
The Poisson Simulation Approach to Combined Simulation

Leif Gustafsson
Signals and Systems,

Dept. of Engineering and Sciences
Uppsala University, P.O. Box 534

SE-751 21 Uppsala, Sweden

+4618500061

Leif.Gustafsson@bt.slu.se

Mikael Sternad
Signals and Systems,

Dept. of Engineering and Sciences
Uppsala University, P.O. Box 534

SE-751 21 Uppsala, Sweden

+46184713078

Mikael.Sternad@Signal.uu.se

ABSTRACT
This paper modifies the foundations of combined Discrete
Event Simulation (DES) and Continuous Systems Simu-
lation (CSS) by extending the CSS part to the stochastic
domain through including discrete (although aggregated)
entities. The traditional combined DES/CSS simulation,
where the modeller selects between a DES and a CSS
description for components of the system under study, lacks
a solid theoretical foundation. Model behaviour, results and
conclusions may then depend on whether a DES or a CSS
description is utilised.

By introducing Poisson Simulation (PoS) as an extension to
CSS, several advantages are obtained. First, a theoretically
sound foundation is achieved in which aggregation can be
performed safely. Second, combined type problems can, in
principle, be performed exclusively in PoS, which is often
considerably simpler than including DES. The
computational complexity is reduced when a large number
of discrete entities can be modelled as flows into and out of
a relatively small number of state variables. Third, even
when it is practical to include DES, the combined DES/PoS
approach is more powerful and flexible than a combination
of DES and CSS.

Keywords
Aggregation, Modelling, Combined simulation, Continuous
System Simulation, Discrete Event Simulation, Hybrid
simulation, Poisson Simulation.

1. INTRODUCTION
A dynamic system is composed of so many pieces (e.g.
atoms), has so many characteristics and is so complicated
that it can never be modelled in all its details. The very

essence of modelling is to build a parallel description,
called the model, which is much simpler but otherwise
preserves important characteristics and mechanisms of the
system under study. Here we will focus on models where
the interest lies at least partly in describing many discrete
entities, such as molecules, persons, data packages, vehicles
or products on a production line. The system under study
can then either be represented as a micro model, where the
individual entities with their attributes and behavioural
logics are individually represented and are identifiable, or
as a macro model, where the entities are aggregated into a
number of state variables (compartments) connected by
flows. Then, only the numbers (or mass) of entities of a
certain kind or in a certain situation are described.
Micro and macro modelling and simulation are often
realised as Discrete Event Simulation (DES) and Conti-
nuous System Simulation (CSS), respectively. However, it
is sometimes important or practical to utilise both of these
approaches in the form of a Combined DES/CSS model1. A
short and well formulated characterisation of CSS, DES and
combined simulation was given by Kreutzer [14]:

 “Continuous-system simulation was primarily used in
engineering, physics, chemistry, biology, ecology, econo-
mics and sociology, where the behaviour of dynamic
systems is traditionally captured by differential equations,
either because this is considered a ‘natural’ representation
for some process or because of the high level of aggregation
at which phenomena are studied. Systems are typically
represented at a uniform, fairly low level of detail.
Irregularities, expressed by complex interactions do not
occur or are abstracted away.
Discrete-event simulation, on the other hand, originated in
studies of inventory and manufacturing systems. It has been
popular with operations researchers, mathematicians and

1 The name ‘Combined simulation’ is preferred here to ‘hybrid
simulation’, since the latter concept is traditionally used to mean
simulation using both analogous and digital computers.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission.

mailto:Mikael.Sternad@Signal.uu.se
mailto:Leif.Gustafsson@bt.slu.se

computer scientists. Here, a phenomenon can be studied at
any desired level of detail. Arbitrarily complex process
interactions and any relevant irregularities may be explicitly
modelled.”

“Combined simulation tries to integrate both the discrete-
event and the continuous-change approach to the study of
process behaviour.” “Combined models can be driven by a
discrete-event simulator, with some components
represented as continuous processes. A predominantly
continuous model may alternatively be augmented by
incorporating a number of special events describing
irregularities in its behaviour.”

When constructing a model for combined simulation, the
modeller has the option of using an aggregated description
of subsystems. For example, in the data communication
field, a stream of packets can be described either by a DES
model that generates individual packets, or by a
deterministic macro model, often called a fluid flow
approximation. The choice of aggregation level should be
governed by the purpose of the study, e.g. whether
individual statistics are needed or whether a lumped
description is adequate. When aggregation is used,
individuality is sacrificed but the model can gain in
comprehensibility, simplicity, amount of data required and
speed of execution in simulation.

When a (sub)system under study can be modelled either in
DES or in CSS fashion, it is essential that the choice of
model does not distort the behaviour, results and
conclusions of the study. A DES model is in general
stochastic and more detailed than a corresponding CSS
model, but the results from the two approaches should at
least be consistent (contradiction-free).

The fundamental problem with aggregating discrete entities
into a deterministic CSS model with real-valued state
variables is that both the discreteness of entities and the
irregular behaviour of the system under study are lost.
These undesired side-effects are harmless only when the
number of entities is virtually infinite or (which is the same)
the matter is virtually infinitely divisible into a ‘fluid’.
According to the law of large numbers, the stochastic
variations then become negligible. However, for micro- and
meso-scale models where the number of entities is not large
enough to regard flows as continuous and stochastic
variations as negligible, the aggregation into CSS will in
general produce undesired phenomena and distort
behaviour, results and conclusions.

This paper addresses the inconsistency between Discrete
Event Simulation and Continuous System Simulation and
demonstrates how a method denoted Poisson Simulation

(PoS), which is an extension of CSS, removes
inconsistencies when entities are aggregated into state
variables. Combined simulation can then benefit from the
consistency and power of PoS. The paper focuses on the
fundamentals of combined modelling and simulation rather
than on applied details.

The objectives of this paper are:
• To demonstrate how aggregation of entities should be
performed to preserve discreteness and stochasticity, so that
the aggregated model is fully consistent with a correspon-
ding non-aggregated model in e.g. DES. This is accomp-
lished by extending the CSS concept to include stochastics
and (aggregated) discrete entities. This extended domain is
named Poisson Simulation.
• To demonstrate that the PoS domain, alone, can correctly
handle many types of combined problems.
• To show that when combined simulation is preferable,
the combination of DES and PoS represents a consistent,
safe, powerful and practical modelling and simulation
approach.

The paper is organised in the following way. In Section 2
and the accompanying Appendix, the problems of aggre-
gation into a CSS model are discussed and examples of
inconsistency are given. Poisson simulation is introduced in
Section 3 and some examples given in Section 4 illustrate
the capacity of PoS to include both discrete and continuous
parts in the same model, as well as queues and single actors.
In Section 5, the combined DES/PoS approach is discussed.
Finally, in Section 6 we briefly summarise and discuss our
findings. A number of examples are used to illustrate and
underline the messages. These examples are intentionally
small and not representative of full-scale combined models.

2. THE PROBLEM OF AGGREGATION
When a system under study, containing a certain number of
entities that are changed at irregular instants (events) or
with unknown outcomes, is aggregated into a CSS model,
the aggregation creates a number of side-effects. First, it
has the intrinsic side-effect of grinding the entities into a
continuous mass. Second, it replaces the irregularities with
deterministic fractions instead of probabilities. CSS
aggregation is fine for the case where the numbers of every
type of entities are very large, but it can otherwise severely
distort model behaviour, results and conclusions.

Readers unfamiliar with the side-effects of CSS aggregation
are referred to the Appendix, where two illustrative
examples are given. The first, Example 7, demonstrates that
aggregation into a simple epidemic CSS model may distort
results and conclusions beyond all sense. While the
population in this example is large, one state variable holds

a small subpopulation. The second example (Example 8)
illustrates that trying to restore stochasticity to a
deterministic CSS model by adding noise can create a
number of artefacts that seriously jeopardise a model study.

These examples demonstrate the lurking danger of
aggregation into a deterministic CSS model, and warn
against using inappropriate measures to re-create
irregularity/stochastic behaviour. What is called for is a
conceptual approach that correctly handles aggregation
without side-effects.

3. POISSON SIMULATION AS AN EX-
TENSION OF CONTINUOUS SYSTEM
SIMULATION

3.1 Introduction
Poisson Simulation is an extension of CSS designed to
handle models where the entities are aggregated as integer
numbers of entities in the state variables, and where the
stochastics are preserved in a correct way. In the simplest
form, events happen randomly and independently. This
implies that the number of events during a time interval ∆t
becomes Poisson-distributed. Therefore, flows into and out
of compartments (state variables) during ∆t can be gene-
rated as integer-valued and Poisson-distributed random
outcomes. The method is presented in detail in [4], and is
introduced below by a simple example. A number of
examples of different applications are given in [7].

Example 1: Radioactive decay in CSS and PoS
The system has one state variable x, representing the
number of radioactive atoms, and one outflow rate f,
describing the number of radioactive decays per time unit.
Therefore, f is proportional to the state value x with a
proportionality constant a that describes the proportion of x
that is expected to decay during a time unit. A deterministic
CSS model (using Euler integration) is then:

 x = x0 [Initialisation]
 Goto ∗
AGAIN: x = x - ∆t⋅f
 * f = a⋅x
 time = time + ∆t
 if time ≤ Tend then Goto AGAIN .

To model the irregularity of the decay process in a realistic
way by a stochastic model, we reason thus: The expected
outflow still has an intensity of f=a⋅x per time unit or
∆t⋅f=∆t⋅a⋅x during the time interval ∆t. Since the decay
instant of an atom is independent of the timing of decays of
other atoms, the number of events during the time interval
∆t should be Poisson-distributed with the parameter ∆t⋅a⋅x.

Thus, the reduction of x during ∆t has a Poisson-distributed
variation denoted: Po[∆t⋅a⋅x]. Therefore, the model is
reformulated as:

 x = x0

 Goto ∗
AGAIN: x = x - ∆t⋅ f
 * f = Po[∆t⋅a⋅x]/∆t [The decays are now stochastic]
 time = time +∆t
 if time ≤ Tend then Goto AGAIN .

This model correctly describes the stochastic properties
with regard to the number of atoms in the state variable x
and its variability in repeated trials, without producing any
artefacts. When initialised by an integer, x(t) remains
integer-valued for all t. This is in contrast to the erroneous
result in Example 8 in the Appendix, where an alternative
model is obtained by adding noise to the CSS model. ▄

3.2 Poisson Simulation
A Continuous System Simulation model represents a deter-
ministic and dynamic system by a set of ordinary diffe-
rential (and algebraic) equations. Each differential equation
can be expressed as:

 dxi(t)/dt = fi1(x,t)-fi2(x,t) , i=1,2,...k , (1)

where fi1 is the sum of inflows and fi2 is the sum of outflows
to the state variable xi during the time interval dt and x is
the vector of state variables x(t) =(x1(t), x2(t), ... xk(t))T.
These dynamic equations, together with initial values xi(0)=
xi0, completely determine the behaviour of x(t) over time. In
CSS language, this dynamic equation can be written as a
difference equation using Euler’s approximation:

 xi(t+∆t) = xi(t) +∆t⋅fi1(x,t) -∆t⋅ fi2(x,t) , i=1,2,...k. (2)

Assume that a system of interest contains discrete entities
affected by irregularly occurring events. For the purpose of
the study, a conceptual model that only contains relevant
information is specified, see the upper part of Figure 2. In
this conceptual model, discrete entities, their behaviour and
their attributes are described at an appropriate level of
detail and irregularities are specified by relevant statistical
distributions. Of special interest is the intensity of events
over time. We now wish to construct an aggregated state
variable model, similar to (2), where the state variables
preserve integer numbers of entities at all times and where
the probabilistically specified transition intensities of the
conceptual model are preserved. The following conditions
must then be fulfilled:

1) The state variables xi(t) must be initialised with
integer numbers of entities, whose numbers can
change only because of inflows and outflows that
transfer integer numbers of entities.

2) The probabilistic properties are preserved by
letting the number of entities transferred in each
flow be generated as random integer numbers that
are consistent with the conceptual model.

When entities represented by a flow occur randomly with
an intensity λ, the number of events during a time interval
∆t will be Poisson-distributed according to Po[∆t⋅λ]. The
intensity λ may be a function of the state vector x and of
time but it is approximated as being constant during the
sufficiently short time interval ∆t, just as in CSS simulation.
The approximation of a stepwise constant intensity makes it
possible to obtain a simulation model that can be updated in
discrete time, with time-step ∆t. The state equations then
take the form:

 xi(t+∆t)=xi(t) +Po[∆t⋅fi1(x,t)] - Po[∆t⋅ fi2(x,t)], i=1,...k (3)

and one example is graphically illustrated by Figure 1.

Figure 1. Forrester diagram [2,16] of (a part of) a PoS model.
The box xi contains the current integer number of entities.
This can only change by arriving entities fi1 or by departing
entities fi2. The single-line arrow from xi to fi2 shows that fi2 is
dependent on the current number of entities in xi.

Each flow fij is thus represented by a time sequence of
(dynamically varying and time varying) Poisson processes.
The only theoretical requirement of independence is that the
events behind each flow are mutually independent within
each time-step ∆t. (In a DES model, corresponding events
would be generated one event at a time, with exponentially
distributed inter-event times.) The Poisson distribution,
with state- and time-dependent intensity, is a flexible
mechanism for generating irregularly occurring numbers of
events with desired statistical properties. In each particular
case, the functions fij(x,t) are obtained, or approximated,
from the properties of the original conceptual model.

Here we present the PoS models in Euler form, but it is
possible to use other single-step algorithms such as higher
order Runge-Kutta algorithms to integrate the equations.
The argument is then estimated by a R-K algorithm before
the Poisson random number generator is called, see [3].

DES and PoS models also differ in many aspects other than
time handling, see [8,10]. In DES various statistical distri-
butions are used as needed to model sojourn times, choices,
outcomes of an operation, etc. In PoS (as well as in CSS)

the state variable (compartment) is by nature ‘an
exponential building block’. Therefore, sojourn times other
than exponential are obtained by a structure of
compartments in series and/or parallel, with the Po[]
mechanism handling the internal flows of the structure.
Also choices and outcomes of an operation are handled
with the Po[] mechanism, together with appropriate logical
functions.

In most aspects PoS is structured and implemented in the
same way as a corresponding CSS model. Provided that the
PoS model is correctly built, it will produce aggregated
results fully consistent with those produced with the DES
approach, when both originate from the same conceptual
model [8]. For instance the SIR model in Example 7 in the
Appendix will produce the same probability density func-
tions for simulation outcomes when realised by either DES
or PoS.

Note that when the number of entities n→∞, then
Po[∆t⋅f(x,t)] → ∆t⋅f(x,t), so the PoS model approaches a
deterministic CSS model. Thus the embedded CSS model
(the fluid flow approximation) is obtained by removing the
Po[] parts, but keeping the arguments, of the PoS model.
Note also that sub-models describing continuous matter
(CSS) and discrete entities (PoS) can be combined and
linked within one PoS model, as illustrated by Example 2 in
Section 4.

Figure 2 shows how a system under study can be repre-
sented as a DES model or aggregated into a PoS model in a
consistent way – in both cases preserving discreteness and
stochasticity. If quantities can be regarded as continuous,
the DES approach can be combined with CSS equations.
Using the PoS approach, CSS equations are handled within
the PoS concept.

Poisson Simulation can be performed in any CSS language
provided that a Poisson-distributed random number gene-
rator is accessible, which is usually the case. Alternatively,
the complete model can be written in any programming
language using a Poisson generator that requires only a few
lines of additional code [4,17].

Figure 2. The relationships between System at study, Concep-
tual model, Discrete Event Simulation, Poisson Simulation and
Continuous System Simulation.

4. POISSON SIMULATION AS AN ALTER-
NATIVE TO COMBINED MODELLING
To demonstrate the capacity and versatility of Poisson
Simulation to handle different types of processes, four
examples are sketched in this section, followed by a
discussion of data collection and statistics within the single
replication and over multiple replications.

4.1 Modelling Capacity
PoS not only offers a way to correctly handle aggregation,
but also constitutes a flexible and execution-efficient
aggregated way to model problems that would otherwise
have required a combined DES/CSS approach to preserve
both the discreteness and the stochastics. An ecological
model of prey-predator type, where discrete predators feed
on a continuously varying biomass, illustrates this.

Example 2: A combined discrete and continuous Volterra
model
The classical Lotka-Volterra equations describe a prey-
predator system for two species X and Y by differential
equations [15,18]. The prey population breeds at a rate

proportional to its size x. The prey population is reduced
because of encounters with predators, which is proportional
to x⋅y. There is competition among prey proportional to x2.
The encounters with prey give the predators the energy to
breed, so they increase in proportion to x⋅y. Finally, the
predators die in proportion to their numbers y. The classical
Lotka-Volterra model therefore has the form:

 dx/dt = ax – bxy – kx2 (4)
 dy/dt = cxy – dy ,

where a and c are fertility constants, b and d mortality
constants, and k is a proportionality constant for com-
petition. In our setting we now let the prey be a continuous
amount of biomass x (e.g. of grass), while the predators y
are the number of entities (e.g. deer). The combined
discrete-continuous model can then be rewritten as:

 x(t+∆t) = x(t)+∆t⋅f1 - ∆t⋅f2 - ∆t⋅f3

 ∆t⋅f1 = ∆t⋅a⋅x(t)
 ∆t⋅f2 = ∆t⋅b⋅x(t)⋅y(t) (5)
 ∆t⋅f3 = ∆t⋅k⋅x2(t)
 y(t+∆t) = y(t)+ ∆t⋅f4 - ∆t⋅f5

 ∆t⋅f4 = Po[∆t⋅c⋅x(t)⋅y(t)]
 ∆t⋅f5 = Po[∆t⋅d⋅y(t)].

The behaviours of the continuous and the combined
discrete-continuous models, with a=0.2, b=0.005,
c=0.005, d=0.3 and k=0.001, are exemplified in Figure 3.

Figure 3. A single replication of the prey-predator model.
A) with continuous prey (x) and predators (y) using the CSS
model (4). B) with continuous prey (x) and discrete predators
(y) using the combined model (5). At around 450 time units,
the predators become extinct so the prey increases logistically.

Poisson Simulation model
Integer number of lumped entities

Continuous System
Simulation model
Real numbers for state

variables and flows

Discreteness and stochast. lost
(Consistent only when n→∞)

Discrete Event
Simulation model

Identifiable
individual entities

Conceptual model
Non-executable specification of

structure, entities, attributes,
probability distributions, etc.

System under study

Conceptualisation

Macro realisation
 Aggregated entities

 Micro realisation
Individual entities

Comparing the deterministic CSS model (4) with the PoS
model (5) reveals that the deterministic model rapidly
reaches a steady state point for both species without further
variations. Furthermore, phenomena such as extinction
cannot occur in (4).

Estimating various statistics from this probabilistic model
requires repeated simulations. To give an idea of the
execution speed of PoS, the execution time for 10 000
replications of the Volterra model (5) over a time span of
500 time units, using ∆t=0.25 time units, was measured.
For an ordinary 3 GHz PC it took 74.9 seconds. As a
comparison, the same number of replications of (4) (which
of course would not be needed for a deterministic model)
took 31.9 seconds. Thus, in this case the execution time for
the stochastic model is 2.3 times longer than for the
deterministic one due to random number generator calls. ▄

The following example demonstrates that queues, resources
like servers (that can be busy or idle), waiting numbers and
waiting times, etc. that are central concepts in DES can be
smoothly modelled in PoS.

Example 3: Queues in PoS
Implementation of queuing systems in Poisson Simulation
is straightforward. Here this is demonstrated for the M/M/1,
M/M/c and M/M/∞ cases, where M/M/* stands for exponen-
tially distributed inter-arrival and service times, and the
third symbol represents the number of servers, see [13]. The
input (arrivals) is then a Poisson process, with intensity λ,
of the form: In = Po[∆t⋅λ].

Let q denote the actual total number of queuing and served
entities in the state variable Q. Let us introduce the
following model for the output (departures after a mean
service time of 1/µ) and denote it the kernel of the queue
dynamic model:

 Out = Po[∆t⋅µ⋅ΜΙΝ(1,q)] for the M/M/1 case;
 Out = Po[∆t⋅µ⋅ΜΙΝ(c,q)] for the M/M/c case; and
 Out = Po[∆t⋅µ⋅q] for the M/M/∞ case.

Here, ΜΙΝ(c,q) means that at most c entities can be served
simultaneously, and if q<c only q entities are served.
However, there is a complication. The number of entities q
in the state variable must not become negative. CSS and
PoS have no automatic mechanism protecting from negative
numbers. A guard mechanism should be included to prevent
the output from draining the state variable of more than its
actual content. This can be accomplished by including
another MIN function comparing the kernel introduced
above to the actual content. Thus Out = MIN{kernel, q}.

The complete algorithm of a queuing system then is:

 q(t+∆t) = q(t) + In – Out
 In = Po[∆t⋅λ]
 Out = MIN{Po[∆t⋅µ], q} [M/M/1 case]
 or
 Out = MIN{Po[∆t⋅µ⋅ΜΙΝ(c,q)], q} [M/M/c case]
 or
 Out = MIN{Po[∆t⋅µ⋅q], q} [M/M/∞ case]

For more information on queuing models in PoS, see [5].
Figure 4 shows an M/M/c queue with a number of statistical
devices that are discussed in Section 4.2.

Figure 4. An M/M/c queuing system presented as a Forrester
diagram [2,16]. A die in a symbol means that a random
number (here Poisson) from some specified distribution is
drawn for each time-step. A clock in a symbol means that time
is involved in the calculations. Here, Q is a state variable
holding the total number of queuing and currently served
entities. The arrival rate is λ (lambda), and the service rate
(per server) is µ (mu). Of course λ, µ and also the number of
servers c can be varied during the simulation. The lower part
of the figure shows devices for counting arrivals and
departures, and calculating queue-time, queue-length and
server utilisation, as discussed in Section 4.2. ▄

Because PoS can handle any number of discrete entities, it
can of course also handle single entities separately. The
next example shows how a single entity (actor) can also be
modelled in PoS when needed.

Example 4: A single actor in PoS
A single (or a few) entities (physicians, fire trucks, machi-
nes, etc.) can be in different states in the same meaning as
an actor in a DES model. As an example, see the sketch in

Figure 5, which can be part of a larger PoS model. When
the change to a new state is affected by some external event,
this is coded within the proper flow equation. When a
sojourn time distribution of a stage is required, a number of
state variables in series or parallel can be used to generate
the appropriate distribution. When there is a random choice
between branches (e.g. F23 and F24 in Figure 5), an
information link between the flow equations involved is
needed (not shown) to prevent an entity from taking more
than one branch.

Figure 5. Example of a PoS model where a single entity or a
few entities can be in different states S1, S2, S3, S4, S5 and S0
(S0 is a cloud symbol representing that the entity has left). ▄

The Po[]-mechanism handles the randomness describing
the numbers of events over time intervals, but various
statistical distributions can be used for other purposes.

Example 5: Mixed stochastic processes
Events may happen irregularly. Furthermore, the conse-
quences of the events can be described by random distri-
butions other than Poisson. Assume that an insurance
company intends to study the variations in the annual
number of accidents and in total costs of these accidents
during the year. The expected intensity of accidents varies
strongly over the year as described by a known intensity
∆tλ(t).

The cost per accident is modelled as exponentially
distributed with average µ(t); most accidents are not

expensive but a few are. Each randomly occurring event
then has the real-valued attribute: cost, which is obtained
from a random number generator named Expo[µ(t)]. We
express the corresponding PoS model in pseudo-code as:

Time=0; CumAccidents=0; CumCosts=0
 While Time < OneYear do
 N = Po[∆t⋅λ(t)] [No. of accidents during ∆t]
 CostsInDT = 0
 For i=1 to N do CostsInDT = CostsInDT + Expo[µ(t)]
 CumAccidents = CumAccidents + N
 CumCosts = CumCosts + CostsInDT
 Time = Time + ∆t
End

Remark: The innermost loop generates an N-Erlang[µ]
distributed variable, and can be substituted by a random
number generator for that distribution, if available. ▄

4.2 Internal and External Statistics
Two kinds of statistics are needed in stochastic simulation,
irrespective of whether it is implemented in DES, PoS or
otherwise. First, there are internal data collection and
statistics related to what happens within a replication (pdf,
average, variations, min, max, etc.). Second, external data
collection and statistics from many replications of a simula-
tion model are needed to explore various behaviours of a
stochastic model.

4.2.1 Internal data collection and statistics
Below we exemplify how data and statistics can be handled
swiftly within a replication by counters, tallies and other
statistical devices implemented as part of the PoS model.

Example 6 (Example 3, continued): Internal data collection
and statistics in PoS
Counters, tallies, histograms, etc. for averages, standard
variations, pdfs, min, max, etc., to be updated for each time-
step, are easily constructed within the PoS model. Below
the queuing model in Figure 4, devices for internal data
collection and statistics within a replication are shown. The
flows of arrivals and departures are accumulated over time
in In_Counter and Out_Counter, respectively. The queuing
customers are also integrated over time to CumQTime. By
dividing CumQTime by In_Counter, the average time in
queue, AvQTime, is obtained. By dividing CumQTime by
time, the average queue length, AvQLength, is obtained.
Server utilisation is calculated from the fraction of time the
c servers are busy. ▄

4.2.2 External data collection and statistics
Because PoS models are stochastic, large numbers of
replications are needed to estimate the pdfs, confidence
intervals, correlations, etc. It is therefore convenient to use
a supervisory program that can carry out a specified number
of replications, collect specified results and present
statistical estimates. Such programs exist for Powersim
[6,16] and Matlab [11,19].

5. COMBINED DES/PoS SIMULATION
The aggregation into a PoS model has consequences for
size and execution speed. When a large number of entities
are aggregated into a small number of state variables, the
model will be comprehensive. The size and computational
complexity of this model will furthermore not grow with the
number of entities in the system, while a DES model grows
proportionally with the number of entities (if e.g. they are
modelled as objects). Furthermore, in PoS many entities in
many flows may be transferred for each time-step, while in
DES one event is handled per ‘time cycle’, which makes the
PoS approach significantly faster than DES for large
populations.

However, although it is in principle possible to model indi-
vidual entities, queues, behavioural logics, etc. in PoS, it is
not always comprehensive, practical or fast. Especially
when a system under study contains a heterogeneous
population of entities or many entity attributes, the number
of state variables may become very large, so DES usually is
a better option than PoS. Furthermore, in DES any sojourn
time distribution (even empirical) may be used, while such
a distribution has to be approximated with a structure of
state variables in series and/or parallel in PoS. The
modeller should therefore carefully consider when or what
parts of a system under study should be modelled in DES or
aggregated into PoS.

6. DISCUSSION AND CONCLUSIONS
Poisson Simulation (PoS) constitutes a straightforward way
to perform an aggregation of discrete entities without
producing undesired side-effects of grinding down the
discrete entities into a continuous mass and thereby also
eliminating the original variations because of numbers.
Only when the number of entities is so large that flows can
be considered continuous should the modeller consider
further simplifying the PoS model into a (deterministic)
CSS setting. We have also seen that PoS alone, in principle,
can handle most combined problems. When it is still
practical to use a combined approach, the DES/PoS app-
roach is a more structured, versatile and powerful approach
than DES/CSS.

Because of limited space, only some illustrative aspects of
PoS have been presented. We refer to the literature for
more details. In [4] the fundamental rules of PoS are
presented. That paper describes e.g. when multiple flows
may be superimposed or how to control correlation when
flows are dependent. A number of PoS examples are
presented in [7]. The full consistency between DES and
PoS (despite of e.g. different concepts, building blocks,
level of aggregation, time handling, etc.) is demonstrated in
[8] and [10]. The modelling of queuing problems is treated
in [5]. In [3], stochastic integration algorithms other than
Euler are given. Finally, devices for external data collection
and statistics are presented in [6] and [11].

In conclusion, the combined DES/PoS concept has a
number of advantages compared with the combined
DES/CSS concept and provides a consistent, complete and
powerful way to combine modelling and simulation.

APPENDIX. UNDESIRED CONSE-
QUENCES OF CSS AGGREGATION

A.1 Very Different Results from DES and CSS
Even For a Large Population
As an example of how CSS can distort results and
conclusions even when the studied population is large,
consider the following example of an epidemic model.

Example 7: SIR (Susceptible-Infectious-Recovered) model
SIR models constitute a class of standard lumped models
used for describing the effect of infectious diseases on
populations of interacting individuals [1,12]. Here we
compare the results when a simple SIR model is realised as
a DES and a CSS model. The SIR model to be studied
assumes three types of individuals in the population, the
Susceptible population of size S, the Infectious of size I,
and the persons who Recover and are permanently immune
of size R. In a conceptual model, the following transition
probability scheme is assumed for the change of subpopu-
lation size at each time-step:

 Type of transition: Infinitesimal probability:
 S→S-1, I→I+1 p⋅S⋅I⋅ dt
 I→I-1, R→R+1 (I/T)⋅ dt .

This model is studied here for a relatively large population
of 1001 persons, initially divided into: S(0)=1000, I(0)=1
and R(0)=0 persons. The risk parameter p is set to
p=0.0003 per individual and time unit and the expected

sojourn time as Infectious is T=4 time units (exponentially
distributed). The quantity to be studied is the number of
Susceptible individuals that will eventually become
infected, S(0)-S(End).

In a DES setting, the results are a probability density
function (pdf) of the total number of infected individuals
after the epidemic has run its course. Figure 6 shows the
results from 10 000 replications of the DES model.

Figure 6. The pdf of the number of susceptible individuals
becoming infected during the epidemic [S(0)-S(End)] as
calculated from 10 000 replications of the DES model. The bar
intervals are 0-9, 10-19, ..., 570-579. The first bar (0-9) is cut
and has value 0.7388.

Now, consider a CSS model of the form:

 S(t+∆t) = S(t) -∆t⋅f1

 I(t+∆t) = I(t)+ ∆t⋅f1 -∆t⋅f2

 R(t+∆t) = R(t)+ ∆t⋅f2

 f1 = p⋅S(t)⋅I(t)
 f2 = I(t)/T .

Using this CSS model causes loss of shadings of the
problem by producing a categorical answer that 318.5
individuals of the Susceptible population will become
infected. This expected number of 318.5 susceptible
persons getting the disease is very far from the DES
prediction of 54.6 (52.2-57.0 for 95% C.I.). Furthermore,
the correct conclusion that in 74% of the cases less than 10
Susceptibles will become ill is not reflected at all. ▄

The reason for CSS producing such a poor estimate of the
expected value of infected individuals (close to 600% too
large) is that not all subpopulations were large all the time.
The epidemic starts with a single infected individual!

The model considered above was bilinear, but a linear
deterministic model will also lose the range of outcomes
described by a pdf and it may produce wrong estimates
when the number of entities is small, see [9].

A.2 Restoring Stochastic Variations in CSS
CSS models are usually deterministic, but a CSS modelling
language usually provides random number generators for
different distributions. However, trying to restore
stochasticity to a deterministic CSS model by adding or
multiplying back noise of a certain distribution is not a
good idea, since the stochastics are an intrinsic part of the
changing process originally defined by events.

Example 8 (Example 1, continued): Radioactive decay
Radioactive decay, where x(t) represents the number of
non-decayed radioactive atoms with a decay fraction a per
time unit, can be implemented in a deterministic CSS model
as x(t+∆t) = x(t) - ∆t⋅a⋅x(t), see Example 1. If we try to
restore stochasticity by adding random perturbations as:

x(t+∆t) = x(t) - ∆t⋅a⋅x(t)+ b⋅e(t) ,

where e(t) is a zero-mean discrete-time white noise, here
assumed Gaussian, we would obtain results as in Figure 7.

Figure 7. Simply adding noise to a deterministic CCS model
may create a number of artefacts.

As illustrated by Figure 7, the stochastic CSS model would
then produce a number of unfeasible phenomena such as: 1)
Non-integer numbers of (non-decayed) atoms; 2) stochastic
variations unrelated to the remaining number of atoms; 3)
sudden increases in the number of atoms; 4) continued
variations around the equilibrium state even when there are
no atoms left; 5) a negative number of atoms may occur.
Furthermore, 6) the ensemble of trajectories from many
replications not having the correct distribution; and 7) the
model behaviour will strongly depend on the time-step
used.

The artefacts in this example may seem innocent and
obvious, but when part of a larger model, they may generate
severe consequences. Variations without appropriate
reasons may excite other parts of the model. Negative
numbers of entities may trigger various phenomena. ▄

The reason for failure is that stochasticity is an intrinsic part
of irregular events, and has to be modelled correctly. This is
what Poisson Simulation does and, as a consequence,
artefacts as exemplified above are eliminated.

REFERENCES
[1] Bartlett M.S. 1960. Stochastic Population Models in Ecology

and Epidemiology. John Wiley & sons Inc., New York.
[2] Forrester J.W. 1961. Industrial Dynamics. Cambridge, MIT

Press, MA.
[3] Gillespie, D.T. 2001. Approximate accelerated stochastic

simulation of chemically reacting systems. J. Chem. Phys.
115:1716-1733.

[4] Gustafsson L. 2000. Poisson Simulation – A method for
generating stochastic variations in Continuous System
Simulation. Simulation 74/5:264-274.

[5] Gustafsson L. 2003. Poisson Simulation as an extension of
Continuous System Simulation for the modeling of queuing
systems. Simulation 79/9:528-541.

[6] Gustafsson L. 2004. Tools for Statistical Handling of Poisson
Simulation: Documentation of StocRes and ParmEst, Dept.
of Biometry and Engineering, The Swedish University of
Agricultural Sciences.

[7] Gustafsson L. 2005. Studying dynamic and stochastic
systems using Poisson Simulation. In: Liljenström H. and
Svedin U. (Eds.) Micro – Meso – Macro: Addressing
Complex Systems Couplings. World Scientific Publishing
Company. Singapore, pp. 131-170.

[8] Gustafsson L. and Sternad M. 2007. Bringing consistency to
simulation of population models – Poisson Simulation as a
bridge between micro and macro simulation. Mathematical
Bioscience, 209:361-385.

[9] Gustafsson L. 2009. Consistency or Not between
Deterministic and Stochastic Population Models? Technical
Report. Signals and Systems, Uppsala University, 1-19.
Available at: www.signal.uu.se/Research/simulation.html

[10] Gustafsson L. and Sternad M. 2009. Consistent Micro,
Macro and State-Based Population Modelling. Submitted.

[11] Hedqvist T. 2004. Wanda for MATLAB. Methods and Tools
for Statistical Handling of Poisson Simulation, Master of
Engineering Thesis, Uppsala University, ISSN: 1401-5749,
UPTEC IT0422, Uppsala, Sweden. Available at:
www.signal.uu.se/Research/simulation.html

[12] Kermack W.O. and McKendrick A.G. 1927. Contributions to
the mathematical theory of epidemics. Proc. Royal Soc. A
115:700-721.

[13] Kleinrock L. 1975. Queueing Systems. Vol. 1: Theory. John
Wiley & Sons Inc.

[14] Kreutzer W. 1986. System Simulation: Programming Styles
and Languages. Addison-Wesley, Sydney.

[15] Luenberger D.G. 1979. Introduction to Dynamic Systems.
Theory, Models and Applications. John Wiley & Sons, Inc.
New York.

[16] Powersim Reference Manual. 1996. Powersim Corporation,
1175 Herndon Parkway, suite 600, Herndon, VA 22170,
Powersim USA, Powersim Press.

[17] Press W.H., Flannery B.P., Teukolsky S.A. and Vetterling
W.T. 1989. Numerical Recipes in Pascal – The Art of
Scientific Computing. Cambridge University Press,
Cambridge, UK.

[18] Volterra V. 1926. Variazioni e fluttuazioni del numero
d’individui in specie animali conviventi. Memoire della R.
Accademia Nazionale dei Lincei, anno CCCCXXIII, II.

[19] Using MATLAB. 2002. The MathWorks, Inc. Natick, MA.

http://www.signal.uu.se/Research/simulation.html
http://www.signal.uu.se/Research/simulation.html

	The Poisson Simulation Approach to Combined Simulation
	1. INTRODUCTION
	2. THE PROBLEM OF AGGREGATION
	3. Poisson Simulation as an ex­teNsion of Continuous system simulation
	Example 1: Radioactive decay in CSS and PoS
	Example 2: A combined discrete and continuous Volterra model

	5. COMBINED DES/PoS Simulation
	6. Discussion and conclusions
	A.1 Very Different Results from DES and CSS Even For a Large Population
	 Type of transition: Infinitesimal probability:
	A.2 Restoring Stochastic Variations in CSS
	REFERENCES

