturbances
have known shape, but unknown magnitude. They occur repeatedly at
unknown time instants [2]. They will be modelled by a stationary ran-
dom spike sequence v(t), such as a Bernoulli-Gaussian sequence ! ,filtered
through G(¢7')/H(¢™') which generates the known shape. Sequences of
random steps are e. g. described by G(¢7!) = H,(¢7!) = 1, H,(¢7!) =
A(g™!) , and random ramp sequences by H,(¢7') = A(g™1)%.

4. Deterministic signals are described by autonomus difference equations
H,(¢7Y)w(t) = 0, with nonzero initial values. For multiple sinusoids with
frequencies {w;}?, we have H,(e™) = 0. Optimal control of the distur-
bance types 1, 2 and 3 above results in outputs with finite (and in general
nonzero) power. Control of a deterministic disturbance would however
result in only one initial transient, with finite energy and zero power mea-
sured for ¢t € [0,00). The criterion (4) would be zero in such cases because
of the division by 1/N. To include deterministic signals in our optimization
framework, they are treated as shape-deterministic. Their transient phase,
which is to be optimized, is formally considered to be repeated. We use
the model H,(¢")w(t) = v(t), where v(t) is a random spike sequence.

IV The optimal filter

In order to obtain a convenient notation, substitute z for ¢~! and define , for
any polynomial P(2), P, = P(2~') and P = 2" P,. Note that the zeros of P are
reflected in the unit circle, compared to those of P. The polynomial arguments
will in general be omitted in the following.

Introduce the spectral factorization

rBB. = BB, + pAAA A, (6)

where r is a positive scalar, and g is a stable monic polynomial in z with degree
nfB. To assure that a stable § exists, we require B to have no zero on the unit
circle when p = 0, while B and A have no common factors with zeros on the
unit circle when p > 0.

Theorem 1

Assume that H, is a factor of either A or D, and that a stable spectral factor
B in (6) exists. The feedforward regulator (3) then attains the global minimum
value of (4), under the constraint of stability, if

1A Bernoulli-Gaussian sequence is given by v(t) = r(¢)s(t) where s(t) is a Bernoulli sequence
such that s(t) =1 w. p. A and s(¢) =0 w. p. 1 — A. r(¢) is a zero mean Gaussian sequence with
variance o2 independent of ¢ [6]. It is then straightforward to show that v(t) is a stationary white
sequence with zero mean and variance Ay = o2,




P =G (7)

and if @, together with a polynomial L, is the unique solution to the polynomial
equation

2 "*BD.G, = rfQ. + A.H,z2L (8)

The minimal criterion value is finite, and is given by

min

A f LL, dz _ pA, }{ GG.DD.AA, dz )
S omiJig=17BB. 2 27 Jiy=1 vBB.HH, =z

Proof: See the Appendix.

Remarks:

1. Since B (stable) and 2"*A,2™ H, = AH (unstable) cannot have common
factors, the linear equation (8) will be solvable. The degrees of Q.(z™1)
and L(z) are chosen so that the maximal occuring power in 27! and z,
respectively, are covered %:

n@Q = max{na+nh—1,nd+ng+d—k}
(10)
nL = max{nB,nb—d+k}—1

Note that the solution of only one Diophantine equation, namely (8), is
sufficient for optimizing the feedforward filter. LQG optimization of feed-
back regulators in general requires the solution of two coupled Diophantine
equations [5].

2. Minimum variance feedforward controllers (p = 0) have a straightforward
interpretation: with P = @G, such regulators have poles in the locations of
stable system zeros, and in the tnverse points with respect to the unit circle
of unstable zeros. In addition, the (stable) disturbance model zeros are
cancelled. (Cancellation of stable zeros of B on the negative real axis may,
however, result in an oscillative input, and hidden inter-sample oscillations
in the output. Use of a small input penalty solves this problem.) When
d > k and B is stable, a minimum variance regulator of course reduces to
the perfect feedforward filter (5).

2These choices are unique: with higher degrees, the superfluous coefficients would be zero.
With lower degrees, no solution can be found. If (10) assigns the degree —1, the corresponding
polynomial should be set to zero. (The interpretation of n@Q = —1 is that no regulator could
improve the criterion value.)




3. Assume random step disturbances. Thus, v(t) is a random spike sequence,
Hi=1-¢'=Aand A= A A for some z&l(q‘l). The regulator then
has correct static gain D(1)/B(1). Since D(1) = D,(1) for any polynomial
D, the spectral factorization (6) gives r8(1)3(1) = B(1)B(1) + 0. From
(7) and (8),

P(1) = B(1)G()
B(1)Dp()G(1) = rp(1)Q(1) + A(L)H(1)L(1)
But H(1) = 0 since H = H,A. Thus,

Q(1) _ B()D(1G(1) _ D) (11)
P(1)  rp(1)B(1)G()  B(1)

Consequently, the output goes to zero asymptotically after each step dis-
turbance. This is true for any input penalty p. When p = 0, the squared
disturbance step response will be minimized.

4. That H, must be a factor of either A or D is evident from (9). Consider
drifting stochastic disturbances: if H, = A is a factor of D, the output of
the uncontrolled system will not be drifting. Otherwise, a drifting control
signal is needed. To keep the criterion finite, A must then be a factor of
A. Note that unstable disturbance model factors H, will not be factors
of P. This is in contrast to LQG output feedback or combined feedback-
feedforward control, where H, is a regulator factor [9],[11]. The internal
modelling principle [3] does not apply to feedforward controllers.

5. The main drawback with feedforward control, where the controlled variable
is not (or perhaps cannot be) measured, is that it requires precise model
knowledge. For drifting stochastic disturbances, a residual drift would for
example in practice be present in the controlled output. The relation (11)
never holds exactly. The requirement for perfect cancellation can also cause
theoretical difficulties in cases when H, # 1. At points arbitrarily close to
the optimal one in regulator parameter space, the criterion then becomes
undefined. Early Wiener filtering approaches to controller design [8] relied
on differentiation of J w. r. t. regulator parameters. Not surprisingly, they
encoutered difficulties with these problems.

6. For sinusoid disturbances, the system and regulator together constitute a
notch filter. The feedforward regulator will have correct gain and phase
shift at the sinusoid frequencies w; to cancel them asymptotically. This
becomes evident by repeating the calculation of (11) for Q(e?) | P (7).
The choices of p and Al( ) in A = A1H only affect the transients when
the sinusoids change magnitude or phase.




If the measurement w(t) is influenced by the input u(t — n),n > 0, this effect
could be subtracted internally, inside the regulator [11]. If the feedforward signal
is corrupted by a coloured measurement noise

F(q™)
wp(t) = w(t) + m(t 12
() = w0+ Fomy ) (12)
an additional spectral factorization has to be introduced:
Am
s = GG. KK, + —K—FF,,HH* (13)

where A,, is the variance of the white noise m(t), and « is stable and monic.

With the same approach as in the Appendix, it is then straightforward to show
that the criterion (4) is minimized by the feedforward regulator
Q(¢)K(e™)

ult) == BlaY)(g™Y) vt (14

where @, together with L, is the solution to
2 *BD.G,.GK = rBsyQ. + A H.zL

Note that the variance ratio A,,/A, affects the design, via (13). A high measure-
ment noise level will tend to reduce the filter gain. When wy,(t) is stationary,
the regulator (14) can be interpreted as the inverse of an innovations model of
wp,(t) (a whitening filter) K H/#, in cascade with an additional filter —Q /B H.

V  An example

Consider the non-minimum phase system

(1-1.4¢71+0.65¢ %) y(t) = (0.14+0.2¢" )u(t — 3) + (0.4 — 0.6 Hw(t —2) (15)

where w(t) is a random sequence of step disturbances, modelled by G =1,
H=1-g¢1 With A =1 — ¢!, the spectral factorization (6) is given by

rB(2)B.(z71) = (0.1+40.22)(0.1 +0.2271)+

+p(1 — 142+ 0.652%) (1 — 2)(1 — 271) (1 — 1.4271 + 0.6527%)

Reliable algorithms for spectral factorization are found in e. g. [5]. Explicite
solutions exist for nf8 < 2 [9]. Consider the feedforward filter corresponding to
p = 0.1. This gives
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Figure 1: Measured disturbance w(t), control signal u(t) and the output y(t).
Feedforward control designed with an input penalty p = 0.1 is applied to the
system (15).

r = 04791 , f(z) = 1-1.0429z+ 0.6122% —0.13572°

The polynomials @ and L both have degree 2 according to (10). They solve the
polynomial equation (8)

272%(0.1 + 0.22)(0.4 — 0.627") = 0.47918(2)(Qo + @12~ + Q2272)+

+(1— 14271 +0.65272)(1 — 27V 2(8 + 12 + £,27)
which can be rewritten as a linear system of simultaneous equations. The solu-
tion is

Q.(z71) = —0.09568 — 0.44562™1 + 0.252322

L{z) = 0.1860 + 0.06417z — 0.0062192?
The control performance of the resulting feedforward regulator

0 0.09568 + 0.4456¢~ 1 — 0.2523¢~>
U =
1 —1.0429¢~! +0.612¢-2 — 0.1357¢~3

w(t) (16)

is shown in Figure 1 for a unit step disturbance.
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Figure 2: Unit disturbance step responses when minimum variance feedforward
control (MVFF) and integrating LQG output feedback control with no input
penalty (MVFB) is applied. These regulators minimize the squared disturbance
step response.

For comparision, Figure 2 shows the result of minimum variance feedforward
control (p = 0). It also shows the result of LQG output feedback control with
integration [9], [11], also for p = O:

_ —10.606 4 15.95¢"! — 7.0147¢"2
© 1+2.234¢71 4 2.9786¢72 + 2.1584¢"3

Au(t) y(t) (17)

This corresponds to pole placement in BD = (1 + 0.5¢7!)(1 — 0.666¢71).

The disturbance transient with output feedback (17),(MVFB), is much larger
than with feedforward control, because of the disturbance delay d = 2. Note that
minimum variance feedforward (MVFF) cannot improve the output transient
significantly, compared to the use of p = 0.1 ,Figure 1. Compared to the regulator
(16), both the minimum variance controllers generate much larger control signal
variations (not shown).




APPENDIX

First, we show that (7),(8) imply a criterion value given by (9). Secondly, it is
shown that (9) is the minimal value.

The use of Parsevals relation, P = 8G and the spectral factorization (6) in the
expression (4) gives

Ay }’{ (2DP — 2*BQ) G (z7¢D.P. — 27*B,Q.) g‘:é‘%'f-
|z|=1 PA H P, A, H, z

- 2mg

A,,j( AQGA*Q*G*Q
277 Jlz|=1 PHPH, =

A, 7( (DD,GG.BB. — 2 *DGBB,Q, — 2*"*BD,G.5.Q + rBB.QQ.)GG. dz

BGAHB.G.AH. z

- 27y
(18)

By using (6),

B, -
pp. = 2B | -fAAA*A*

y

and the relation

pp.ca, B f * _ 2B, DGAQ. — 2 BD.G.S.Q + rBA.QQs =
D.G, _ DG
= [z—d+kB7‘ ~VrBQ.][2¢ "B*W —VrB.Q] =

= %AHL*A*H,,L

which follows from (8), equation (18) can be expressed as

J

Ay f DD,GG,LAAA A, + AHL,AH,Ldz

= 215 BAHB.AH, 2

This expression equals (9). Note that the integrand has no poles on the unit
circle, since f is assumed stable, and H, is cancelled by A or D. Furthermore,
L(z) has finite coefficients since (8) is solvable for all p < co. Thus, the criterion
is finite. The signals y(¢) and Au(t) have finite variance.

Next, we show that (9) is the minimal value. Let an arbitrary linear feedforward
control law be written as

u(t) = —=w(t) + n(?) (19)




where Q/P is calculated according to Theorem 1, and n(t) is an arbitrary addi-
tional feedforward control action, computed from a linear combination of mea-
surements w(t) up to time ¢. It will be shown that it is optimal to choose n(t) = 0.

Control of (1), (2) by (19) results in the criterion value

where J; is given by (9) (J for n(t) = 0) and
Y B ~“DP — ¢"*BQ)G
Z < i ) <(q PAzf . ”(t)> N

—pEAn(t) (AP%IGv(t))

Js = I}I—I&N ZE ( n(t) ) + pE(An(t))? >0

If n(t) were nonstationary, the ensemble means in Jy; and Js would change with
time, and the criterion could be undefined. Assume n(t) to be stationary. It can
then be expressed as

n(t) = i ul(t) = o(t) (21)

where N is stable and T = T;H, to assure stationarity.

Using (21) and P = G, the middle term of (20) can be expressed as

oy = Ao ){ TG [2*B(2¢D.G.B. — 27 *B.Q.) — pAAAA,Q.] dz
*" qj Jlg=1 NH AB.AH, z

The use of first (6) and then (8) reduces 2J, to

Au?{ TGzp.A.H.Ldz Au T'GL

2J, =
2= % Jos NHABAH, 2 7 Jjs=1 NH,A

=0 22
. & (22)

Since N(z), H,(z) and A(z) are stable, they have all their zeros outside the unit
circle. The integral (22) vanishes because poles inside the integration path are
absent.

Thus, J = J; + Js(n(t)), where J; is independent of n(t) and J3 is nonnegative.
Consequently, J; given by (9) is the minimal criterion value, and it is attained
by using control according to Theorem 1, i. e. n(t) = 0.

O
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