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Abstract—Our aim is to investigate long range predictions
(up to several wavelengths) of the small-scale fading of radio
channels. The purpose is to enable advanced 5G downlink trans-
mission schemes that require accurate channel state information
at transmitters, such as massive MIMO and coherent joint
transmission, for vehicular users.

We here present a proof of concept for the recently introduced
predictor antenna scheme which promises a significant increase
in prediction horizon compared to conventional techniques.
Predictor antennas utilize the exterior of moving vehicles by
placing antenna arrays on top of their roofs. They are used to
estimate the fading radio channels that are encountered later by
the following antennas. The level of predictability is determined
by the correlation between the channel measured at the predictor
antenna and the channel that is later encountered by the following
antennas when they move to that position. That correlation,
and the resulting prediction errors, are assessed on a large
set of measurement data sampled at vehicular velocities, at a
carrier frequency of 2.53 GHz, from a multitude of urban fading
environments. These represent a wide variety of propagation
environments, including narrow and wide roads, intersections,
dense urban environments and residential areas.

Using low-pass filtered predictor antenna measurements, the
obtained average prediction Normalized Mean Squared Error
(NMSE) is -11 dB for prediction horizons of 0.25 wavelengths and
-8.5 dB for horizons of 3 wavelengths. This represents an order
of magnitude increase of the prediction horizons as compared to
time-series prediction that typically, in practice, fails to work for
prediction beyond 0.3 wavelengths in space. As a result, we have
a tool that enables advanced 5G transmit schemes for vehicular
users and vehicle-to-infrastructure links.

I. INTRODUCTION

Areas of strong current interest for 5G are communication
to vehicles for infotainment systems, local relay nodes [1] and
traffic safety information using infrastructure-to-vehicle links.

Use of adaptive transmission techniques that require Chan-
nel State Information at the Transmitter (CSIT) could lower
the cost and improve the quality of high-bandwidth and low
latency links to vehicular users. Transmit schemes that require
CSIT include fast link adaptation, maximum ratio and zero-
forcing transmit beamforming, multi-user (massive) Multi-
ple Input Multiple Output (MIMO) transmission, coherent
Joint Transmission Coordinated MultiPoint (JT-CoMP) and
distributed MIMO. However, the required CSIT will always

be outdated for mobile users due to various time delays, which
reduce performance [2], [3].

A. Prediction of outdated channels
This problem can be alleviated by using prediction estimates

of the channels. Due to the small-scale fading, the phases
and amplitudes of radio channels vary in space over a small
fraction of a wavelength. The outdating problem therefore
grows more severe at higher vehicle speeds and at shorter
wavelengths. A required prediction horizon of L seconds (due
to the transmission control delays) is equivalent to a prediction
over space expressed in terms of carrier wavelengths:

Lfd =
Lv

λ
=
Lvfc
c0

[wavelengths] , (1)

where fd is the maximal Doppler frequency in Hz, v is the
vehicle velocity in m/s, λ is the carrier wavelength in m, c0
is the speed of light and fc is the carrier frequency.

For example, a 5 ms prediction horizon at fc = 2.68 GHz is
0.62λ at v= 13.88 m/s (50 km/h) and 1.24λ at v= 27.77 m/s
(100 km/h). At pedestrian 5 km/h, it is only 0.062λ.

The small-scale fading can be predicted based on noisy
past channel estimates [4]–[6]. The best results are obtained
by using Kalman predictors [7]. However, in practice, such
predictors can rarely provide adequate performance for real
channel measurements under realistic conditions for predic-
tion horizons longer than 0.3 wavelengths [5], [7]. (Super-
resolution techniques that assume sinusoidal channel variations
will fail in practice.) This limits the use of channel prediction
at vehicular velocities for carriers above 1 GHz in present 4G
systems, where the control delays are 5 ms. With JT-CoMP,
delays would be even longer.

One way to alleviate this problem would be to redesign the
systems that are to be used below 6 GHz to reduce control loop
latencies. Link adaptation performance for Rayleigh fading
channels is illustrated in [8], [9] for latencies of 1-2 ms. Such
designs are now of interest for low-latency 5G transmission.
However, even with a transmission control delay of 1-2 ms, the
required prediction horizon for higher vehicular velocities will
still be longer than the at present predictable 0.3 wavelengths
in space.



B. Predictor antennas

Channel prediction is a hard problem, but additional mea-
surements may be of help. Assuming a static surrounding, the
electromagnetic field forms a standing wave pattern, and the
vehicle moves through this pattern. An antenna on the roof of
the vehicle senses this wave pattern and pilot-based channel
estimation can be used to estimate it. If an antenna is placed
in front of the ones of interest on the roof of the vehicle, it
would sample the wavefield in advance. Its estimated channel
could be used as predictor for the channels to be experienced
by the rearward antennas when they reach this position.

On vehicles, we might use a linear array with antennas
placed in the forward-backward direction, as illustrated by
Fig. 1. Each antenna of the array could then be used to generate
prediction estimates for the ones behind it.
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Fig. 1. Multiple antennas, where the one in front may act as predictor antenna.

Consider a simple case with two antennas on the roof.
The channels constitute time-varying complex scalar gains
for Orthogonal Frequency Division Multiplexing (OFDM)
subcarriers. The front antenna channel hp(t) would then be
of use for predicting the channel hm(t) at the rearward main
antenna. The predictor is in the simplest case just a scaled and
appropriately delayed filter estimate of hp:

ĥm(t+ L|t) = aĥp(t+ L−∆t|t+ L−∆t) . (2)

Here, a is a complex-valued scalar gain, L is the required
prediction horizon, and ∆t= ∆d/v, where ∆d is the antenna
separation and v is the vehicle velocity. Prediction hori-
zons L≤∆t can be accommodated without extrapolating ĥp.
A smoothing estimate ĥp(t+L−∆t|t) could be used in (2)
to increase performance at the price of higher computational
complexity. The optimal adjustment of the gain a with noisy
measurements will be discussed below in Section II.

The predictor antenna concept outlined above was first
proposed in [10] and a similar approach was also proposed
in [11]. It has been assessed experimentally based on two
dedicated measurement campaigns in Dresden, Germany. The
first measurements, reported in [10], were a preliminary pilot
study that used two dipole antennas on the roof of a van. The
second measurement campaign gave much better antenna cor-
relation by using two monopole antennas and a flat, uncluttered
vehicle roof [12]. Compensation of antenna coupling was in
[12] found useful for closely-spaced antennas. However, these
measurements were both performed at only two locations in
an urban environment. The promising results could have been
caused by a lucky accident of a propagation environment that
was unusually simple to predict.

C. Summary of results
We here evaluate the results from a third, much more ex-

tensive, measurement campaign. It used improved equipment
with four monopole antennas on a flat vehicle roof with
various antenna spacings. Uplink measurements at 2.53 GHz
(λ = 11.94 cm) at 90 subcarriers were received by multiple
base stations of the TU Dresden 4G test-bed from a vehicle
moving through central Dresden. The measurements and the
signal processing are described later in Sections III and IV.

The results, to be described in more detail in Section V,
are summarized by Fig. 2 which is based on all the used
measurement locations. The over-all mean of the prediction
Normalized Mean Squared Error (NMSE), its mode (peak
location of the pdf) and the 25th and 75th percentiles are
shown. The prediction horizon here equals the antenna spac-
ing, L= ∆t= ∆d/v, using different antenna distances ∆d.
We also compare to the predictability when using Kalman
prediction.

These new results are consistent with those reported in
[12]. The mean NMSE obtained with prediction antennas is
between -11 dB and -9 dB and it deteriorates only weakly
with increasing prediction horizons up to 3 wavelengths. This
represents an order-of-magnitude increase of the feasible hori-
zon as compared to Kalman prediction that extrapolates past
measurements. A majority of NMSE values are within a few
dB of the mean NMSE. This prediction accuracy is sufficient
for single-antenna link adaptation [8], [13] at moderate rates
and for maximum ratio beamforming [14].

0 0.5 1 2 3
"d [6]

-20

-10

0

N
M

S
E

[d
B
]

Mean NMSE

Mode NMSE

Kalman predictor NMSE

Fig. 2. Mean (solid) and mode (dashed) of the estimated prediction NMSE
for a prediction antenna that uses low-pass filtered channel measurements.
Results summarize the statistics from a large number of positions in an urban
environment, as a function of the antenna distance ∆d in wavelengths, which
also here represents the prediction horizon. The gray marked area lies between
the 25th and 75th percentiles. An example of a typical NMSE obtained by
Kalman extrapolation of past measurements is shown for comparison. An AR
model of order 6 for Rayleigh fading statistics is used here.

II. PREDICTOR ANTENNA PERFORMANCE MODEL

For two antennas, we may define at(t+ L) as the true but
unknown fraction between the main channel hm and a noise-
free measurement of the predictor antenna channel hp at the
same position in space:

hm(t+ L) = at(t+ L)hp(t+ L−∆t), (3)

where ∆t was defined in (2). The time-varying complex scalar
at(t+L) would constitute the ideal predictor coefficient.



We here substitute at(t+L) by a piecewise constant value
a that is to be adjusted based on the second order statistics
of the channels. We furthermore utilize a filter estimate ĥp of
hp. This leads to the expression (2) for the predictor. We will
now first assume that ĥp =hp, and then in the next subsection
model deviations by additive noise terms.

Assuming a perfect measurement of the predictor antenna
channel hp, it can be shown that the choice

a = b
σm
σp
, (4)

minimizes the prediction Mean Squared Error (MSE)

MSE = E[|hm(t+ L)− aĥp(t+ L−∆t)|2]. (5)

In (4), σm =
√

E[|hm|2] and σp =
√

E[|hp|2] may be unequal
since different transmitters/receivers are used. Furthermore,
b∈ [−1, 1] is the normalized value of the channel correlation
c at delay ∆t such that

Rhmhp
(∆t) = E[hm(t)h∗p(t−∆t)] = c = bσmσp. (6)

By expanding (5) and applying (4) and (6), we obtain the
theoretical prediction NMSE when ĥp =hp, for a physical
correlation b between the channels at the two antennas, as

NMSET =
MSE
σ2
m

= 1− |b|2. (7)

This limit of attainable performance as a function of |b|, based
on (7), is shown in the left-hand part of Fig. 3.

With straight-line movement through a stationary wavefield,
we should have |b|= 1. In reality, |b|< 1 for various reasons:
Disturbance of the wavefield due to the moving vehicle itself,
reflections and scattering via nearby moving vehicles, and also
vibrations, lateral motion and curved motion of the vehicle.
The last effects will cause lateral displacements of the antenna
trajectories, that cause decorrelation.

A. Effects of measurement noise
We now model our measurements of the main antenna

channel and of the predictor antenna channel as noisy signals
ym(t) and yp(t) with E[|ym|2] =σ2

ym
and E[|yp|2] =σ2

yp
,

ym(t) = hm(t) + em(t), (8)
yp(t) = hp(t) + ep(t), (9)

where em(t) and ep(t) are assumed zero mean, uncor-
related with the channels and mutually uncorrelated, so
E[em(t)e∗p(t− τ)] = 0. These simple models, with unit gains
between y and h, are appropriate for the pilot-based channel
estimates that were produced from our measurements. They
also remain approximately valid after applying the linear low-
pass filter described in Section IV, since the low-pass filters
have gain 1 in their passband.

It is furthermore assumed here, but not necessary, that em(t)
and ep(t) have equal variance σ2

e , which gives the Signal-to-
Noise Ratio (SNR) of the channel measurements

γm = σ2
m/σ

2
e , (10)

γp = σ2
p/σ

2
e . (11)

If we are to predict the true channel hm(t+L) from
the noisy measurements of the predictor antenna channel
ĥp(t+L−∆t|t+L−∆t) = yp(t+L−∆t), then the noise
ep(t) at the predictor antenna will reduce the predictability.
By minimizing the MSE

E[|hm(t+ L)− ahyp(t+ L−∆t)|2], (12)

the optimal constant prediction coefficient ah is obtained as

ah =
c

σ2
yp

=
bσmσp
σ2
p + σ2

e

= b

√
γmγp

1 + γp
, (13)

which results in the SNR-dependent theoretical NMSE

NMSE = 1− |bh|2 = 1− |b|2 γp
(1 + γp)

, (14)

where
bh =

c

σypσm
, (15)

is the normalized correlation between the main antenna chan-
nel hm and the noisy predictor antenna channel yp.

The NMSE in (14) is plotted against the prediction antenna
SNR γp in the right-hand part of Fig. 3 for different antenna
correlations b.
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Fig. 3. The left-hand plot shows the theoretical NMSE for perfect measure-
ments by (7), as a function of the magnitude |b|, of the normalized correlation
between the channels by (6). The right-hand plot shows the theoretical NMSE
as a function of the SNR of the predictor channel measurements, γp, by (14).
The different lines show the relation for the physical correlations, b = 1,
solid line ( ), b = 0.99, dashed line ( ), b = 0.98, dashed-dotted line
( ) and b = 0.94, dotted line ( ).

B. The NMSE expressed in measurable quantities
Our aim is to evaluate the effectiveness of predicting the

main antenna channel hm(t), but unfortunately hm(t) itself is
unavailable. Only the noisy estimates ym(t) are available.

The theory above can be utilized to estimate the prediction
NMSE also when the true main channel hm is unknown. From
the assumptions on em(t) and ep(t) we obtain

c = E[hm(t)h∗p(t−∆t)] = E[hm(t)y∗p(t−∆t)]

= E[ym(t)y∗p(t−∆t)],
(16)

and

σ2
m = σ2

ym
− σ2

e , (17)

which both can be used in (15) to obtain an estimate of bh
which in turn gives the NMSE by (14).

The attainable NMSE will here be evaluated by using (15)
and (14) , using data-based point estimates of the noise power
σ2
e , the correlation c and the variances σ2

yp
and σ2

ym
.



III. MEASUREMENTS

The measurements were obtained by driving in downtown
Dresden, Germany, depicted in Fig. 4, with velocities between
1 km/h to 50 km/h. The physical layer parameters that were
used are in close compliance with the 3GPP/LTE standard.
Since the focus of the current paper is on channel estimation
and prediction, only the demodulation reference symbols are
evaluated. The channel was measured in the uplink direction
using the demodulation reference symbols transmitted by the
roof-mounted antennas on the vehicle.

A. Measurement equipment

The OFDM signals, transmitted at 2.53 GHz with 5.4 MHz
bandwidth, were simultaneously received and recorded at up
to 16 Base Stations (BSs) located on five sites with up to six-
fold sectorization. Each BS was equipped with a two element,
cross-polarized KATHREIN 80010541 antenna which has 58◦

horizontal and 6.1◦ vertical half power beam width. Time and
frequency synchronization of the BSs was done through GPS
fed reference normals.

The linear array of four monopole antennas was positioned
on the roof of a Volkswagen T4 van in a straight line in
the forward-backward direction as shown in Fig. 5. Different
antenna distances ∆d= {0.25, 0.5, 1, 2, 3}λ were used during
different measurement campaigns. A metal sheet was used
below the antennas in order to have an idealized local sur-
rounding that was independent of the particular type of vehicle.

At the BSs, snapshots of 640 ms duration of the digital
received base band signal were stored after down-conversion,
analogue-digital conversion, sample rate conversion, and filter-
ing. One snapshot was captured about every minute. All other
receiver algorithms such as synchronization, carrier frequency
offset compensation, OFDM demodulation and channel esti-
mation were applied offline.

The reference signals from the four antennas of the vehicle
used separate regularly spaced sets of 15 kHz subcarriers,
with reference signals from each antenna placed on every 4:th
subcarrier. With a symbol estimation period of 0.5 ms, this
resulted in 1280 channel estimates over time on 90 subcarriers,
each separated by 60 kHz, per snapshot and antenna.

B. Channel measurement quality and selection of data set

The measurements were affected by hardware impairments
such as gain imbalances on different transmit/receiver paths
and phase noise. Thus, a compound channel (similar to a
system used in the real world) including hardware effects,
antenna effects, and the wireless channel was measured.

The transmitters of the vehicle antennas were equipped
with independent local oscillators which were not fully fre-
quency synchronized. This caused frequency offsets between
the different antenna branches. All resulting effects of this
have been corrected with high precision by adding a linearly
increasing/decreasing phase shift to the channel estimate time

Fig. 4. Map over the measurement area in Dresden with base station locations
and directions marked.

Fig. 5. The Volkswagen T4 van on the left hand side and zoomed into the
antenna array on the roof on the right hand side.

series of the second, third and fourth antenna to maximize the
correlation over time with the first antenna.1

Three subsets of data are removed from the study performed
here. The first of these contains distortion of unknown cause,
that generates periodical spikes in the Doppler spectra. Second,
measurements at vehicle velocity v= 0 are not used. Third,
only data sets with at least 350 time samples overlapping in
space, between the predictor channel and main channel, is
used. In other words, only measurements sets where at least
350 time samples are sampled after the main antenna has
reached the initial position of the predictor antenna. The result-
ing numbers of available, relevant and utilized measurements
(transmit antenna-base station pairs) are shown in Table I.

After the selection process of the measurements, approxi-
mately 650 million subcarrier channel estimates (1280 time
samples x 90 subcarriers per measurement) are used in
the results in Section V. They represent a wide variety of
propagation environments, including narrow and wide roads,
intersections, dense urban environments and residential areas.

IV. SIGNAL PROCESSING

A. Low-pass filtering

The SNR of the utilized measurement series ym(t) and yp(t)
varies between 0 dB and 30 dB. The channel measurements

1In a non-experimental implementation, no relative frequency offsets would
occur, since the antennas would use a common clock reference.



TABLE I
NUMBER OF MEASUREMENTS FOR DIFFERENT ANTENNA DISTANCES ∆d

Campaign Available Relevant† Used* Percentage used

∆d = 0.25λ 459 115 115 25%
∆d = 0.5λ 490 305 305 62%
∆d = 1λ 519 355 355 68%
∆d = 2λ 577 358 348 60%
∆d = 3λ 543 346 322 59%
† Measurements for vehicle velocities v > 0 and with the variance of

the high-frequency tails of the Doppler spectra less the 0.5 dB.
* Measurements that fulfill † and with velocities so that at least 350

time samples are sampled after the main antenna has reached the
initial position of the predictor antenna.

are filtered to suppress the noise and we investigate the effect
of the filtering on the prediction performance.

The noise filtering is here performed by applying a linear
phase low-pass Finite Impulse Response (FIR) filter to the
time-domain signals. The FIR filter is of order 140 and its
passband is designed individually for each measurement to be
somewhat wider than the Doppler spectrum of the signal.

An example is illustrated in Fig. 6 where a typical Doppler
spectrum of an unfiltered channel measurement and the corre-
sponding low-pass filtered channel measurements can be seen.
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Fig. 6. Doppler spectrum, of a channel measurement ( ), the low-pass
filtered channel measurement ( ) (including the effect of time-windowing
from using 1280 samples) and the frequency response of the FIR-filter ( )
with the passband limits shown by the vertical lines ( ).

B. Noise estimation

The noise power σ2
e , which is used in (17) for use in the

NMSE estimation, is estimated from the Doppler spectra of
each measurement set. The measurement noise is assumed to
be white and uncorrelated over frequency. The assumption is
based on the flat high-frequency tails in the Doppler spectra,
as in Figure 6, and the lack of correlation, both in time
and frequency, for high-pass filtered measurements (containing
only noise). Under this assumption it is possible to estimate
the measurement noise power from the high-frequency tails
of the Doppler spectra. The same noise power is also used to
estimate the SNR by

γ̂ =
σ̂2
y

σ̂2
e

− 1, (18)

where σ̂2
y is the estimated power of the noisy channel and σ̂2

e

is the estimated noise power.

By applying the low-pass FIR filter to artificially generated
measurement noise, it is possible to estimate the noise power
in the low-pass filtered channel measurements.

C. Estimation of the prediction NMSE

Denote the row vectors of N time samples at one subcarrier
of yp(t) and ym(t) by yp and ym. From these, the variance
σ2
yp

and σ2
m by (17) are estimate by

σ̂2
yp

= ypy
∗
p/N, (19)

σ̂2
m = ymy∗

m/N − σ̂2
e . (20)

For unfiltered measurements, σ̂2
e is calculated from the high-

frequency tails of the Doppler spectra. For low-pass filtered
measurements, we use

σ̂2
e =

1

NJ

N∑
t=1

J∑
j=1

ẽj(t)ẽ
∗
j (t), (21)

where ẽj(t) is the low-pass filtered, artificially generated noise
at time t and subcarrier j.

The correlation c in (15) is estimated by

ĉ = arg max
ĉ

|ĉ|, (22)

where ĉ is a vector containing the correlations between yp and
ym for all possible time-lags τ ∈ [−N + 1, N − 1], calculated
by

ĉ = F−1[F(ym)�F(yp)∗]. (23)

Here, � is element-wise multiplication and F and F−1 are
the Fourier respectively the inverse Fourier operators.2

The NMSE is then estimated per subcarrier from (14) and
(15) by using the estimates given by (19)-(22).

Less than 0.1 % of the resulting NMSE estimates become
negative due to estimation errors. These estimates are not
included in the results.

Note that this estimate of the NMSE is based on current
channel statistics, and is therefore somewhat optimistic: We
estimate the attainable NMSE from a complete time series
at a given location. In a real situation, the adjustment of the
predictor would be based on a previous time window, and
could therefore be somewhat outdated.

V. RESULTS

The aggregated results for the estimated NMSE for all mea-
surements is summarized by Fig. 2 in Section I. The prediction
performance can be further analyzed for each antenna distance.
Each measurement (location and transmit antenna-BS pair) is
here analyzed individually.

2Before performing (19)-(22), the time series are adjusted to only contain
undistorted samples so that each sample in yp corresponds to a sample in
ym from approximately the same position in space. The first 140 samples
are removed from the low-pass filtered channel measurements as they contain
a FIR filtering transient. Then, the last Ω = 2000∆d/v̂ time samples from
the predictor antenna measurements and the first Ω samples from the main
antenna measurements are removed as these samples lack matching samples
(sampled at the same location in space) in the time series of the other antenna.
The effects of estimation errors in v̂ are current under investigation.



A. The prediction performance and its SNR dependence

In Fig. 7 a scatter plot is shown of the relation between
the estimated NMSE (14) and SNR of the predictor antenna
(18). Results are for both the unfiltered (marked by yellow
dots •) and the low-pass filtered (marked by black dots •)
channel measurements with antenna separation (and predic-
tion horizon) ∆d= 0.5λ. The figure is complemented by a
distribution plot, of the NMSE for the same data. To increase
the readability of the scatter plot, the NMSE is there averaged
over all subcarriers from the same measurements burst. Four
lines indicate the theoretical relationship (14) between NMSE
and SNR when |b|= {0.94, 0.96, 0.98, 0.99}.

The improved SNR, as a results of the low-pass filtering, can
be seen by the right shifted cluster of black dots as compared
to yellow ones in the scatter plot. It is further emphasized
by the SNR distribution in Fig. 8. The wide interval of SNR
of the channel measurements provides information about the
relation between SNR and NMSE and the relevance of the
model (14). A majority of the channel measurements in the
scatter plot are around the indicated theoretical lines. However,
as the underlying correlation |b| is unknown, we have no direct
way of verifying the theory.

The correlation b evidently varies quite substantially in
different environments. We are analyzing the causes of these
variations, but the results are not yet available.

The NMSE distributions on the right-hand side in Fig. 7
are unimodal. The SNR improvements by low-pass filtering
reduces the NMSE by 2-3 dB on average, yielding a mean
and mode NMSE of approximately -10 dB for the low-pass
filtered channel measurements.
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Fig. 7. Prediction performance of the predictor antenna using unfiltered (•)
and low-pass filtered (•) channel measurements with antenna separation and
prediction horizon ∆d = 0.5λ. To the left is a scatter plot of the estimated
NMSE, averaged over all subcarriers, versus the SNR of ĥp = yp. Lines
indicate the theoretical NMSE for a given SNR in the channel estimates by
(14) for |b|= 0.94 ( ), |b|= 0.96 ( ), |b|= 0.98 ( ) and |b|= 0.99
( ). To the right is the PDF of the NMSE for each subcarrier of the data
shown in the scatter plot.

B. Prediction performance for varying prediction horizons
and antenna separations

The scatter plots and the NMSE distributions for the other
measurement campaigns with antenna distances (and predic-
tion horizons) ∆d= {0.25, 1, 2, 3}λ are shown in detail in
Fig. 9, with summary in Fig. 2. The PDF of the NMSE for
∆d= 0.25λ has a different shape as compared to the other
antenna distances: A larger part of the predictions are located
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Fig. 8. Distribution of the SNR of the predictor antenna for the unfiltered
( ) and low-pass filtered ( ) channel measurements, with antenna
separation ∆d= 0.5λ, from the measurements shown in the scatter plot in
Fig. 7.

at the lower part of the NMSE distribution, below -14 dB,
while the mode (location of the peak) is higher. This could be
due to mutual electromagnetic coupling between the closely
spaced antennas, as discussed in [12]. For the other antenna
distances the NMSE mode for the low-pass filtered channel
measurements is located at approximately -10 dB to -11 dB,
the same as for ∆d= 0.5λ.

Although the mode of the NMSE is fairly constant
for ∆d> 0.25λ, an increasing fraction of bad predictions
(>−7 dB) appear at longer antenna distances/prediction
horizons. This increases the average NMSE. The unknown
cause of these bad prediction events is greatly correlated with
lower velocities: They practically disappear at higher speeds.
This is illustrated in Fig. 9 where the NMSE distribution is
shown for filtered measurements at vehicle velocities above
the empirically found thresholds 21 km/h for ∆d= 2λ and
25 km/h for ∆d= 3λ.

VI. DISCUSSION AND CONCLUSION

We have investigated the use of predictor antennas on a
large set of measurement data, obtained for moving vehicles
in an urban environment with four antennas on the roof. The
resulting prediction NMSEs of OFDM channels was found to
typically be in the range −12 dB to −9 dB. Prediction with a
NMSE above −7 dB was extremely rare at higher velocities,
above 20-25 km/h, and there are no signs of reduced prediction
performance for higher velocities than 50 km/h.

A subset of measurements at low velocity resulted in bad
prediction performance. Such problems could be handled by
combining predictor antenna estimates with Wiener or Kalman
predictions that use the main antenna signals. These work well
at low velocities (short prediction horizons in space by (1)).

We have used simple low-pass filtering for noise suppres-
sion, which could be substituted by more advanced filters or
possibly by lower order filters. The scatter plots in Section V
combined with the theory of Section II-A indicate that most
of the performance gains from noise filtering comes from
increasing the SNR to approximately 20 dB. The low-pass
filters succeed in this in a majority of the cases. Thus, the
utilized simple low-pass filter could very well be a fully
functional, low-complexity, pre-processing algorithm to a pre-
diction antenna system that has a high pilot sampling rate.
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Fig. 9. Prediction performance of the predictor antenna using unfiltered (•)
and low-pass filtered (•) channel measurements with antenna separation and
prediction horizon ∆d= 0.25λ (first row), ∆d= 1λ (second row), ∆d= 2λ
(third row) and ∆d= 3λ (fourth row). To the left is a scatter plot of the
estimated NMSE for all utilized measurements, averaged over all subcarriers,
versus the SNR of ĥp = yp. Lines indicate the theoretical NMSE for a given
SNR in the channel estimates (14) for |b|= 0.94 ( ), |b|= 0.96 ( ),
|b|= 0.98 ( ) and |b|= 0.99 ( ). To the right is the PDF of the NMSE
of the data shown in the scatter plot.

The conclusions are that the predictor antennas shows
promising results in a large variety of fading environments
with a realistic setup. In particular, it enables precise maximum
ratio transmit beamforming [14]. It is here of interest that
beamforming that uses many antenna elements becomes less
sensitive with respect to estimation errors of each channel [15].
The NMSE of a maximum ratio beamforming combination of
N antenna channels that have equal average channel power
and NMSE will be a factor 1/N of the individual channel
NMSEs.

As illustrated in [16], the ability to use coherent downlink
transmissions from massive antenna arrays increases both the
power efficiency and the spectral efficiency when serving con-

nected vehicles. This is of significant importance for operators,
as a rapidly increasing number of connected vehicles would
otherwise have to be served with less efficient diversity-based
transmission schemes.
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