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1. INTRODUCTION

The estimation of the time derivative of a noisy signal is a problem
that occurs in many fields. A typical example is found when a velocity
is to be estimated from position measurements. Another common example

is the problem to estimate the net flow in a tank from measurements of
the level.

In this report we will discuss the design and analysis of digital
differentiating filters. Assume that 2 continuous-time differentiable
signal is sampled. The problem under study is to estimate the
derivative of the signal. The design of a discrete-time
differentiating filter is non-trivial for at least two reasons; the
relation between the discrete-time measurements and the continuous-
time derivative and the sensitivity for noise in the signal. The
problem has been pursued by a number of approaches. Naturally,
standard methods for design of digital filters can be applied. The
design is then often made in the frequency domain. Other possibilities
also exist, for example to estimate a parametric time-domain model
from measurement data. The derivative can then be found by
differentiating the model. Several methods will be described in this

paper.

The paper is organised as follows. The next section contains a

statement of the problem and some ‘general observations on

vdifferentiating filters. In Section 3, some ways to characterize the

properties of a differentiating filter is discussed. A description of
a number of different approaches for designing differentiating filters

are given in Section 4. In the following section some approaches are
numerically illustrated. Comparisons ‘and analysis are also given. In

the final section some conclusions are drawn.




2. PROBLEM SET-UP AND PRELIMINARIES

The problem we will deal with is analysis and design of linear digital
differentiating filters. The input data to the filter is assumed to be
contamined by noise. We describe the problem in the following way, cf

also Figure 2.1.

v(k)

————/ H(q’1;n)v

s.(t) s(k) y(k) x(k)

Figure 2.1. The problem set-up.

The continuous-time signal Sc(t) is sampled which gives the discrete-

time signal s(k), where k is a running index. The sampling interval is

T. The sampled signal is measured with noise so that

ylk) = stklevik) = s (kT)+v(k) (2.1)

is the signal available for filtering. The disturbance vik) is assumed

to be independent of the signal s(k). We will also generally assume in

what follows that the disturbance v(k) is a stationary stochastic'

process. The filter is given by

x{k) = Hla"Vin)yik) (2.2)

-1 . .
where q is the backward shift operator, so that

q-1y(k) = ylk-1) (2.3)

and n is a parameter vector. Different design methods 1lead to

different parametrizations of the filter, i.e. different ways to let

H“71‘1;n) depend on the vector n. We can write the filter as

Ha™tin) = I hj(n)q~j (2.4)




In (2.4) we have allowed the filter H(q'1;n) to be noncausal if N>O.

This can give a beneficial influence on the filter performance. In a
strict sense the linear operator H(q";n) should be used under

different names depending on the sign of N, namely:

- a smoother if N>O
- a filter if N=0
- a predictor if N<O

It will, however, be convenient, to often call H(q‘1;n) a filter

regardless the sign of N. It is very common to classify the filter in
(2.4) depending on the length of the impulse response. The filter in
(2.4) is called

- an JIR-filter (infinite impulse response filter) if M=o
- a FIR-filter (finite impulse response filter) if Mdw
The purpose of the filtering is that the filter output should be close

to the time derivative of the signal in the sampling points

e A,
e per = (KT (2.5)

where T is the sampling interval.

The design of a differentiating filter H(q";n) is non-trivial for at

least two reasons, which we will discuss below:

¢ The relation between the discrete-time values s{k) and the
continuous-time derivative at the sampling points is not known in
general. There are many ways a continuous-time signal sc(t) can vary

between the discrete-time values s(k)=s (k7).
c

o The noise corruption.

The output of the filter can be written as

x(k) = H(a Voniy(k) = g~ ims(k)+Hia  Tinvik) (2.8)

Hence we can decompose the total error as follows

5 (KT)-x(k) = [sc(kr)-u(q":n)s(k)l-tn(q";n)v(k)l (2.7)




The first part is sometimes referred to as the systematic error. It is
the error that occurs in the noise-free case. The second part of
(2.7), the stochastic error, describes the effect of the disturbances.
Since the signal and the disturbances are assumed to be independent
the two types of errors described above will be independent. It hence
follows that the total mean square error variance (assuming zero

means) is given by

‘<
1]

Eléc(kr)-x(k)lz

L]

Eléc(kr)—u(q":n)s(k)12+etu(q";n)v(k)lz (2.8)

The first of the two difficulties mentioned above concerns the

relation between the time derivative 8 (kT) and the discrete-time
c

values {s(k)}. There are essentially two ways to cope with this issue,

namely

- To use a frequency domain approach to construct an ideal

differentiating filter.

- To use a parametric model of the signal, from which the derivative

can be found.

A freguency domain approach

Assume that the (continuous-time) signal s (t) has a spectral density'
that vanishes completely above the Nyquistcfrequency W =g/T. According
to the sampling theorem we can then reconstruct s (¢) :xactly from the
discrete-time values {s(k)}. This is sometimeg called a Shannon
reconstruction and can be found in, for example, Oppenheim and Schafer

(1975), Astrém and Wittenmark (1984). The reconstruction can be

described as

s = ;
c(t) jE_“Oj(t)s(J) ‘ (2.9)
1 t=37
¢ (t) =< . (2.10)
_—T1 t#gT
w{t-57)
L T




By straightforward differentiation of (2.9) we

derivative will satisfy

éc(t) = I Qj(t)s(j)

j:-eo

In the sampling points we get

§c(kT) = jf-“tj(kr)s(j)

find that

(2.

(2.

the

11)

12)

Differentiation of the expression (2.10) for the weights {‘j(t)} gives

k-3
{-1) .
, Tk ¥
¢ _(KT) =
J 0 K=3j

Inserting this result into {2.12) gives after some calculations

S (k1) = I (_1)n+1 s(k+n)-s(k-n)
c n=1 nT

The filter can hence in this case be written as

) o N I
Hig 'y = [ (-3t 20—
j=1 37T

which easily gives the filter coefficients lef (2.4))

The frequency response of the filter becomes

[ _ j""
. U
j=1 T

sinjwT

(2.

(2.

(2.

in the noise-free case the filter gives the exact derivative, i.e.

systematic error is zero. As a way to illustrate this we consider

»jdeal” differentiator described by the frequency response

.13)

14)

15)

.16)

17)

the

an




Ael®T) = iw  Jul<n/T (2.18)

Since W jg a purely imaginary and odd function it can be expanded in a
Fourier series as

WelT) = I ia sinkeT (2.19)
k=1
with
x/T k+1
2T . 2 (-1)
a sz — = =
K - g wsinkwTdw T ” {2.20)

Comparing with (2.17) we see that ﬁ]eIWT)zu(91WT),

Let us illustrate the procedure (2.14) for "differentiation of a

sinusoidal signal.

Example 2.1. Let Sc(t) be the sinusoid

s (t) = sinuw_t {2.21a)
c o ,

The sampled signal is

s{k) = sin(onk) : {2.21b)

where we must assume |w0T|<n in order to avoid aliasing effects, cf

the sampling theorem. The right hand side of (2.14) becomes

x(k) = [ L=(-1)"V(giny (k+n)T-sinw_(k-n)T]
n=1 M ° °

o
= 2c0s0 k1 [ —(-1)" Vsinw nT (2.21c)
0" noq NPT o . ,

To proceed we need the following result given in Gradshteyn and Ryzhik

(1980):

o
f -—sinnx =
n=1 "

lgﬁ D<x<2n (2.21d)

Now set X=W+on. Then we have

1 .
x(k) = 2cosw kT [ ——(-1)n+151n(nx-nu)
0 =9 NT

= 2cosw
T L

1 .
;T(-1)n+1(-1)nsxnnx
n=1




o0
1 1 ¥-X
-2CcOosuW —c i T - et
oan§1 nTs:.nnx ZcoswokT T 2

1
- —cosuw - = &
T oXTL on] sc(kT)

which is the desired result. .

Let us stress again that the filter given by (2.14) is ideal 1in the
sense that its frequency function is given by {2.18) and that there
will be no systematic error. However, this filter design is not very

practical to use for a number of reasons:
¢ The effect of noise is not accounted for.

¢ The algorithm is not suitable for efficient computation. For every
(discrete) point k all data points have to be explicitly used in
order to compute the derivative. This would require a very large
number of operations per time step. In contrast a finite order
linear filtering would require only a modest number of operations

per time step.

Note that if the signal is not band-limited the correct derivative
will not be found. There is no guarantee that the deviation between

true and estimated derivative is small.

In (2.18) we introduced an "ideal"” differentiator. In practice when
also noise effects must be taken into account a “good” differentiator
should satisfy (2.18) only for certain frequency regions. Thus, if

H(elwr;n)zim for

A N L A

0<wiw/ 7 th";n) is called a full-band differentiator

0<w<D.7n/T, say, H(q'1;n) is called a wide-band differentiator

e A et sttt it

small w H(q-1:n) is called a narrow-band differentiator

LAK- N A0 AL LE_ S s




parametric models

- - X LU S SR e ]

This 1is the other approach for finding the derivative from discrete-
time data. We then describe the signal with the help of a number of
parameters, which we may collect in a vector 6. Note that to uniquely
determine a continuous-time model from discrete-time data, the
sampling theorem must not necessarily be fulfilled. A necesssary
condition is, however, that the imaginary parts of the poles of the

underlying system are less than w/T, cf Astrom and Wittenmark (1884).

As simple examples of parametric models consider

. T
S
1(t) Asln(wot*w) e (A wo o)

(2.22)

at+b e (a b)T

Sz(t)
From a limited number of the (discrete-time) data, we can in the noise
free case determine the parameter vector. Once the vector 8 is known,
we know the signal completely and it is an easy task to compute the
derivative for any desired time argument. When the signal is corrupted
by noise, the parameters might be found by estimation. Many of the
methods described 1later in this report can be viewed as based on
parametric models. Both deterministic and stochastic signal models

will be considered.

Consideration of the measurement noise

So far we have discussed only the relation between the signal and its
derivative. Phrased differently, our interest has been focused to the
systematic error, or the first term in the right hand side of (2.7).
In practice we must of course take the ~measurement noise into
consideration. To achieve a small mean square error variance, cf

(2.8), the filter must be a compromise between the two objectives

. H(q'1;n) should give approximately the true derivative in the
noise-free case (the systematic error should be small), i.e.

Hig Y msik) = §,(kT) (2.23)

e The noise should not be amplified too much. This means that

ElH(a snivik)I2 = o (2.24)




Let us now describe how the trade-off between the objectives (2.23)

and (2.24) can be met in an optimal way. By using the notations

-itwT
¢y lw) = t5_“rvx(1)e
(2.25)
. N
rvx(t) = lim N £ vik+t)xik)
Nves k=1

we can write the mean square error variance as {(for convenience we set

4
§(k)= éc(kT))

V = E[x(k)-§(k)1°

w/T
J ttz(w)-Ozé(w)-Osz(w)+¢§(w)]

r
2w -w/T

w/T R .
L T e 0y 126 wr-He T inre L (w)
Tt y ys

~4yy (wIH(e T in) ea g (w)1du (2.26)

We can then minimize the integrand with respect to H for every value

of w in order to make V as small as possible. Noting that

¢ . = ® - ;
ys(w) ‘éy( w), we can rewrite V as follows

w/T ¢, (w)

T iwT 8y 2
V &z - ¢ . -
o ..“,;T [ y‘W){H@ 'n, ¢y(w) }
1, (w)]?
+{¢é(w)— ¢y‘“’ }ldw {2.27)

The first term in 2.27 is quadratic and the second term is independent

of H(elWT;n). Hence the optimal filter can be written as

¢ (w) ¢. (w)
Sy . $S
¢y(w) ts(w)+¢v(w)

HielT .0y - (2.28)

This is the so-called unrealisable Wiener filter.

o oo oAbt




Assume, in particular, that the signal is band-limited so that its

continuous-time spectral density vanishes above the Nyquist frequency

B AR R T AL AN

WN=w/T. Then no aliasing effect occurs at the sampling and the
continuous-time and discrete-time spectral densities of the signal

coincide.

Furthermore, we have for this case

‘ss‘”’ = iwé () (2.29)
and hence
iwT ‘s(W)
H{e . 2 f ————
in) iw ‘s‘w)*’v‘W) {(2.30)

This result has a nice interpretation. The *“jdeal” differentiator is

iw. The other factor ‘s/(¢s+¢v) describes the optimal trade-off

between ideal differentiation and suppression of the noise.

There are many ways to-derive a finite-order filter from (2.30). A

number of methods are reviewed in Section 4.2.




3. CHARACTERIZATION OF DIFFERENTIATING FILTERS

In this section we will describe some ways to characterize the
properties of a differentiating filter H(q":n)_ We will organize the

characterization around the following issues

L

Algorithmic properties

¢ Deterministic behaviour

¢ Stochastic behaviour

3.1 Algorithmic properties
Causality

The first property concerns the characterization of the differentiator

Hig tim) = 1 h.(n)q'j (3.1)
j=-N I

as a smoother (N>0), a filter (N=0), or a predictor (N<O). The
differentiator is causal if and only if N<O. When . N>0, the estimated
derivative is based on more data, compared to N¢O, and hence a better
performance is potentially possible. In particular, ideal phase
properties are possible to achieve with a smoother, see (3.7) below.
The price to pay is that a smoother introduces a time-lag in the

computations.

Complexity

This property concerns the form bf the filter and fhe amount of
computations needed when applying it. When used as a quantitétive
measure it would be appropriate to express the complexity in the
number of floating point operations needed to implement the filter.
This 4is an important implementation issue. However, we will not deal

with this type of problems in the report.

Parametrization

LT L LI g

This property concerns how the filter H(q"‘;n) depends on the
parameter vector f. This dependence can be very direct, while in other
cases extensive computations are needed to form the filter once the
parameter vector has been chosen. A particular issue is the

possibility for adaptation. If the differentiator is to be wused in




adaptive filtering, it must be possible to tune the parameter vector

on-line when processing the data.

‘Higher order derivatives

The 1last property to mention in this section concerns extensions to
higher order derivatives. In many cases it is easy to extend the
filters so that a higher order derivative is computed. This is mostly
a better way than to use a filter for the first order derivative
repeatedly. Note that the frequency response for an ideal r:th order

differentiator is
Hie 3T 0y = (iw)® Jwl<n/T

3.2 peterministic behaviour

R A AR LLE IR AL e s el

In this section we focus our interest on the filter behaviour in the

noise-free case.

Relation between sl{k) and $ (kT)
» c

In most approaches there is an explicit or implicit modelling on how
the discrete-time signal s(k) and its continuous—time. derivative at
the sampling points Sc(kT) are related. For example, if s{k) 1is
assumed to be a polynomial in k, then the derivative sc(kT) is easily

found.

Freguency response

The frequency response of the filter is of much interest. It is given
by
Hiel®Tin)y = £ hotne'? (3.2)
j=-N
The frequency response describes how the various frequency components
of a signal is affected by the filter. For example, if the signal is a

sampled sinusoid

s(k) = Asin(w01k+¢) lonl<n (3.3a)

the filter will produce

x(k) = I h_s(k-3)
j=-N 7




ion ion
= AlH(e Jsin(u kT+g-arghl(e )) (3.3b)

iw T
o

The frequency response Hle ) gives the amplification and phase

shift of a sinusoid with angular frequency w . A good differentiating
o

filter should have a frequency response

H(ele;n) = iw (3.4)

for the frequency band of interest. This will, in general, mean (at
least) “small” values of w. Next we give an illustration that it 1is

natural and important to require (3.4) to hold.

Proposition 3.1. Assume that a filter gives exact differentiation for

all signals being polynomials in t of degree n. Then

H(GIWT;n) = iw*ﬂ(lwln*1) (3.5)

Proof. Let the continuous-time signal be

n
c,.m
S (t) = L[ at {3.6a)
c m=0 M

The derivative in the sampling points is

§ oty = € oaST™ T™ ! (3.6b)
c m

n
s(k) = E amkm {3.6¢c)

where o =chm, m=0,1,...n.
m m

Using the discrete-time signal, the derivative in (3.6b) can be

written as

8 (kT) =

1 M
c T f o mk {3.6d)

= [ h.E um(k—j)m (3.6e)




By equating the coefficients for @ {(m=0,...,n}, we get
m

o

L m=0,....n
j:-N J
w m . »

k™ VT onLI (T)k‘(—j)""l m=0,...,nN
j=-N Ji=0
m [

) m o . .

o™ o (Mkd-0™t s ™ th, m=0,....n

i=0 1 j=‘N J

This can be written as

- T k=1
L 3"n. = ' (3.6fF)
j=-N 3 0 k=0,2,...0

We now use this result to evaluate the filter for small w. We have by
a Taylor series expansion

H(ein) n+1)

K
w=0m +0{w

™M 3

1 .k iwT
LoXute )‘

k=0

n o '3 3
ok pone T ekeow™h
k=0¥! goon? ws

1 ot vk -iwTJ k n+1
[ L h (- ]
; 3( iTi) e Iw=0w +0{w )

n
= L
-ok! 5oon

k

AEELLISIE LI Y T
0" J==N J

‘...s

+1)

"
n ™m33
x

k

s (-iT) L Gh oo™y = dweoe™)
j=-N

This proves (3.5). .

The ideal phase shift of a differentiator is w/2, cf (3.4). When the
phase shift differs form this value, the computed derivative will be
delayed, cf (3.3b).

A necessary condition for the phase shift of H(elmT;n) to be equal to

the ideal w/2 is the following antisymmetry conditions:

h. = 'h-j all j (3.7)




This can be shown as follows: We have

arQH(elmT) = arg[[hjelij]
J

w/2

n"

argl{Lh cosjuT}+i{Lh_sinjwT}]
: ] i J
J J
since this must hold for all w we have [hjcosijgD from which (3.7)

follows. 3

Step response

The step response of the filter is of interest to describe the filter
behaviour when the -derivative change from one constant level to
another. Then the filter output will move gradually to a new level
when the derivative changes. Consider a differentiating filter H(Zz).

In order to obtain an unbiased estimate of a linear trend (with z-

transform z/(z-1)%) we have to require

lim (z-1)H(z) —&— = 1 . (3.8)
z+1 (z—1)2 T
This follows directly from the properties of the z-transform and the

relation (3.6d).

The speed with which the filter output changes is of interest. From a
deterministic point of view it is desired that the changes can occur
fast, so that the filter can easily adapt to new situations. This
implies that the sequences of filter coefficients {h_.} ghould tend to
zero quickly. However, such a case has certainly drgwbacks as well.
Then only a quite limited amount of the data are effectively used,
which can make the computations vulnerable for disturbances and noise
effects. The step responses for some differentiating filters are

illustrated and analysed in Section 5.2.

3.3 Stochastic behaviour

Fr A A-A ALA- LR ALl

In this section we will discuss how to characterize the effects of the
measurement noise vi{k) on the filter output. According to (2.8} the
noise will give a variance of the filter output {or the stochastic

error}) as




W= Emhtanvid?
w/T .
L T et im % (widw (3.9)
2w v
-u/T

where ¢ (w) is the spectral density of the disturbance vik). Again,
the frequency response H(elmT.n) is a useful quantity for describing

the effect of the noise. To keep W small it is necessary that the

frequency response is small whenever the spectral density QV(w) is

large.

In a typical situation the signal is of low-frequency type while the
measurement noise is white (meaning that ¢ (m) is constant). Then the
frequency response should be close to iuw for small frequencies (the
frequency band where the signal clearly dominates over the noise).
This will make the systematic error small. Oon the other hand for
large frequencies (where the signal does not have a significant
content) the frequency function should be small in order to make W
small and reduce the noise effects. More generally, whether a full-
pand, wide-band or narrow-band differentiator should be used, depends
very much on the characteristics of the disturbances {of course, the

intention of the differentiation also plays an important role).




h. SOME DIFFERENTIATING FILTERS

&.1. Introduction

In this section methods for designing digital differentiating filters

will be surveyed. Some comparisons and analysis will also be given.

A classification of different approaches can be done in many ways.

Some typical classifications are given below

{i) on-line - off-line methods
{ii) narrow-band - wide-band methods

(iii) frequency domain - time domain methods

The first two classifications reflect the applicability of the filter
while the third classification mainly reflects the design philosophy.
In this report the third classification will be used. The ambition 1is
not to cover all different methods described in the literature.
Instead a number of typical methods are presented. Most methods are
discussed quite briefly. The choice of a suitable differentiating
filter is wobviously application dependent. pDifferent requirements
{(such as linear phase) and implementation issues. . will restrict the
number of suitable design methods for a specific application. One
important aspect is the underlying assumptions on the signal and noise
characteristics. For a general description of digital filter design

techniques we refer to Oppenheim and Schafer (1875).

4.2, Frequency domain technigues

The design of digital filters in the frequency domain is a popular
approéch. We will here describe soﬁe methods which have'been used for
designing differentiating filters. It is rather common to design wide-
pand and full-band differentiators using frequency domain techniques.
This corresponds to minimizing the systematic error between the true
and the estimated derivative, cf Section 2. Note that information (or
assumptions) about the signal and noise spectrum makes it reasonable
to use the non-causal differentiating Wiener filter defined in (2.30)

as a starting point for the design.




h.2.1 Design from analog filters

The idea of this approach is to make a design in continuous-time and
then approximate it to get a discrete-time filter. The continuous-time

filter is set to be of the form

Hi{s) = sHo(s) (4.1)

where “o(s) typically is a low-pass filter (Ho(0)=1. Ho(s) small for
large frequencies). The frequency properties of the low-pass filter

should reflect the properties of the signal. (Ho(s) should be close to

1 in the frequency band of interest for the signal.)

Next the filter H(s) is approximated into discrete-time. This can be
done in different ways. One simple possibility is to set
-1

s = 1—‘—3——— (4.2)

‘while the bilinear transform (also called the Tustin's approximation)

-1
S :%J—uﬂ-——-— ‘4.3,

1+¢:¢"1

is another alternative.

A third procedure for transforming the analog filter (4.1) to a
discrete-time filter is to use an impulse-invariance technique. That
is we set

hik) = R (E) |, \q (4.4)
where ha(t) is the impulse-response of (4.1). Kaiéer (1966) gives an
example of designing a wide-band differentiator based on this

technique.

The method above apparently covers a large number of variants. The

low-pass filter ”0(5) can be chosen in a number of ways as can the
approximation to discrete-time.

To make the discussion more specific let us give two examples.

Example 4.1.  Set "o(s)=1l(1+st)2 and use the simple approximation
{(4.2). 1In this case the parameter vector n consists of the single

parameter T. It should be chosen so that the frequency 1/t is small,




yvet that the signal has most of its frequency contents below 1/t. The

digital filter becomes

1

-1 1- )
H(q ;n) = —5 2 1_q~1 = T( ! _: 2
{(1+4s1)%g= - (T+rit-q )]
-1
. 1-: 1 — | (4.5)
[1+ %(1-q’ )] .

Example &.2. Set ,Ho(s)=wzl(sz+2Zwos+m§) and use the  bilinear
transformation. In this case

n = (wo 2)

The choice of the frequency wo and the damping factor ¢ should reflect
the frequency characteristics of the signal. The digital filter

becomes

1 sw?
Hig™':n) 0

-1
92+21w°s+w§ s= % l:ﬂjT
1+q

2Tw§(1-q")(1+q"‘)
- (4.6)

4(1-q'1)2+klw°T(1—q-1)(1+q_1)*w§T2(1+q_1)2

4.2.2 Fourier series approaches

The pulse transfer function of the ideal (full-band) differentiating
filter is (cf (2.15))

o n+1
4 - -
Hoz) = 7L i—%l———(zn—z n (4.7)
n=1

which has the frequency response

Ho(e2T) - iuw ot <k (4.8)

A straightforward approach to get a practical {non-causal) filter 1is
to truncate the infinite sum in (4.7). We then get the following non-

causal differentiating FIR-filter

i:llﬂ:l(zn_z—n’
n

~mMx

H{z:n) = (4.9)

-t |-
"
—

n




The parameter vector n just consists of the filter length parameter N.
From (4.9) it follows directly that H(1)=0, i.e. the output from the
filter is zero for a constant signal. The filter in (4.9) minimizes

the following criterion

w/T . .
E= lHi(e1”T)-u(e1”T;n)l2dw (4.10)
-w/T
This follows directly from the properties of the Fourier series, cf

also Usui and Amidror's approach described below.

The discontinuity at # % of the ideal frequency response will produce
an oscillating behaviour in the amplitude function of the truncated

filter {4.9). This effect is known as the Gibb's phenomenon. The
oscillations can be reduced (at the expense of the bandwidth) by
multiplying the pulse response in (4.9) with a suitable weighting
function wit), i.e.

N n+t
fwmydl— (2", (4.11)

Typically w(0)=1 and w(t) goes to zero as t increases. A review of a

number of different weighting functions is given in Harris (1978).

Another approach to reduce the Gibb's oscillations is to make a least

squares optimization over a smaller interval than in (4.10), i.e.

u!!—
T

E= | IHi(ei”T)-H(ei”T;n)lzam (4.12)

-
T

where a<1.

The Fourier series approach for designing wide-band differentiators
have been studied in Kaiser (1966). In a design example it is shown
that the Gibb's oscillations can be drastically reduced by using the
modified filters (4.11) or (4.12) instead of the direct truncation in

(4.9).

A related approach to the Fourier series approach is given by Usui and

Amidror (1982a). It will be presented below.




Usui and Amidror’'s approach

Consider a strictly bandlimited signal (i.e. the signal does not
contain frequencies above aw/T, ad1) which is to be differentiated
without any systematic error. The frequency response of the ideal
differentiator which minimizes the variance of the stochastic error

{cf (2.8)) under the constraint above is given by

iw Iw|<u$ A
= {(4.13)

0 o -

H
Ler'e
A FIR-filter with an odd antisymmetric impulse response will be used

to approximate the frequency response in (4.13)

N
1 -
Hizin) = = Lc (z"-2™") ‘ (4.14)
27 n
n=1
The filter parameter vector C=(c1 cz”"cN)T in (4.14) will be chosen
so that
r
} I iwT iwT 2
E{a,C) = H - .
B LPI(e )-H(e in) | dw (4.15)
-
is minimized subject to the constraint
iwT
gHle ) =i (4.16)
dw w=0

The constraint (4.16) means that H(ein;n)ziw for small w. This will

give good low-frequency differentiation even for small values of N.

Using (4.13) and (4.14) the criterion in (4.15) is straightforward to

evaluate. We get

E{a,C) = l;[ (un)3+ncTc+cTL] (h.17)
T

w N

where

T
L = (1
1...1N)

1 = i—[puwcos(puw)-sin(puw)] p=1,2,....,N
P o2

The constraint (4.16) can be written




T

Cu=1 (4.18)
T

where u=(1,2...N)

The optimization problem has a quadratic loss function and a linear

constraint. Using standard optimization theory it can then be seen

that the optimal filter parameter vector C° is given by

T
1 uf2w+u L)
C 2 e [——— -
o 2“[ T L] {4.19)
uu

Thé following remarks are now in order

‘e The parameter vector n=(N a), i.e. the design parameters are the
filter length and the upper limit of the differentiation band. Note

that generalization to higher order derivatives is straightforward.

e The constraint (4.16) guarantees unbiased differentiation of a
linear trend signal. Furthermore, the structure of the filter (&.14)
implies =zero dc-gain which is a very reasonable property of a

differentiating filter.

e From (4.19) it is easy to verify that Co‘-%—L as Now, This is the
optimal solution to (4.15) without the constraint (4.16), i.e. the
constraint is automatically fulfilled for large N. Furthermore, for

a=1 we get

2 n+1
c (-
n - n( 1)

which inserted in (4.14) gives the Jideal differentiating filter
defined in (2.15).

¢ For o=0 we have C°= —%—. This can be interpreted as an estimate of
uu
the slope of a linear trend using local least squares polynomial

fitting, see Section &.3.3. The filter minimizes the noise
transmission under the constraint of ideal -differentiating at w=0,

cf also Usui and Amidror (1982b}).

¢ The discontinuity at 3&% will cause Gibb's oscillations. A possible

remedy is to use a suitable weighting function as in (4.11).




4.2.3 Optimal IIR-filters

We will here briefly describe two frequency domain methods for

optimizing IIR-filters.

Steiglitz's approach

Steiglitz (1970) proposed a method for designing IIR-filters with an

arbitrary amplitude function. The desired amplitude function
lﬂd(eIWT)I is given for a discrete set of frequencies {uw }M . The

n ns
following least mean squares criterion is minimized

M io T iw T,
@ = L[ (|H(e VI-THgte W (4.20)
n=1

where H{z) is a 2N:th order IIR-filter of cascade form

N 1+bn1z—1+b 2z'2
H(z) = AW n (4.21)
n=1 1+a z-1+a 2_2
n2

nt
The optimization in (4.20) is done with respect to the parameters in
(4.21). Nonlinear optimization technique is used to find the minimum.
It is advantageous to use the cascade form because of its relatively
low coefficient sensitivity and convenience in calculating the

derivatives in the optimization procedure. The filter coefficients in
{4.21) will depend on the following parameter vector

iw, T iw, T iw,T

= 1 2 M
n = (N.lHd(e TN PR LT 2D

The design of a differentiating filter using (4.20) gives %he user a
number of choices. The desired frequency response Hc‘(emn } can be
chosen, for example, as in (4.13). I+ the signal and noise spectra
are known the differentiating Wiener filter in (2.30) might be another

reasonable choice.

pesign examples of wide-band differentiators using the mean squares
eriterion (4#.20) are given by Steiglitz (1970) and Rabiner and
Steiglitz (1970).




Spriet and Bens's approach

The cascade form (4.21) is also used by Spriet and Bens (1979) for
designing wide-band differentiators. To guarantee good low-frequency

behaviour the following requirements are imposed

{i) The dc-gain should be zero.

(ii) Differentiation of a linear trend signal should be unbiased.
This implies that, cf (3.8)

Hi(z) = (1'2-1)H1(z) : (4.22)

where H1(1)=1/T. Using the cascade form, the requirements in (4.22)
can be fulfilled by the following structure

-1 -1 -2
1-b,,2 N t+a__ +a N t+b_,2z +b _2
Hiz) = %(1-2'1) 120 & ": n2 - w ni ne (4.23)
1-b12 n=1 1+an1z +anzz n=z2 1+bn1+bn2

The design idea is to make a compromise between the amplitude and the

phase errors in the filter. The following criterion to minimize is
proposed
w/T
J = [ flweluw)dw {4.24)
0

where f(w) is a weighting function reflecting the a priori knowledge
about the frequency content of the signal. The function ef{w) 1is a
measure of the relative errors in the amplitude and phase and is given

by

2
clw) = L8ALWT L rpe(uw)]? ‘ (4.25)
A(w)2

where A(w) is the desired amplitude gain (for an ideal differentiator
Alw)=w). The error in the amplitude gain for the filter is denoted
5A(w) and the error in phase is 6¢(w). The criterion (4.24) penalizes
also phase errurs in contrast to the least mean squares criterion in
(4.20) where only the amplitude error is minimized. Spriet and Bens
found that increasing the parameter N in (4.23) above 2 only gave
minor reduction of the loss function in (4.24). 1If the full-band
requirement is relaxed and the effective bandwidth is reduced, an
increase in the order of the filter results in a more substantial

reduction of the loss function.




L. 2.4 Minimax optimization

The use of minimax optimization {(Chebyshev approximation) technique
for designing FIR-filters is a popular approach, see for example

Rabiner et al (1875) for a detailed discussion.

Consider a FIR filter with a purely imaginary frequency response

N
H(z) = . L bn(z"~z‘“) (4.26)
n=1
The filter parameters b1.b2,...bN are optimized using the following
criterion ’
min  max W(ELwT)IHd(elmT)—H(ele)l (4.27)
b
1...bN we
where W(91WT) is a weighting function which can be used to choose the
relative size of the error in different frequency bands. The desired
T

{ideal) frequency response 1is denoted Hd(eiw ). For designing a
differentiating filter, “d(ele) can be chosen as in (2.30) or (4.13).
W (eiWT

The weighting function ) can be set to “"high" values at

frequencies where it is particularly important to have good

T

2Ty to (et

performance, i.e. close agreement of Hle
The filter coefficients in (4.27) will then depend on the parameter
vector

n = (N'W(eiWT),Hd(ein))

various design examples of wide-band differentiators using minimax
optimizations techniques can be found in, for example, Hofstetter et
al (1971), McClellan and Parks (1873), McClellan et al (1973),
Antoniou and Charalambous (1981) and Morgera (1982).

In McClellan et al (1973), a Fortran program for minimax optimization
is given. Among various different filter types an example of a full-
band differentiator 1is given. A modification to the program is
proposed in Rahenkamp and Kumar {(1986) to allow the design of higher
order differentiating filters. Antoniou and Charalambous (1981)
proposed a method to design equiripple differentiators with prescribed
specifications in the error function by searching also over the filter
order N. An application to pilot tone syncronization in a
communication system is reported in Morgera (1982), where a

differentiating FIR-filter based on minimax optimization is used.




4.2.5 Frequency sampling

We will end the frequency domain section with a very brief discussion
of another popular method for designing FIR-filters, namely the

frequency sampling design.

The method is based on the fact (cf for example Oppenheim and Schafer
(1975), pp 251) that an N:th order FIR-filter can be represented in

terms of N frequency samples {H(n)}:;; of the filters frequency

response, i.e.

~N N-1 w

H(z) = 12— ¢ Hinl _ (4.28)
N -1 i 2%n

i-2 e N

A simple approach to construct a discrete-time filter is then to

n=0

sample the desired frequency response Hd(e1WT) and set

Hin) = Hd(elmT) . n=0,1,...,N-1 (4.29)
W= 'ﬁn

The filter in (4.28) will then coincide with the desired frequency
response at the N sampling points. The filter in (4.2B) is determined

by the parameter vector

igln
Ny )
n=0,1%,...,N-1

To improve the intersample behaviour a few samples can be set free and

= ,{H
n = (N gle

optimized.

The design of differentiating FIR-filters is straightforward using for

example (4.13) or (2.30) as the desired frequency response.

Examples of full-band and wide-band differentiators based on frequency
sampling can be'found in Rabiner and Steiglitz (1970) and Rabiner et
al (1970). In the first reference it is empirically found that a
doubling of the filter order N tends to half the maximum magnitude
error in the frequency response of the filter. It is also found that
by reducing the bandwidth (differentiation band), the peak magnitude

error drops significantly.




4.3 Polynomial signal modelling

We will here describe a number of approaches based on polynomial
signal modelling. The idea is to model the signal sc(t) as a
(piecewise) polynomial. Having an estimate of the parameters in a
polynomial model, an estimate of the derivative is easily obtained (cf
(3.6d)). Generalization to higher order derivative is

straightforward.
4.3.1 Polynomial interpolation

Interpolation is a way of constructing a curve through a given set of
points. A common method is to use polynomials for interpolating, see
for example Conte and de Boor (1972) for a detailed presentation.
There exists exactly one polynomial of degree n, which coincides with
the signal at n+1 given points. The application to differentiation 1is

straightforward:
¢ Determine the interpolating polynomial for a number of data points.

e Estimate the derivative (of the signal) by differentiating the

polynomial.

A classical method for constructing the interpolating polynomial s (t)
c
from the discrete-time points y(k), k=0,1,...,2n (for convenience we

let the number of data points be odd) is the Lagrange interpolation

formula
2n

S (t) = L K (t)y(k) : {4.30)

C k=0 k
where

v, (t)
2n
Kk(t) =

(t-kTim' (kT)
2n

WZn(t) = (t-0)(t-T)...(t-2nT)

'én(kT) = (KT=0)... (KT-{k-1)T)I(kT-(k+1)T)...(kT-2nT)
Straightforward differentiation of (4.30) gives
2n

Sc(t) = E

Lk(t)y(k) (4.31)
k=0

where




2n Toplt)
Lk(t) = k. (t) = [ (4.32)

=0 (t-kT)(E-3TIW. (kT)
. 2n
¥k

Note that (4.31) can be used as a predictor, filter or a smoother. For

the smoothing case we present the following theorem

Theorem &4.1. Let t=nT in (4.31). Then we obtain the following

differentiation filter

n

Wz) = L (z¥-2") (4.33a)
k=1
where
K+1
1 (-1) nint
b -~
k T k (n+k) ! (n-k)! (4.33b)

Proof. We will first show that L (nT)=0 in (4.32). We have

2n AT(RT-T)...(nT-{n-1)T)(nT-(n+1)T)...(nT-2nT)

L =
nlnT) s L T IRt (T 1), (nT- (A= T) (AT~ (R+ 11 T). . (AT-20T)]
i#n
2n
= I ——-—-l———- =
j=0 (nT"jT)
itn
For k#n we have
L (nT) - 2; tt-T)...
k j=0 (t-kT)(t-JTILKT(KT-T)...
j#k
...{t-2nT}
KT (K=-1) T kT=-({k+1)T) ... (kT-2nT)]
t=nT
AT(nT-T)...(nT-(n-1)T)(nT-(n+1)T)...(nT-2nT) .
(nT—kT)[(kT(kT-T)...(kT-(k-1)T)(k—(k+1)T)...(k—ZnT)]
21 nln-1)...1(-1)...(-n) : 1(.q)n-k n'n!

T (n-k){kf{k-1)...1(-1)...(k-2n)} T (n-k)k!(2n-k)!




1t follows directly that

L (nT) = -Ly (T

2

Insertion of Lk in (4.31) gives easily

n-n-k nin!
(n-n-k){n+k) ! (n-k)!

b = z
K Ln+k(nT)

which proves (4.33b). 5

The smoother in (4.33) can be interpreted as a noncausal antisymmetric

FIR-filter. The filter parameter vector is just n={n).

Next the relation with the ideal differentiation filter will be
discussed. Recall from (2.15) that the ideal differentiating filter is

given by
n
Hiz) = LB (z¢-27%) (4.34a)
PR
k=1
k+1
B - 1= . \
K T K {4.34h}
The filter weights in (4.33b) can hence be written as
b =
k = Byfink) (4.35a)
where
|
fln,K) = nin! (4.35b)

(n+k)!n-k)!

We then have the following proposition.

Proposition 4.1. Let k be fix, then

fin,k) » 1 as noe

Proof.

£ln.K) = nint - nip-1),..(n-k+1) + 1 as n-o

{n+k) ! (n-k)! (n+1)(n+2)...(n+k)




The proposition shows that for large n and small k, the filter weights
in (4.33b) approximate the “jdeal” weights defined in (4.34b). We next

give an example to illustrate the differentiating filter in (4.33).

Example &4.3. By using Theorem 4.1, it is straightforward to calculate

the filter weights. For n=2 we get

Hi{z) = ""1“(-_221»82-82-142-2

127 ) (4.36)

since the filter is antisymmetric, the frequency response is purely
imaginary. Figure 4.1 shows the amplitude response of the filter in
(4.36).
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Figure 4.1. Amplitude response of the filter in (4.36), (T=1).

The use of interpolation methods for differentiation can be classified
as an wide—band method. Interpolation methods are hence very sensitive
for noise in the signal, c¢f for example Koenig (1966), Allum (1975)
and Lavery (1979). This is very natural since interpolation is exact

in the sense that it passes through each data points.




4.3.2 Splines

A further drawback with polynomial interpolation, apart from the noise
sensitivity, is that the interpolation polynomial becomes excessively
oscillatory as the number of interpolating points increase. The last
drawback can be eliminated by using piecewise polynomials, i.e.
different polynomials in different intervals. O0f particular interest
are splines which are piecewise polydomials'of degree n adjusted so
that the (n-1):th derivative is continuous. For a detailed description

of spline functions we refer to de Boor (1978).

A straightforward approach to estimate the derivative, using splines,

is to
{i) approximate the data by a spline function
{ii) differentiate the spline

For noisy data other approximation methods than interpolation should
be used in step (i). The problem is to find a balance between the
goodness of fit to the data and the sensitivity to noise, see Morozov

(1984) for a general treatement.

One attempt to make a trade-off pbetween the two conflicting goals

above is to use the following quadratic criterion

N NT

min [ L 'ss(kT)—y(k)l2+p f [sg(t)lzdt] (4.37)
s () ket T

where p»0, and y(k) is discrete-time noisy measurements.

The minimization is done over the class of functions {ss(t)} which are
continuous up to the m-1 order of the derivative and squared
integrable in the m:th order derivative on the interval (T,NT). The
minimization in (4.37) results in a spline of degree 2m-1 (order 2m).
The spline function is determined by the choice of p and m. For p=0
the problem reduces to interpolation. For the asymptotic case, p?= ,
the minimum in (4.37) is obtained for a single polynomial of degree
m-1, which fits the measurement data in a least square sense. This is
intuitively seen in (4.37). For a polynomial of degree m-1 the
integrand is =zero, and the first part in (4.37) is a least squares

eriterion, cf Section 4.3.3 below.




A nontrivial problem is to choose the regularizing parameter p. A too

large value of p produces an oversmoothing of the data (large

systematic error) whereas a too small value may give an undesirably

high noise sensitivity (large stochastic error). Different types of
criteria for selecting p exist. A popular method for selecting p is

to use cross-validation, cf Wahba and Wold (1975) and Craven and Wahba
(1878). The basic idea of cross-validation is to leave the data points

out one at a time and then choose the value of b which best predicts

the missing data points. An earlier approach is reported in Anderssen

and Bloomfield (1974), who assume that y(k) is a stationary stochastic
process and estimate the regularizing parameter from a Fast Fourier

Transform of the data.

Differentiation with optimally regularized splines appiied to

biomechanics is given in, for example, Woltring (1985). A program

package based on optimal regularisation of (4.37) is presented in
Woltring (1986). Some illustrations of regularized splines (including

the choices of p and m) applied to differentiation are presented in
Section 5.2.

4.3.3 Local least squares polynomial fitting

Differentiating filters based on local least squares polynomial
fitting will be described. A polynomial of degree n will be fitted to
2N+1 measurement points. The estimate is made in the middle of the

interval.This implies that a noncausal filter (smoother) is used.

For convenience we consider the r:th (r<n) order estimate of the

derivative. The discrete-time measurement data is denoted

yik) k=0,1,2...

The problem under study is to fit a polynomial so that the squared sum

of the curve fitting error is minimized.
The polynomial is represented in shifted power form

n .

stk ) = [a.lk-k?' (4.38)
0 . i o

i=0

1,...an)T. The local least squares estimate of the vector a

is defined as the vector a that minimizes the loss function

Let a=(a0 a

N
Vial = [ [y(k+j)-s(k+j)12 (4.39)
j=-N




which has the solution

UTya(k) = BTY(K) (4.40)

where

Y(k) = (y(k-N),... ylk),... y(k+N))T

The r:th order derivative of the {continuous-time) polynomial is

estimated by (cf (3.6d) and (4.38))

d¥s (t) - -
—*-“;"‘ = S_(kT) = “a (k)
at t=kT T

which using (&.4D) can be written

. ' ]
STy = e o oy (4.41)
o4 Tr r,.n
where
T
e = {[0,0, .01 0, 0l
r'n - - -
pos O,... r,... n

This gives the following differentiating filter

N
x(k) = Lhoylic-d) = hTY (k) (4.42a)
j=-
where
T r! T,,-1
h=(h .. .h... : I :
N Pgee ) “uo'w e (4.42b)

T

The filter in (4.42) is an antisymmetric noncausal FIR-filter. The
filter is determined by the design parameter vector (T and r are

assumed to be given)

n = (N,n)

where 2N+1 is the number of data points and n is the degree of the

polynomial.




Example &.4. Consider the case r=1, N=2 and n=2. From (4.42) we get

[ ]

T
u -
0 -
1 T -1 1 1
h = ""[U = = —
LUy vy u a0 gy ug uy)) ; 1071 © Tt 2
T
u
2 L2

which gives the following differentiating filter
; 1 2 -1 -2
H{z) = —(2z - -
P +z-2 2z 7) (4.43)

Figure (4.2) shows the amplitude response of the filter in (4.43).
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Figure 4.2. Amplitude response of a second order least squares
polynomial dif?erentiator based on 5 data points, (T=1).

Note the clear difference with the interpolation polynomial approach

in Example 4.3 (the figures have different scales). -

Bandwidth and noise amplification for the local 1least squares

differentiating filter have been studied by Lanshammar (1982).

Consider the case r=n=t1 in the differentiating filter above. This
corresponds to the classical estimate of the first order derivative by
local least squares fitting of a linear trend. From (4.42b) we obtain

the following impulse response




h = --%—- (4.4h)
27 ¢ il

i=1
This case is widely known as Lanczos method, see Lanczos (1956). Note
that the same filter weights are obtained for a=0 in Usui and

Amidror's approach in Section 6.2.2.

Lanshammar ' 's method

LR RA-BAL- AL AL IC RS g

The method described here is given by Gustafsson and Lanshammar
(1977). A slight extension is reported by Soderstrom (1980). The

basic assumptions in Lanshammar’'s approach are‘the following:
(i) The measurements are given by

ylk) = Sn(k)+e(k) (4.45)

where elk) is white noise with zero mean and variance Az, The

signal Sn(k) is approximated by a polynomial of degree n {n>r)
where r is the order of the derivative to be estimated.

{ii) A noncausal FIR-filter is used for estimating the r:th order

derivative
R N
& (KT) = I h.ylk-3) = hVY(K) (4.46)
C e J
j=-N
T
h=1"1h . .. .
N e Rgeeeshy]

Y(K) = [y(K-N)....y(K),...y(keN)T

{(iii) The systematic (deterministic) error for polynomials of degree

n-1 is constrained to be zero.

(iv) The filter weights {hj} are determined such that the variance of

the total error (see (2.8)) is minimized.

Assuming s (k) to be a polynomial of degree n gives

n
_— i
Sn(k+3) = Eo sc(kT) {4.47)




where Sz (t) denotes the i:th order derivative of the underlying

continuous-time polynomial.

Using (4.45) and (4.46), the variance of the total error can be

written

Vih) = thTs:(k)-sz(kr)12+A2nTn (4.48)

T
wh = -
ere Sn(k) [sn(k N)....sn(k)....sn(k+N)]

The constraint in (ii) gives

h's (k) = sS(kT) (4.49)
n-1 c

We have a quadratic criterion with a linear constraint. A solution in

closed form then exists. The solution is presented in the following

lemma.

Lemma 4.2. Consider the 1loss function V (h) in (4.48) and the

constraint in (4.49). The optimal vector ho s given by

T, 2 -1 T (ou yTan2py”! -1 r!
Lou u +A"1] U R L aUntA ) U 4]

=
[=]
1"

(4.50)

<

i)
-

1
-4

=3

[~}
=z
—

N
T n 2
= [+ S
e ln! kT

Proof. From (4.47) it is clear that

n -
s = — 1
n(k) iEB 1 uisc(kT) (4.51)

where “i=[(-N)i...0




Using the constraint (4.49) and (4.51), the loss function (4.48) can

be written

n
vih) = [iT 52(kT)uTh]2+A2hTh zohTy uTher%nh (4.52)
H n nn

where

n
9=[%7 sg(kT)lz.

Using (4#.51), we then get from (4.49)

I 0 i#r
Uih = i i=0,1,...n-1
i i=r .
TI‘

which, using the notations above can be written

UT h = r

t
- (#.53)
n-1 r

e
r,n-1

-4

The static optimization problem with the quadratic loss (4.52) is

straightforward to solve and directly gives (4.50). .

By wusing the matrix inversion lemma (cf for example Kailath {1380))

the optimal filter weights vector can be written

no . T _ T
[(10uunun)1 uununlun_1
CreauTy ot —au’ Ty vt
nun)Un_1Un_1 uUn_1unun n—1] T er,n-1 {4.54)

where u=p/A2,

From (4.52) it is clear that the systematic error is proportional to g
and the stochastic error is proportional to A. Therefore a represent a
balance between these two errors. The factor a can be regarded as a
design variable. The filter parameters are determined by the design

parameter vector

n=1(Nna




From (4.50) it follows directly that

- 1
1imh® =y ' ou ] L SN
a0 n-1t n-1 n-1 Tr r,n-1

which can be interpreted as a local least squares fitting of a

polynomial of degree n-1, cf (4.41).

From (4.54) it can be verified that

. - |
1im h® =y wiu )"V E .
nnn r

Q-dos T r,n

i.e. a least squares fitting of a polynomial of degree n.

The factor o can be used to balance the systematic and stochastic
error terms in the criterion function. It turns out in practice that
the use of a nonzero a can have a substantial and beneficial effect on
the filter, especially on the damping for high frequencies, see

Gustafsson and Lanshammar (1977) for a discussion.
&.3.4 Recursive estimation of polynomial models

We have above described some non-causal polynomial approaches for
differentiation. The natural solution for an on-line application is to
use a recursive algorithm. Some common recursive algorithms will be

briefly reviewed below.

A polynomial trend

s{k) = a n
(k) O+a1k+,...ank (4.55)

can be written in the linear regression form
_ T
s(k) = @ (k)® (4.56)

T

where ¢ (k)=(1 K,...k") and 8'=(a_a_ ...a ).
o 1 n

Furthermore, let the measurement be given by

ylk) = s({k)+elk) k=0,1,2... (4.57)

where e (k} is a white noise sequence with zero mean. The least

squares estimate of © minimizes the loss function

v =
N(O)

x
umMm Z

1[y(k)~mT(k)9]2 ' (4.58)




where N is the number of data points. The classical recursive least

squares algorithm for computing this estimate is given by

elk) = y(K)-0 (K)o (k-1) (4.59a)

O(k) = 6(k-1)+P(k}plklelk) {4.58b)
T

P(K) = Plk-1]- Plk-1)plklp (KIP{k-1) (4.59¢)

149 (k) Tp(k-1)p (k)

see, for example, Ljung and Soderstrom (1983). An on-line estimate of

the derivative is obtained via

1 w;(k)e(k) ' (4.60)

T
where W;(k)=(0.1.2k....nkn-1)Ta The algorithm (4.59) weights all data

equally. This will give poor trackability to parameter changes.

§ (KT) =
c

Unknown time variations in the parameters may be tracked by

introducing a forgetting factor in the criterion

nMmZ

v o) = MKy ikr-9T (k1812 0<Ac (4.61)

k=1

which changes (4.59c) to

T
PIK) = [Plk-1)- Blk=tlolklw (KIPlk=-1);1 (4.59¢")
Mo (k) Tp(k-1)p(k)

Another method for tracking time variations is to use an algorithm

with rectangular data weighting which corresponds to the criterion

N

V(e = L [y(k)-p' (k1012 (4.62)
k=N-n

The estimate of © is then based on the last n samples. For a general

treatment of the recursive least squares algorithm with rectangular

data weighting see Young (1984).

Allum (1975) have used a cubic polynomial model. The parameters are
estimated recursivly with a rectangular data weighting. The derivative

is estimated from (4.60).




General exponential smoothing

We will describe general exponential smoothing which is an algorithm
for recursive estimation. This method is extensively described in many
textbooks in statistical forecasting, see for example Brown (1962) and

Abraham and Ledolter (1983).

We will here focus on polynomial estimation applied to
differentiation. The presentation here is based on Carlsson (1987).
First the general ideas will be given and thereafter the application

to differentiation will be presented.
Consider the following (discrete-time) model

yik) = 9Tg(Kk)+vik) (4.63a)

8lk+1) = Felk) (4.63b)

where F is a fixed transition matrix, ©(k) is a parameter vector, ¢ is
a constant regression vector and v(k) is a zero mean white noise

sequence.

The discounted least squares estimate of (k) is defined as the vector

8(k) that minimizes the following loss function

N
Vyier = ANy tkr-o' (a0’ (4.64)
=1

where 0O<A<T.
The recursive solution is given by

8(K) = FO(K-1)+P(k)QLy(K)-p FB(k-1)] - (4.652)

; T 7T T

Ao EP(K-1)F 9(K)

Pik)

(4.65b)

Denote P=&§2 P(k). Replacing P(k) in (4.65a) with its asymptotic value
P gives

8(k) = FO(K-1)+PLy(K)-p FBI(K-1)] (4.66a)

P=LANES e (4.66b)
=0




The derivation of (4.65) and (4.66) can be found in Carlsson (1887).
The algorithm (4.66) is known as general exponential smoothing. The
general exponentiai smoothing algorithm {4.66) needs less computations
than (4.65) since the gain in (4.66) can be computed in advance. A
straightforward use of (4.65) may also be numerically unstable.

Next the applicability of general exponential smoothing for estimating

the parameters in a polynomial model will be described.

A polynomial

k2 kn
s(k) = a0+a1k+a2 T AEERL My ' {(4.67)

can be represented by the structure (4.63) by choosing

o' = (1 0...0) (4.88a)
T =
e (D) (ao a1...an) (4.68Db)
[ |

A L

2! n!

1

I L D —_—
F = {n-1)! (4.B8cC)
0
]

In Carlsson (1987) it is shown that

k2 kn
1 K 3T e e . ;T
gt 0 1 k. , (4.69)
0

The structure (4#.67) is then directly obtained by observing that
(4.63) with v(k)=0 can be written

vik) = » Fe(0) (4.70)




Next we will give an example for estimating the parameters in a linear

trend model.

Example 4.5. Consider a linear trend corrupted by noise v(k)

ylk) = a +a k+vik) (4.71)
Using (4.68) we can represent the signal by the model structure (4.63)
with p=(1 D)T, e(k)=[ao(k) a1(k)]T. 9(0)=(ao a1)T and F=(; 1). i.e.

yik) = a (k)+vik)

30(k+1) = ao(k)+a1(k) (4.72)

31(k+1) = a1(k)

The parameters can be estimated with the algorithm (4.66).

Straightforward calculations give, using (4.66b)

1-A2
Pp =
(1-A)2

which inserted in (4.66) gives the following algorithm for estimating

the parameters in the linear trend

. . . 2 . .
ao(k) ao(k-1)+a1(k-1)+(1*k )(y(k)—au(k-1)-a1(k—1)) (4.73a)

"

a, (k) a1(k—1)*(1—A)2(y(k)—ao(k-1)-at(k—1)) (4.73b)

The algorithm (4.73) is widely known as double exponential smoothing,
cf Brown (1962). _ . .

The following example illustrate double exponential smoothing applied

to differentiation.
Example 4.6. (Differentiation with double exponential smoothing)

Using the parametrization (4.72) the derivative of a linear trend can

be written

. 1
sc(kT) = Ta1(k) (4.74)

Double exponential smoothing gives the following estimate

-

§c(kT) = 72 (k) (4.75)




Double exponential smoothing is a linear operation. Hence the estimate
in (&.75) can be described by a pulse-transfer operator. From (4.73)
and (4.75) the following differentiating filter is obtained
-1 1 2 1-q°)
HlQ™') = =(1-A) -0 (4.76)

(1-Aq-1)2

The design variable is the forgetting factor A. The filter has a zero

for z=1 and a double pole for z=A.

Note that the same filter structdre is obtained in Example 4.1. It is
easy to verify that the filter in (4.76) becomes equal to (4.5) if we
set

A= =1 (4.77)

T+t

We have hence a relation between the cut-off frequency 1/t and the
forgetting factor A. A priori knowledge of the signals frequency
characteristics can then be used to choose the forgetting factor A.
Relations between the double exponential smoothing and the Kalman

filter are given in Carlsson (1987). B

General exponential smoothing can be used for filtering (smoothing) a

noisy signal. From (4.66) we obtain

1

Vik/k) = pa(k) = oI-(1-PoeTyrq 11 Tppy k) (4.78)

An estimate of the derivative can then be obtained by differentiating

the output from the filtered signal in (4.78).

b.bh Stochastic signal modelling

A stochastic signal model is a more general signal model than
polynomials. Two approaches applicable to differentiation based on

stochastic signal modelling will be described.
h.okh. 1 A state space continuous-time formulation

This approach is described in more detail by Soderstrom (1980, 1982)
and Ahlén (1984). A similar approach adapted to velocity estimation
based on position measurements can be found in Ljung and Glad (1984).

A related contribution is also given by Anderssen and Bloomfield




(1974) where time-series analysis is used to describe the signal but

the filter is obtained via spectral properties.

The underlying continuous-time signal sc(t) is assumed to be described

as a process with the spectral density

B (i s
p(lw)Bp( iw)

¢5(w) (4.79)

A {iw)A (-iw
p( p )
where

Ap(s) = sM+a.s" '+...a

]
=3
L7
+*
(=2

B (s
p )
The problem is to estimate the r:th order derivative of the underlying
continuous-time signal at the sampling points. Note that the

coefficients b1.b2...br must be assumed to be zero to guarantee the

existence of the derivative s¥(¢),
c

The signal can be represented in state space form as

dx{t) = Ax{t)dt+Bdv
(4.80)
Sc(t) = Cx(t)
with
r 1 M
-a_ - -
1 32 an 1
1 0 0 0
A= B =
1 0 0
L . LJ
c =100 ... br+1 e bn]
and vit) being a Wiener process with unit incremental variance.
The r:th order derivative si(t) is given by
sT(t) = Dx(t)
¢ (4.81)

D = (b
r*1'br""bn 0,...0)




sampling of the process gives, see for example Astrom (1970),

x({k+1) = Fx({k}+wlk)

(4.82)
s(k) = Cx(k)
where F=9AT. and wlk) is a vector-valued white noise sequences with
zero mean and covariance matrix
T T
Ewl kW' (k) 4r- JeAseaTeA s (4.83)
0

The measurements are assumed to be corrupted by noise which give

x{k+1) = Fx{k)+wl(k)
(4.B4)
y(k) = Cxlk)+elk)

where el(k) is discrete-time white noise with zero mean and variance
AZ

Optimal state estimation can now be used for estimating the
derivative. One reasonable approach is to apply a time-invariant

fixed lag smoother, cf Anderson and Moore (1879)

X(k+1]K) = Fx(k|Kk-1)+KS(K) (4.85a)
Vik) = y(k)-c;(klk—1) (4.85Db)
X(k|Kksm) = ;(k|k+m-1)+K;§(k+m) (4.85¢)
k2 p(r-kc) ™ TicpcTea?) ! (4.85d)
P = FPFT.p-FpcT (cPCT+n?1 TcpET (4.85¢)
k = FrcTrcpc a2 ' | ' (4.85F)

Let R=QQT. Sufficient conditions for stability of the filter above
are then that (F,Q) is stabilizable {all uncontrollable modes have

eigenvalues inside the unit circle) and that (C,F) is detectable {all
unobservable modes have eigenvalues inside the unit circle).See eg
Anderson and Moore (1979) for a proof. Note that for unstable system

the spectrum in (4.79) is not defined.
The derivative in the sampling points can then be estimated by

SZ(kT) = Dx(k|k+m) (4.86)




The design variables are the number of lags m, the order of the model

n, the coefficients in Ap(s) and Bp(s) and the variance of the

measurement noise, 1i.e.

It is straightforward to handle correlated measurement noise by adding

some extra states in (&.B4).

In the 1limiting case when m tends to infinity the optimal accuracy

becomes

min Eisz(kT)-sz(kT)lz = D(P-PQPID’ (4.87)

where

@ = (F-kc) Ta(e-kc)scTtercT+a2) Y

cf Anderson and Moore (1979).

In practice a finite number of lags are sufficient. When the
measurement noise is small it might be only marginally betterlto use a
smoothing estimate than a filtering estimate. For a high noise level
it pays off to apply smoothing for several lags {for example m=5-20).
Some numerical examples for the optimal accuracy as a function of the
lags m (for standard state-estimation) can be found in Soderstrom
(1985). An optimal filter would have to be time-varying to take care

of the transient effects for small k optimally.
h.4.2 Differentiation viewed as an input estimation problem

The idea here is to consider the diffe;entiation problem as a special
case of input estimation (deconvolution). fﬁe signal to be
differentiated is then regarded as the output from an integrator. The
idea was developed in a state space formulation in Ahlén (1884). We
will here apply the more recent ideas presented in Ahlén and Sternad
(1985,1987) to differentiation. A polynomial abproach is wused to
develop the optimal filter.

Consider a discrete-time linear stochastic system given by

-1 -1
y(k) = Blg ) ulk-d)+ Mlg ) vik) {4.88a)

A(q71) N(q“)




where the unknown input sequence ul{k) is modelled as

-1
ulk) = 519;—1 elk) evikiZ/eerk)? = o (4.88b)
0(g ')
The input signal and the measurement noise are described by
independent ARMA processes. All polynomials except B are assumed to be
monic. We further assume that CBN and MAD have no common factors with
zeros on the unit circle, and that the system BC/AD is detectable.
The degrees of the polynomials are na, nd etc. The white noise
sequences v(k) and e(k) are stationary, =zero mean and mutually

uncorrelated.

The problem is to find a stable linear estimator of the input wulk)

based on noisy measurements y(k)

ulklk-m) = Hig ")y (k-m) (4.89)
where
-1
H(q-‘) = ﬂ.q—__)_
Rig™")

which minimizes the mean square estimation error

E(ulk)-u(k|k-m))? (4.90)

The point is that the system in our application should approximate a
continuous-time integrator. An estimate of u(k) can then be regarded
as an estimate of the derivative. A simple approach is to use the

transform (4.2) which gives

8
- = 4.9
q A ( )

The approximation (4.91) is exact for signals whose derivative is

piecewise constant between the sampling instants.

Another idea is to use the bilinear approximation which gives

(4.92)
These approximations lead to an insignificant systematic error if most

of the signal energy is concentrated well below w/T. They are

adequate for narrow and moderately wide band ‘"differentiation. For

4:31




wide band differentiation other approximations should be used, cf

section 4.2 for some alternatives.

The general problem is illustrated in Figure 4.3.

‘v(k)

n
N
C -d B -1
— = a = Ha ) ==
e(k) D u(k? A | s(k) y(k 1) u(k/k-m)

Figure &.3. The input estimation or deconvolution problem.

Depending on the sign of m, we get an input prediction (m>0),

filtering (m=0) or a fixed lag smoothing problem {m<D).

For the solution we need the spectral factorization (* indicates

conjugate polynomials)

rBB, = CBNC,B, N, +OMADM A, D, (4.93)

where r is a positive scalar factor and B(2) is a stable and monic

polynomial in 2z with degree

nc+nb+nn if p=0
nB =
max{nc+nb+nn,nm+nafnd) if p>0
This is the same spectral factorization that shows up when the output
yi{t) 1is described by an equivalent ARMA process. The scalar r can be
interpreted as the variance ratio AE/Az, where Az is the variance of

the innovation sequence driving the equivalent ARMA model.

Theorem 4.3. Assume the system (4.88) to be detectable and that CBN

and MAD have no common factors with zeros on the unit circle. The

optimal input estimation filter (4.89) then attains the global minimum

value of the estimation error (4.90) for the system {(4.88) if

Hig™ 1) =-g-=-——— (4.94)




where B is the stable spectral factor from (4.93) and 01(2'1) and

L({z) are the minimum degree solution of

2™ canc, = rBo sD,zL (4.95)

with degrees

n@. = max{nc-m-d,nd-1} (6 .96)
£.96

nL = max{nc+nbs+nn+m+d,npl-1

Proof. See Ahlén and Sternad (1937).

After deciding a suitable integrator model (in this case the
derivative is to be estimated) the design variables are the number of
lags in the filter m, the ARMA model parametefs for the input signal
and the measurement noise and the quotient between the variances of
the driving noises el(k) and v{k)

n = {m, c «saC

1 d,...d

ne' 94 , m,...m__, n_...n__, o)

dn 1 mn 1 nn

The input model need not to be stable. Inputs such as polynomial
trends and sinusoids can be modelled by D-polynomials with zeros on
the unit circle. If no specific knowledge of the input properties are

available, a white noise model (C/D=1) is a natural choice.

To obtain an optimal estimate of the input signal, in this case the
derivative, the parameters have to be known a priori or correctly
estimated. When the parameters are unknown they have to be estimated
in some way. An attempt to estimate the parameters of the input model
is discussed in Ahlén (1984). An important question is under what
conditions it is possible to uniquely dete;mine the parameters’of the
input model and measurement noise model. The identifiability
properties are analysed in Ahlén (1986). Note that in some cases it
might be natural to estimate the ARMA models from a spectral analysis

of the data.

The method described here can be seen as a simple time-domain
algorithm for calculating discrete-time realizable Wiener filters for
deconvolution or, in our case, differentiation. 1f the measurement
noise is coloured and/or the lag m is large, the polynomial approach
requires less calculations compared to a state space approach. Another
nice property when using a polynomial approach is that the frequency
characteristics can be studied directly. A drawback with the




polynomial approach is that transient effects cannot be handled

optimally.

In Section 5.2 a differentiating filter, based on the results

presented here, will be derived.




5. NUMERICAL EXAMPLES

In this section numerical examples and comparisons are given for some

of the methods described in the previous section.

In Section 5.1 differentiation of some stationary stochastic signals
is studied. The methods used for differentiation are the regularized
splines approach and the frequency domain method proposed by Usui and

Amidror. A comparison with the optimal accuracy is also given.

In Section 5.2 the problem of tracking the derivative of a noisy trend
signal with abrupt changes in the derivative is studied. Three on-line

methods are analyzed and compared.

5.1 Differentiation of stationary signals

We will here illustrate two non-causal methods for differentiation of
noisy data. The methods under study are the regularized spline
approach described in Section 4.3.2 and Usui and Amidror's approach in
Section 4.2.2. A comparison with the accuracy of the optimal Kalman
filter (cf Section 4.4.1) will also be made. Some concluding remarks

are given last in this subsection.

Description of the signals used to generate the data sets

A stochastic process is used for generating the signal Sc(t)' The

chosen signals are all described by the spectral density

¢ (w) = 16(iw) |2 (5.1a)
where
w2
Gls) = —2L—r (5.1b)

52+252u04mi

The signal is sampled, cf (4.82), and white measurement noise with

variance A% js added to the signal.

The sampling interval T is 1s. Simulation of N=1000 data points for

each example were carried out. The different examples discussed below

are described in Table 5.1.
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Example 1a 1ib 2a 2b 2¢ 3a 3b
w 0.2 0.2 0.8 0.8 0.8 0.8 0.8
2 0.1 0.1 0.1 0.1 0.1 1 1
A2 0.3° |o.8? 0.32 |12 42 0.32 |o.8°

Es(t)?/n% |s5.6 0.8 22 2.0 |o0.12 |2.2 |o0.3

Table 5.1. Description of the signal parameters.

The spectral densities are shown in Figure 5.1. In Example 1 the
spectral density has a sharp resonance peak at w=0.2, in Example 2 the
resonance peak is at w=0.8. Example 3 has a rather flat spectrum from

w=0 to w=0.8.

In Figure 5.2 realizations of the signals in Table 5.1 are shown.

The true derivatives in the figures are calculated from {4.81).

¢ (w) )
s Spectral densities
/ \ /‘\
/ I\
fort ”J” \
—1'.:"'-—-’./ ) - \\
S '

l.‘ . \
. "\,_ \‘
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Figure 5.1. Spectral densities for the signals, wozo.z 2=0.1 (—),
W = = - = = *tty).
o 0.8, Z=0.1 { Y, wo 0.8, 2=1 ( )
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Figure 5.2. The signal s(t) and its derivative $(t).




To evaluate the goodness of the estimated derivatives the following

loss function is used

mMZ

Voem| -

N-1

[ (kT)-3(kT)I2 | (5.2)
k=1 °©

The optimal averaged accuracy minE[éc(kT)-g(kT)]z is straightforward

to evaluate using (&#.87). We will denote

. . 2
v - i -
opt —d mlnE[sc(kT) s(kT)] {5.3)

Regularized splines applied to differentiation

For convenience we very briefly summarize the method. The following

criterion is used

NT
'SS(kT)—y(k)|2+p i [s:(t)lzdt] (5.4)
T

Mz

min [
S (t) k=1
]
The minimization results in a spline function of degree 2m-1. The user
choices are m and the regularizing parameter p. Note that p=0 gives
interpolating splines, which corresponds to wide-band differentiation,
cf Example 4.3. On the other hand, when p+= a polynomial of degree
m-1 is fitted to the data in a least squares sense Wwhich gives a

narrow-band differentiation, cf Example 4.4.

The subroutines presented in Woltring (1986) have been used as a basis
for an interactive program package to study regularized splines

applied to differentiation.

The influence of the parameters m and p td.the.criterion vV in (5.2)
will be studied. A method for selecting p will also be illustrated.
Craven and Wahba (1979) introduced the Generalized Cross-Validation

Criterion (GCV) for selecting p. The idea of cross-validation is to

fit the spline s (kT) to all the data points, except the j:th, i.e.

N NT
min L lsstkr)-y(k)|2+p I [s?(t)]zdt {5.5)
S (t) k=1 T

s K# 3

Let Sg(t) be the function which minimizes (5.5) and set

Lip) = wp(k)(s:(kT)-y(k))z (5.6)




where wp(k) is a weighting function to compensate for nonperiodic
sampling and nonperiodicity in the data. The GCV estimate of p 1is

defined as the minimizer of L(p) and is denoted p

GCV’
Let the noisy measurements be given by
ylk) = s(k)+elk)
where s(k) is the signal and e(k) is white noise. Craven and Wahba

(1979) show that under mild conditions the cross-validated splines

minimize the following true mean square error

[ 4

Rip) = 1

N

‘Ss(kn-s(k))z ' (5.7)
k=1

as N-owo,

For a more detailed description of the G6CV method applied to
regularized splines, we refer to Craven and Wahba (1979), c¢f also
Woltring (1986). The Fortran subroutines in Woltring (1986) also

include the GCV criterion for selecting p.

The regularized splines were fitted to the data from the signals

described in Table $.1. The derivative was estimated by
differentiating the splines. The numerical results are summarized in
Table 5.2. Using the true derivative, the loss function in {5.2) was

evaluated. In the table below, V . is the value of the loss function
in (5.2) when wusing cross-validated splines for estimating the
derivative. The minimal value (in the sense of (5.2) using
regularized splines) is denoted vmin(RS) and is obtained by a
numerical search. The corresponding value of p is denoted pmin'
that the true derivative is used to evaluate V in (5.2). As a

Note

comparison, the calculated value of Vopt is also presented.

As mentioned earlier, the minimizing p was found by a numerical
search. In Figure 5.3 the loss function V is plotted as a function of
p for m=2. As seen in the figures the function V{p) is quite smooth
around the minimum, particularly for the low freguency signals. A too
low value on p (more interpolation) increases the stochastic error

whereas a too high value will increase the systematic error.




Signal number m chv
1a
w =p.2, 2=0.1 1 20
A.p.32 s
3 186
1b
v,=0.2, 2:0.1 1 60
A2=0.82 > 1
3 983
2a
w,=0.8, 3=0.1 1 0
2 2
A"=0.3 2 0.05
3 6.05
2b
w =0.8, 2=0.1 1 0.08
2 .2
A=t 2 0.39
3 0.42
i 2¢
w =0.8, 2=0.1 1 5 10"
2 .2
A =4 ’ 9 107
3a
wo=u,3, Z=1 1 0.52
A2=p.3% > 12
3 17
3b
wg:u.e. Z=1 1 12.4
2
A"=0.8 2 125
3 1200

0.069
D.04%

0.044

0.114
0.065

0.064%

0.

0.

0.353

0.356

0.358

GCv

.70

37

36

min

40

300

19
140

1700

1

12

1.1

12

50

v

mi

0.057

0.043

0.043

0.0798

0.062

0.063

1.06

1.08

0.352

0.353

0.358

Table 5.2. Numerical evaluation of regularized splines

differentiation.

(RS) v
n

opt

0.042

0.060

applied to
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Figure 5.3. The 1loss function V as a function of the regularizing

parameter p for m=2 (i.e. cubic regularized splines).




One important practical issue is how good the estimated derivative

obtained via cross-validated splines is compared to the optimal

accuracy. Comparing the loss Vch with vopt' we see that for m>1
the cross-validated splines gives a value close to the optimal value
of V. Note, however that when the noise variance increases so does

the differances between the losses (cf Example 2a-2c¢).

For the signals under study we see that using GCV with m>1 produces a

result where V i
gcy 1S very close to Vmin

the true derivative is unknown and the minimizing p cannot be found.

(RS). Note that in practice

As expected, a higher noise variance increases the optimal p-value,
i.e. a "higher degree of regularization® is then needed. Increasing
the order of m from 1 to 2 reduces the loss function in all examples,
except for Example 2c where the noise level is very high. Note that
the reduction is more significant in Example 2 than in 1. It pays off
more to increase the order of m when the signal has the dominating
spectrum at a higher frequency. Increasing m from 2 to 3 does not

result in any significant improvement.

For the low frequency signal in Example 1 we see that the relative
increase of Pmin 1S larger when the variance is increased. We also
notice that when the signal is dominated by low frequencies as in
Example 1t1a and 1b, the optimal value of p is increasing as m
increases. For the signal in Example 2a and 2b the opposite occurs

due to the higher signal frequency.

Usui and Amidror's approach

The same data sets as previously described have also been applied to
Usui and Amidror's (UA) approach. The approach is briefly summarized

below. An antisymmetrié FIR-filter

n .
: o
H(z) = — L 1_,73

2) =57 bteglzt-z ) (5.8)

J=1

is used for approximating the following frequency response in a least

mean-square sense




H (e1WT) . dw jw]<an/T (5.9)

LPI 0 an/T<|wl<n/T

under the constraint of ideal differentiation at w=0.

The user choices are the filter order 2n+1 and the cut-off frequency
an/T of the differentiation band. In this study we will use a fixed
filter order of 17. The filter was running with data from the signals

described in Table 5.1,

A minimizing @ {in the sense of (5.2)) was found by a numerical
search, cf Figure 5.4. In practice, the parameter a can be estimated
from frequency analysis of the data. The numerical results are
summarized in Table 5.3 (for a quick comparison vmin(RS) and vo are

pt
also shown).

In all examples, the optimal « obviously decreases when the noise
variance is increased. Comparing the results with the regularized
splines we see that the latter method gives a slightly better result.
The difference is more significant for low noise levels and/or low-
frequency signal spectrum. It can, however, be conjectured that

increasing the filter order will improve the results.

In Figure 5.4 the loss function V is plotted as a function of the
differentiation band o. Note that due to the constraint at w=0, quite
good results are obtained for a=0 when the signal has a low frequency
character or when the noise variance is high. For low values on «
the systematic error is high whereas the stochastic error is small.

The optimal a is found when the sum of these errors is minimal.

Figure 5.5 shows the amplitude response of the filter for some values

on o. Note the oscillations due to the Gibbs phenomenon.
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r 1

Signal number o . .
g9 min len(UA) len(RS) vopt
1a 0.15 0.046 0.043 0.042
W = =
g 0 2:.2 =0.1
A®=p0.3
1b 0.10 0.066 0.063 0.060
U = =
o 0.2, 2=0.1
A.g. 8%
2a 0.45 0.38 0.36 0.34
w - -
O-D 8, 4=0.1
A2-0.3%
2b 0.35 0.57 0.56 0.52
w - -
0=0-8, 2:0.1
A=
2¢c 0.10 1.186 1.08 0.90
W = =
o 0.8, 2=0.1
A2y
3a 0.40 0.32 0.31 0.30
v =0.8, 2=1
A2:p.3%
3b 0.15 0.36 0.36 0.34%
w =p.8, 2=1
A2=0.82
L J
Table 5.3. Numerical evaluation of Usui and Amidror's approach. The

filter order N:=17.
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The loss function V as a function of the parameter a.
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Figure 5.5. Amplitude responses for the UA-method, «=0, 0.2, 0.4,
0.6, 0.8, 1.

Non-white measurements noise

We will shortly illustrate the effect of non-white measurement noise.

Let the measurement noise be given by a second-order AR-process

vik} = C1v(k-1)+c2v(k-2)+e(k) (5.10)

where e(k) is white noise with variance Az,

2

In the following example we have chosen c1=o_3 and c¢_=-0.8, which
give poles at 0.4%jp 8. The noise spectrum has a resonance at w=1.1.

The variance of the driving noise is A2=o,32 The noise was added to

the signal 1 in Table 5.1. The results are presented in Table 5.4.

zig::iteristics umin vmin(UA) M Pgev vGCV Pmin vmin(RS) vopt
w0=0.2 Z=0.1 0.15 0.048 2 1'10-9 0.62 60 0.046 0.044
C1=U.8 c2=-0.8

A2=u,32

Table 5.4. The effect of non-white measurement noise.
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Here the GCV criterion does not work very well. The explanation is
that the method cannot distinguish between the true signal (with
spectrum around w=0.2) and the noise (with spectrum around w=1.1).The
cross validated splines are hence fitted to the signal as well as the
noise. This gives a too low value on p (more interpolation) which
increases the 1loss function. Note that the minimal 1loss, wusing

regularized splines comes quite close to the optimal value.

The minimal 1loss using the UA method is slightly higher than
Vmin(RS). A good value on a can however easily be estimated from a
spectrum analysis of the data (if it is a priori known that the
dominating noise spectrum is located at higher frequencies than the
signal spectrum). Too obtain a good value on p in RS is far from
trivial in this case (note that the GCV-method does not work properly

for this case).

Some concluding remarks

Two methods for differentiating of noisy data have been illustrated

and compared with the optimal accuracy.

The method based on regularized splines (RS) is a true off-line
method since all data are used. Usui and Amidror's (UA) approach
gives a non-causal filter which can be used on-line if a delay of

half the filter order can be accepted.

Both methods have been used in biomechanical applications, cf
Woltring (1986) and Usui and Amidror (1983).

The design parameters are very different. The parameter « in the UA
approach has a very direct and intuitive meaning - the limit of the
differentiation band. The choice of o should be based on frequency
domain knowledge {or assumptions). This can be obtained by a
frequency analysis of the signal (at least if the signal spectrum is

of low-frequency character and the measurement noise is white).

The parameter p in RS is less intuitive, cf (5.4). If the signal and
the noise spectrum is a priori known (or estimated), the Butterworth
filter interpretation given in Woltring et al (1986) might be useful
for determine a good value on p. The GCV-criterion has shown good

results when the noise is white and the variance is not too high.




The computation time for determing the value of chv in RS on a

microvax Il is about 33, 79 and 135 seconds for m=1,2 and 3 (N=1000}.

The advice in Woltring (1986) to choose m higher than the highest
derivative being sought is also found to be valid in this study. We
have used statiohary stochastic processes for generating the data. It
is then natural to use the optimal Kalman filter for estimating the
derivative. In practice it is often necessary to estimate the signal
parameters, cf Ahlén (1986) for some examples. However, if the data
cannot be transformed to a stationary process and a pertinent model
structure cannot be found, the RS approach may be advantageous. 1t
the spectrum of the signal is ‘available, a frequency domain method

such as the UA-method might be natural to use.

Needless to say, what method to select depends very much on the
application and the a priori knowledge of the signal and noise. Note
that by fixing the value on m (e.g. m=2) and using the GCV method in
RS we have an automatic routine for estimating the derivative. That

might be a great advantage for a non-experienced user.




5.2 racking of a noisy trend signal

e

A very simple assumption of the signal to be differentiated is that
the true derivative is constant or changes slowly. A more realistic
assumption in many cases is to assume that the true derivative is

constant (or changes slowly) except for infrequent large changes.

This leads to a compromise between the noise sensitivity in the
filter and the trackability to step changes in the true derivative.
Note that the same problem arises in the transient period even if the
true derivative is constant. It may then be important to have a fast

transient response f;om a poor initial guess of the true derivative.
Three discrete-time differentiating filters wili be compared

(i) A second order Butterwérth filter approach

(ii) Double exponential smoothing applied to differentiation
(iii) An input estimation approach

All three methods can be described by second order IIR-filters but
the underlying design philosophies are quite different. Approach (i)
is a frequency domain method based on analog filter design, the
second approach is based on a polynomial signal model, whereas the

third method is based on a stochastic discrete-time model.

A Butterworth filter approach

The basic idea here is to use a continuous-time differentiating
filter which is transformed to a discrete-time filter, cf Section

4.2.1. Let the continuous-time filter be

His) = sHo(s) {(5.11)

where "o(s) is a low-pass filter. In this example a second order
Butterworth filter will be used

we

H (s) =
0 2
s +f25w°+mo

Using the bilinear transform gives




Hig™ ') = sH (s) -1 =
=2 =0
-1
1+qg
) Q§(1+q'1)(1-q—1)
T 2 -1, 2 2 2 (5.12)
L+JBQooQ°+q (ZQO-B)*q (4-fBQ°+Q°)
where Q =y T.
0 o
The bilinear transform distors the frequency scale, so-called
frequency warping. To achieve the desired discrete-time cut-off
frequency, the frequency must be prewarped. Set
mOT
Q- - — A
o 2tan 2 (5.13)
The differentiating filter then becomes
z(k) = H_ (g su )y(k)
B ° (5.14)
where ) ] .
» 2 2 “t1+q” y(1-q )
H . - £
pw'd i) = T

IS Y- -2 o2
4+JBQ°¢QD +q (2Q "-8)+q (L-JBQ°+QO )

1
Note that H = ; —t : s .
gy'01=0. and lin HBw(z)z_1 1/7, i.e. the dc-gain 1is zero
and a 1linear trend is differentiated without bias. The design
parameter is the cut-off frequency @ ., which via (5.13) determines

the parameters in the filter.

Differentiation with double exponential smoothing

The parameters in a linear trend model can be estimated with double

exponential smoothing, cf Example &.5,

elk) = y(k)‘ao(k—1)-a1(k-1) ' (5.15a)
a_(k) = an(k—1)+a1(k-1)+(1-A2)e(k) (5.15b)
a, (k) = a1(k—1)+(1-A)2e(k) (5.15¢)

The derivative is estimated using

H 1°
5c(kT) = 731(k) {5.16)

which corresponds to the following differentiating filter, cf Example

4.6,




2 -1
Ho (g iA) = (1TA) ! q_, 5 (5.17)
(1-Aq )

An input estimation approach

Adapting the ideas presented in Section &.4.2 to the noisy trend

signal lead to the model described in Figure 5.6

v(k)

e(k) u(k) s(k) y(k)

Figure 5.6. A discrete-time input estimation approach for tracking
the derivative of a noisy trend signal'with abrupt changes in the

derivative.

In the figure A=1—q’1 and vi{k) is white noise with =zero mean.
Furthermore, 1let el(k) be a stochastic sequence with the following

property

+a with probability p/2
elk) = -a with probability p/2 (5.18a)
0 with probability 1-p

This gives

Eelk )elk,) = a’ps (5.18b)

k1'k2

An estimate of u{k) can be regarded as an estimate of the derivative.

Comparing Figure 5.6 with the general model described in Figure 4.3

gives A=1-Q'1, B=T, C=1, D=1—q'1. M=1 and N=1, which inserted in

(¢.93) gives the following spectral factorization

TBB, = T2+g(1-22+zz)(1—22-1+z'2) (5.19)
2
where Q=E¥Eikl
a“p




Insertion in (4.95) gives for the filter case {m=0)

2 -1
T = 1 -
r +B1z+Bzz )01+(1 z )z(1°+l1z) (5.20)
which gives
O, = Bl1) = (148 +B,)/T (5.21)

From (4.94) we now get the following differentiating filter

G NA 148, +B -1
tq o) = 13 c—1 2 -9 (5.22)

-1 -2
T 14B,a "+B,a

H
- IEA

The parameters in the filter (5.22) are determined by the design
parameter ¢ via the spectral factorization (5.19). An optimal ¢ can
be obtained 1if the amplitude»(a). the frequency of the derivative
changes (expressed through p) and the noise variance E(vz(k)) can be

correctly estimated.

Comparison between the settling time and the noise transmission

B ALK B 2R AL L

We will here study the settling time and the noise transmission of

the filters.

We define the settling time ks as the time required for the Tesponse

curve to reach and stay within a range M about the final value when

the true derivative makes a unit-step. The value M=107 is chosen.

The noise transmission W is defined as the variance of the filter

output when the input is white noise with zero mean and unit variance

: n/T .
W= e yvin? = = f ret?T) % - (5.23)
2n
-w/T
The noise transmission W is straightforward to evaluate analytically,

cf for example Astrom and Wittenmark {1984). However, the settling

time ks must be determined by simulation (or solved numerically).

A crude relation between W and ks is as follows

1_.3
w"‘("—
ks) (5.24)

i.e. the noise transmission is approximately proportional to the
cubed inverse of the settling time. To heuristically derive (5.24) we
assume that the bandwidth w_ of the differentiation band is
proportional to the inverse settling time (cf for example the

classical rules of thumb in control theory)
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K w
S

(5.25)

E‘—'

s
We further assume that the filter has an ideal frequency response up

to ms‘ The noise transmission (5.23) can then be written

1 Ye .2 (A iwT, 2
W= I wlgws [ [H(e*™')] %du ' (5.26)
T g w
)

Using (5.25) we see that (5.24) approximately holds if the second
part in (5.26) is small.

1f we assume that the signal is strictly band-limited with bandwidth

ws and that the filter is constrained to give no systematic error,
the expression (5.26) can also be used to obtain a bound for the

achievable accuracy of the 'estimated derivative, c¢f Lanshammar

(t1982).

In Figure 5.7a the noise transmission is plotted as a function of the
cubed inversed settling time. We see that for the three filters under

study, the agreement with (5.24) is quite good.

Figure 5.7b shows the noise transmission W as a function of the
settling time ks' and the filter parameters u . @ and A. For a fixed

value of W or ks, the filter parameters are directly given. The
figure might be useful for a quick determination of how requirements

in the noise transmission affect the trackability to step changes in

the true derivative (and vice versa).

From Figure 5.7b it is seen that the two filters HBw and  Hpg,
produce practically the same result. Note, however, that the
numerator 1in HBw is one degree higher than HIEA and HDES' The filter

HDES produces a poorer behaviour than the two others for this value

of the settling time parameter M (10%1). A slight advantage with HDES
is that the filter output gives no overshoot in contrast to the two
others which both give an overshoot of about 57 (cf Figure 5.8

below).




Figure 5.7a. Noise transmission as a function of the cubed inversed
settling time.
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Figure 5.7b. Noise transmission as a function of the settling time

and the filters design parameters.




Reducing the value on M will reduce the difference between the
methods. This is i)lustrated in the following examples (all filters

are tuned to have the same W=0.0071).

Filter ks {(M=101) ks (M=11) n

H =
BW 9 22 wo 0.29
H z

IEA 9 22 p=182

H =

DES 12 21 A=0.Th

Table 5.5. Settling times for M=101 and M=1l.

As seen from the table, reducing M from 101 to 11 gives an opposite

ranking of the filters.

In Figure 5.8 the step responses for the three filters are shown.

All filters have W=0.0071. The two filters HBw and HIEA have

practically the same response.

k (samples)

0. 18. 20. 30. 40.

Figure 5.8. Step responses for the filters. The true derivative (1),

the filter H
BW (2), HIEA (3) and H (4).

DES




The compromise between the noise sensitivity and the trackability to

step changes might be hard to trade-off. A natural solution is to (if
possible) decrease the sampling interval T. Assume that a change in

the sampling interval not affects the noise variance. It follows then
directly from (5.25) and (5.26) that k_ « 13 for a constant W. When

comparing the behaviour for different sampling intervals, it is
natural to measure the settling time in continuous-time. We then get

t o T4/3 (5.27)
where ¢t =k T.
s s

To further improve the trackability it-may be fruitful to use
adaptive filter techniques. One approach is to use a detector for

significant changes in the derivative. Different types of detectors
applied to differentiating filters are studied in Carlsson (1987).
Poles of the filters

The poles of the three filters as a function of the design parameters

are shown in Figure 5.9.

_ Im z
1.
- unit circle
0.8
up=1.5
2.4
] HBW u°=.6
2.2) H p=1 o=10
) IE Hpgs
’ 2. s °. s T Re z

Figure 5.9. Poles of the filters as a function of the design

parameters.




The filter HDES (z:A\) has a real double pole at z=A (0<A<1). The

filters H (z,w ) and H
BW 0 1EA
slight overshoot). The poles approximately coincide for low values on

{z,p) have complex poles (which causes a

wo and high values on p (say, w0<0.1 and p>20). In the asymptotic

case, +0 and A+0 the filters H i -
e LEA and HDES tend to a first-order

difference filter.

Freguency responses

In Figure 5.10 the amplitude and phase of the frequency responses of
the filters are shown. All filters are tuned to have the same noise

transmission W=0.0071. This corresponds to a settling time ks=9 for

and H and ks=12 for H Due to the zero at z=-1, the filter

H .
BW IEA DES

HBw has slightly better damping for high frequencies. This filter

also have the largest differentiation band. At w=0 the filters have
an ideal phase responses. The phase error rapidly increases for

higher frequencies.

amplitade response hbw hise hdes phase—~plot

0.8

idT)

|n(,!ﬂT)| argH(e
[degrees]

Figure 5.10. Magnitude and phase of the frequency responses, H
(-==),

BW

H —— cee




Comparisons

The table below summarizes the relative merits of the three filters.
The conclusions are based on the results from the apalysis and

simulation experiments described above.

Filter H '
BW HIEA HDES Remarks
ks(M=1DZ) 1 1 2
.ks (M=11) 2 2 1 small differences
overshoot 2 2 1
filter order 2 1 1
damping for 1 2 -3
high fre-
quencies

Table 5.6. The relative merits of the filters (ranking in order of

performance).

what filter to select naturally depends on how the different
properties above are weighted. However, the simple HBw filter seems

to be a good candidate for "the best choice”.




CONCLUSIONS

The design and analysis of discrete-time differentiating filters have
been investigated. Both frequency domain and time domain methods were
handled. Many factors must in practice be taken into account when
choosing an appropriate filter. Some ways to characterize the

properties of differentiating filters were discussed

A number of methods for designing differentiating filters were
surveyed. Some relations and comparisons between different approaches

were also given.

In a simulation study some methods were illustrated and compared.
The regularized spline approach with generalized cross-validation
have shown good results for a number of stochastic signals when the
noise was white and the variance not too high. Comparisons with the
optimal accuracy and a frequency domain method were also given. For
high noise levels and non-white measurement noise the derivative
obtained from cross-validated splines shown a significant detoriation

compared with the optimal differentiating Kalman filter.

The problem to track step changes in the true defivative has been
studied. Three different approaches were suggested and analysed. An
approximative relation between the settling time to step changes and

the noise sensitivity was given.
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