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ABSTRACT
This paper modifies the foundations of combined Discrete 
Event  Simulation  (DES)  and  Continuous  Systems  Simu-
lation (CSS) by extending the CSS part  to the stochastic 
domain  through  including  discrete  (although  aggregated) 
entities.  The  traditional  combined  DES/CSS  simulation, 
where  the  modeller  selects  between  a  DES  and  a  CSS 
description for components of the system under study, lacks 
a solid theoretical foundation. Model behaviour, results and 
conclusions may then depend on whether a DES or a CSS 
description is utilised.

By introducing Poisson Simulation (PoS) as an extension to 
CSS, several advantages are obtained. First, a theoretically 
sound foundation is achieved in which aggregation can be 
performed safely. Second, combined type problems can, in 
principle, be performed exclusively in PoS, which is often 
considerably  simpler  than  including  DES.  The 
computational complexity is reduced when a large number 
of discrete entities can be modelled as flows into and out of 
a  relatively small  number  of  state  variables.  Third,  even 
when it is practical to include DES, the combined DES/PoS 
approach is more powerful and flexible than a combination 
of DES and CSS.
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1. INTRODUCTION
A dynamic  system is  composed  of  so  many pieces  (e.g. 
atoms), has so many characteristics and is so complicated 
that  it  can never  be  modelled  in all  its  details.  The very 

essence  of  modelling  is  to  build  a  parallel  description, 
called  the  model,  which  is  much  simpler  but  otherwise 
preserves important characteristics and mechanisms of the 
system under study.  Here we will focus on models where 
the interest lies at least partly in describing many discrete 
entities, such as molecules, persons, data packages, vehicles 
or products on a production line. The system under study 
can then either be represented as a micro model, where the 
individual  entities  with  their  attributes  and  behavioural 
logics are individually represented and are identifiable, or 
as a  macro model, where the entities are aggregated into a 
number  of  state  variables  (compartments)  connected  by 
flows. Then,  only the numbers  (or  mass) of entities of a 
certain kind or in a certain situation are described.  
Micro  and  macro  modelling  and  simulation  are  often 
realised  as  Discrete  Event  Simulation  (DES)  and  Conti-
nuous System Simulation (CSS), respectively. However, it 
is sometimes important or practical to utilise both of these 
approaches in the form of a Combined DES/CSS model1. A 
short and well formulated characterisation of CSS, DES and 
combined simulation was given by Kreutzer [14]: 

 “Continuous-system  simulation  was  primarily  used  in 
engineering,  physics,  chemistry,  biology,  ecology,  econo-
mics  and  sociology,  where  the  behaviour  of  dynamic 
systems is traditionally captured by differential equations, 
either because this is considered a ‘natural’ representation 
for some process or because of the high level of aggregation 
at  which  phenomena  are  studied.  Systems  are  typically 
represented  at  a  uniform,  fairly  low  level  of  detail. 
Irregularities,  expressed  by  complex  interactions  do  not 
occur or are abstracted away. 
Discrete-event simulation, on the other hand, originated in 
studies of inventory and manufacturing systems. It has been 
popular  with  operations  researchers,  mathematicians  and 

1  The name ‘Combined simulation’ is preferred here to ‘hybrid 
simulation’, since the latter concept is traditionally used to mean 
simulation using both analogous and digital computers.
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computer scientists. Here, a phenomenon can be studied at 
any  desired  level  of  detail.  Arbitrarily  complex  process 
interactions and any relevant irregularities may be explicitly 
modelled.” 

“Combined simulation tries to integrate both the discrete-
event and the continuous-change approach to the study of 
process behaviour.” “Combined models can be driven by a 
discrete-event  simulator,  with  some  components 
represented  as  continuous  processes.  A  predominantly 
continuous  model  may  alternatively  be  augmented  by 
incorporating  a  number  of  special  events  describing 
irregularities in its behaviour.” 

When constructing a model for combined simulation, the 
modeller has the option of using an aggregated description 
of  subsystems.  For  example,  in  the  data  communication 
field, a stream of packets can be described either by a DES 
model  that  generates  individual  packets,  or  by  a 
deterministic  macro  model,  often  called  a  fluid  flow 
approximation. The choice of aggregation level should be 
governed  by  the  purpose  of  the  study,  e.g.  whether 
individual  statistics  are  needed  or  whether  a  lumped 
description  is  adequate.  When  aggregation  is  used, 
individuality  is  sacrificed  but  the  model  can  gain  in 
comprehensibility, simplicity, amount of data required and 
speed of execution in simulation.

When a (sub)system under study can be modelled either in 
DES or  in CSS fashion, it  is  essential  that  the choice of 
model  does  not  distort  the  behaviour,  results  and 
conclusions  of  the  study.  A  DES  model  is  in  general 
stochastic  and  more  detailed  than  a  corresponding  CSS 
model, but the results from the two approaches should at 
least be consistent (contradiction-free). 

The fundamental problem with aggregating discrete entities 
into  a  deterministic  CSS  model  with  real-valued  state 
variables  is  that  both the discreteness  of  entities  and  the 
irregular  behaviour  of  the  system  under  study  are  lost. 
These  undesired  side-effects  are  harmless  only when the 
number of entities is virtually infinite or (which is the same) 
the  matter  is  virtually  infinitely  divisible  into  a  ‘fluid’. 
According  to  the  law  of  large  numbers,  the  stochastic 
variations then become negligible. However, for micro- and 
meso-scale models where the number of entities is not large 
enough  to  regard  flows  as  continuous  and  stochastic 
variations  as  negligible,  the aggregation into CSS will in 
general  produce  undesired  phenomena  and  distort 
behaviour, results and conclusions. 

This  paper  addresses  the  inconsistency between Discrete 
Event  Simulation and Continuous System Simulation and 
demonstrates  how a  method  denoted  Poisson  Simulation 

(PoS),  which  is  an  extension  of  CSS,  removes 
inconsistencies  when  entities  are  aggregated  into  state 
variables. Combined simulation can then benefit from the 
consistency and power of PoS. The paper  focuses on the 
fundamentals of combined modelling and simulation rather 
than on applied details.

The objectives of this paper are:
•  To  demonstrate how aggregation of entities should be 
performed to preserve discreteness and stochasticity, so that 
the aggregated model is fully consistent with a correspon-
ding non-aggregated model in e.g.  DES. This is accomp-
lished by extending the CSS concept to include stochastics 
and (aggregated) discrete entities. This extended domain is 
named Poisson Simulation.
•  To demonstrate that the PoS domain, alone, can correctly 
handle many types of combined problems.
•  To show that when combined simulation is preferable, 
the combination of DES and PoS represents a consistent, 
safe,  powerful  and  practical  modelling  and  simulation 
approach.

The paper is organised in the following way. In Section 2 
and the accompanying Appendix,  the problems of  aggre-
gation into  a  CSS model  are  discussed  and  examples  of 
inconsistency are given. Poisson simulation is introduced in 
Section 3 and some examples given in Section 4 illustrate 
the capacity of PoS to include both discrete and continuous 
parts in the same model, as well as queues and single actors. 
In Section 5, the combined DES/PoS approach is discussed. 
Finally, in Section 6 we briefly summarise and discuss our 
findings. A number of examples are used to illustrate and 
underline the messages.  These examples are  intentionally 
small and not representative of full-scale combined models.

2. THE PROBLEM OF AGGREGATION
When a system under study, containing a certain number of 
entities  that  are  changed  at  irregular  instants  (events)  or 
with unknown outcomes, is aggregated into a CSS model, 
the aggregation creates a number of  side-effects. First, it 
has the intrinsic side-effect  of grinding the entities into a 
continuous mass. Second, it replaces the irregularities with 
deterministic  fractions  instead  of  probabilities.  CSS 
aggregation is fine for the case where the numbers of every  
type of entities are very large, but it can otherwise severely 
distort model behaviour, results and conclusions. 

Readers unfamiliar with the side-effects of CSS aggregation 
are  referred  to  the  Appendix,  where  two  illustrative 
examples are given. The first, Example 7, demonstrates that 
aggregation into a simple epidemic CSS model may distort 
results  and  conclusions  beyond  all  sense.  While  the 
population in this example is large, one state variable holds 



a small  subpopulation.  The  second example (Example 8) 
illustrates  that  trying  to  restore  stochasticity  to  a 
deterministic  CSS  model  by  adding  noise  can  create  a 
number of artefacts that seriously jeopardise a model study.

These  examples  demonstrate  the  lurking  danger  of 
aggregation  into  a  deterministic  CSS  model,  and  warn 
against  using  inappropriate  measures  to  re-create 
irregularity/stochastic  behaviour.  What  is  called  for  is  a 
conceptual  approach  that  correctly  handles  aggregation 
without side-effects. 

3. POISSON SIMULATION AS AN EX-
TENSION OF CONTINUOUS SYSTEM 
SIMULATION

3.1 Introduction 
Poisson  Simulation  is  an  extension  of  CSS  designed  to 
handle models where the entities are aggregated as integer 
numbers  of  entities  in  the state  variables,  and  where  the 
stochastics are preserved in a correct way. In the simplest 
form,  events  happen  randomly  and  independently.  This 
implies that the number of events during a time interval ∆t 
becomes Poisson-distributed. Therefore, flows into and out 
of compartments (state  variables)  during  ∆t can be gene-
rated  as  integer-valued  and  Poisson-distributed  random 
outcomes. The method is presented in detail in [4], and is 
introduced  below  by  a  simple  example.  A  number  of 
examples of different applications are given in [7].

Example 1: Radioactive decay in CSS and PoS
The  system  has  one  state  variable  x,  representing  the 
number  of  radioactive  atoms,  and  one  outflow  rate  f, 
describing the number of radioactive decays per time unit. 
Therefore,  f  is  proportional  to  the  state  value  x with  a 
proportionality constant a that describes the proportion of x 
that is expected to decay during a time unit. A deterministic 
CSS model (using Euler integration) is then:

               x = x0  [Initialisation]        
              Goto ∗
AGAIN: x = x - ∆t⋅f
     *        f = a⋅x
              time = time + ∆t
              if time ≤ Tend then Goto AGAIN .

To model the irregularity of the decay process in a realistic 
way by a stochastic model, we reason thus: The expected 
outflow  still  has  an  intensity  of  f=a⋅x per  time  unit  or 
∆t⋅f=∆t⋅a⋅x during  the  time  interval  ∆t.  Since  the  decay 
instant of an atom is independent of the timing of decays of 
other atoms, the number of events during the time interval 
∆t should be Poisson-distributed with the parameter ∆t⋅a⋅x. 

Thus, the reduction of x during ∆t has a Poisson-distributed 
variation  denoted:  Po[∆t⋅a⋅x].  Therefore,  the  model  is 
reformulated as:

               x = x0

              Goto ∗
AGAIN:  x = x - ∆t⋅ f
     *        f = Po[∆t⋅a⋅x]/∆t [The decays are now stochastic]
               time = time +∆t
               if time ≤ Tend then Goto AGAIN .

This  model  correctly  describes  the  stochastic  properties 
with regard to the number of atoms in the state variable  x 
and its variability in repeated trials, without producing any 
artefacts.  When  initialised  by  an  integer,  x(t) remains 
integer-valued for all  t. This is in contrast to the erroneous 
result in Example 8 in the Appendix, where an alternative 
model is obtained by adding noise to the CSS model.  ▄

3.2 Poisson Simulation
A Continuous System Simulation model represents a deter-
ministic and  dynamic  system by a  set  of  ordinary diffe-
rential (and algebraic) equations. Each differential equation 
can be expressed as:

 dxi(t)/dt = fi1(x,t)-fi2(x,t) ,    i=1,2,...k , (1)

where fi1 is the sum of inflows and fi2 is the sum of outflows 
to the state variable  xi during the time interval  dt and  x is 
the  vector  of  state  variables  x(t)  =(x1(t),  x2(t),  ...  xk(t))T. 
These dynamic equations, together with initial values xi(0)= 
xi0, completely determine the behaviour of x(t) over time. In 
CSS language, this dynamic equation can be written as a 
difference equation using Euler’s approximation: 

  xi(t+∆t) = xi(t) +∆t⋅fi1(x,t) -∆t⋅ fi2(x,t) ,  i=1,2,...k. (2)

Assume that a system of interest contains discrete entities 
affected by irregularly occurring events.  For the purpose of 
the study, a  conceptual model that only contains relevant 
information is specified, see the upper part of Figure 2. In 
this conceptual model, discrete entities, their behaviour and 
their  attributes  are  described  at  an  appropriate  level  of 
detail and irregularities are specified by relevant statistical 
distributions.  Of special  interest is the intensity of events 
over time. We now wish to construct an  aggregated state 
variable  model,  similar  to  (2),  where  the  state  variables 
preserve integer numbers of entities at all times and where 
the  probabilistically specified  transition  intensities  of  the 
conceptual model are preserved. The following conditions 
must then be fulfilled: 

1) The state variables xi(t) must be initialised with 
integer numbers of entities, whose numbers can 
change only because of inflows and outflows that 
transfer integer numbers of entities. 



2) The probabilistic properties are preserved by 
letting the number of entities transferred in each 
flow be generated as random integer numbers that 
are consistent with the conceptual model.

When entities represented by a flow occur randomly with 
an intensity λ, the number of events during a time interval 
∆t will be Poisson-distributed according to  Po[∆t⋅λ]. The 
intensity  λ may be a function of the state vector  x and of 
time but  it  is  approximated as  being constant  during the 
sufficiently short time interval ∆t, just as in CSS simulation. 
The approximation of a stepwise constant intensity makes it 
possible to obtain a simulation model that can be updated in 
discrete  time, with time-step  ∆t.  The state equations then 
take the form: 

 xi(t+∆t)=xi(t) +Po[∆t⋅fi1(x,t)] - Po[∆t⋅ fi2(x,t)], i=1,...k  (3)

and one example is graphically illustrated by Figure 1. 

Figure 1. Forrester diagram [2,16] of (a part of) a PoS model. 
The  box  xi contains  the  current  integer  number of  entities. 
This can only change by arriving entities  fi1 or by departing 
entities fi2. The single-line arrow from xi to fi2 shows that fi2 is 
dependent on the current number of entities in xi.

Each  flow  fij is  thus  represented  by  a  time  sequence  of 
(dynamically varying and time varying) Poisson processes. 
The only theoretical requirement of independence is that the 
events behind each flow are  mutually independent within 
each time-step  ∆t. (In a DES model, corresponding events 
would be generated one event at a time, with exponentially 
distributed  inter-event  times.)  The  Poisson  distribution, 
with  state-  and  time-dependent  intensity,  is  a  flexible 
mechanism for generating irregularly occurring numbers of 
events with desired statistical properties. In each particular 
case,  the  functions  fij(x,t) are  obtained,  or  approximated, 
from the properties of the original conceptual model. 

Here we present  the PoS models in Euler  form, but  it  is 
possible to use other single-step algorithms such as higher 
order  Runge-Kutta  algorithms to  integrate  the  equations. 
The argument is then estimated by a R-K algorithm before 
the Poisson random number generator is called, see [3].

DES and PoS models also differ in many aspects other than 
time handling, see [8,10]. In DES various statistical distri-
butions are used as needed to model sojourn times, choices, 
outcomes of an operation, etc. In PoS (as well as in CSS) 

the  state  variable  (compartment)  is  by  nature  ‘an 
exponential building block’. Therefore, sojourn times other 
than  exponential  are  obtained  by  a  structure  of 
compartments  in  series  and/or  parallel,  with  the  Po[] 
mechanism  handling  the  internal  flows  of  the  structure. 
Also  choices  and  outcomes  of  an  operation  are  handled 
with the Po[] mechanism, together with appropriate logical 
functions.

In most aspects PoS is structured and implemented in the 
same way as a corresponding CSS model. Provided that the 
PoS  model  is  correctly  built,  it  will  produce  aggregated 
results fully consistent with those produced with the DES 
approach,  when both originate from the same conceptual 
model [8]. For instance the SIR model in Example 7 in the 
Appendix will produce the same probability density func-
tions for simulation outcomes when realised by either DES 
or PoS. 

Note  that  when  the  number  of  entities  n→∞,  then 
Po[∆t⋅f(x,t)]  → ∆t⋅f(x,t),  so the PoS model  approaches  a 
deterministic CSS model. Thus the  embedded CSS model 
(the fluid flow approximation) is obtained by removing the 
Po[ ] parts, but keeping the arguments, of the PoS model. 
Note  also  that  sub-models  describing  continuous  matter 
(CSS)  and  discrete  entities  (PoS)  can  be  combined  and 
linked within one PoS model, as illustrated by Example 2 in 
Section 4.

Figure 2 shows how a system under study can be repre-
sented as a DES model or aggregated into a PoS  model in a 
consistent way – in both cases preserving discreteness and 
stochasticity.  If  quantities can be regarded as continuous, 
the DES approach can be combined with CSS equations. 
Using the PoS approach, CSS equations are handled within 
the PoS concept.

Poisson Simulation can be performed in any CSS language 
provided that  a Poisson-distributed random number gene-
rator is accessible, which is usually the case. Alternatively, 
the  complete  model  can  be  written  in  any programming 
language using a Poisson generator that requires only a few 
lines of additional code [4,17].



Figure 2. The relationships between System at study, Concep-
tual model, Discrete Event Simulation, Poisson Simulation and 
Continuous System Simulation.

4.  POISSON SIMULATION AS AN ALTER-
NATIVE TO COMBINED MODELLING
To  demonstrate  the  capacity  and  versatility  of  Poisson 
Simulation  to  handle  different  types  of  processes,  four 
examples  are  sketched  in  this  section,  followed  by  a 
discussion of data collection and statistics within the single 
replication and over multiple replications.

4.1  Modelling Capacity
PoS not only offers a way to correctly handle aggregation, 
but  also  constitutes  a  flexible  and  execution-efficient 
aggregated  way to  model  problems that  would otherwise 
have required a combined DES/CSS approach to preserve 
both  the  discreteness  and  the  stochastics.  An  ecological 
model of prey-predator type, where discrete predators feed 
on a continuously varying biomass, illustrates this.

Example 2: A combined discrete and continuous Volterra  
model
The  classical  Lotka-Volterra  equations  describe  a  prey-
predator  system for  two species  X and Y by differential 
equations  [15,18].  The  prey  population  breeds  at  a  rate 

proportional to its size  x.  The prey population is reduced 
because of encounters with predators, which is proportional 
to x⋅y. There is competition among prey proportional to x2. 
The encounters with prey give the predators the energy to 
breed,  so  they increase  in  proportion  to  x⋅y.  Finally,  the 
predators die in proportion to their numbers y. The classical 
Lotka-Volterra model therefore has the form:

   dx/dt = ax – bxy – kx2 (4)
   dy/dt = cxy – dy ,

where  a  and  c  are  fertility  constants,  b  and  d  mortality 
constants,  and  k  is  a  proportionality  constant  for  com-
petition. In our setting we now let the prey be a continuous 
amount of biomass  x  (e.g. of grass), while the predators  y 
are  the  number  of  entities  (e.g.  deer).  The  combined 
discrete-continuous model can then be rewritten as:

     x(t+∆t) = x(t)+∆t⋅f1 - ∆t⋅f2  - ∆t⋅f3

     ∆t⋅f1 = ∆t⋅a⋅x(t) 
     ∆t⋅f2 = ∆t⋅b⋅x(t)⋅y(t) (5)
     ∆t⋅f3 = ∆t⋅k⋅x2(t) 
     y(t+∆t) = y(t)+ ∆t⋅f4 - ∆t⋅f5

     ∆t⋅f4 = Po[∆t⋅c⋅x(t)⋅y(t)]
     ∆t⋅f5 = Po[∆t⋅d⋅y(t)].

The  behaviours  of  the  continuous  and  the  combined 
discrete-continuous  models,  with  a=0.2,  b=0.005,  
c=0.005, d=0.3 and k=0.001, are exemplified in Figure 3.

Figure 3. A single replication of the prey-predator model. 
A) with continuous prey (x) and predators (y) using the CSS 
model (4).   B)  with continuous prey (x) and discrete predators 
(y) using the combined model (5). At around 450 time units, 
the predators become extinct so the prey increases logistically.
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Comparing the deterministic CSS model (4) with the PoS 
model  (5)  reveals  that  the  deterministic  model  rapidly 
reaches a steady state point for both species without further 
variations.  Furthermore,  phenomena  such  as  extinction 
cannot occur in (4).

Estimating various statistics from this probabilistic model 
requires  repeated  simulations.  To  give  an  idea  of  the 
execution  speed  of  PoS,  the  execution  time  for  10  000 
replications of the Volterra model (5) over a time span of 
500  time units,  using  ∆t=0.25 time units,  was measured. 
For  an  ordinary  3 GHz  PC  it  took  74.9  seconds.  As  a 
comparison, the same number of replications of (4) (which 
of course would not be needed for a deterministic model) 
took 31.9 seconds. Thus, in this case the execution time for 
the  stochastic  model  is  2.3 times  longer  than  for  the 
deterministic one due to random number generator calls.  ▄

The following example demonstrates that queues, resources 
like servers (that can be busy or idle), waiting numbers and 
waiting times, etc. that are central concepts in DES can be 
smoothly modelled in PoS.

Example 3: Queues in PoS
Implementation of queuing systems in Poisson Simulation 
is straightforward. Here this is demonstrated for the M/M/1, 
M/M/c and M/M/∞ cases, where M/M/* stands for exponen-
tially  distributed  inter-arrival  and  service  times,  and  the 
third symbol represents the number of servers, see [13]. The 
input (arrivals) is then a Poisson process, with intensity λ, 
of the form: In = Po[∆t⋅λ].

Let q denote the actual total number of queuing and served  
entities  in  the  state  variable  Q.  Let  us  introduce  the 
following model  for  the  output  (departures  after  a  mean 
service time of  1/µ) and denote it the  kernel of the queue 
dynamic model: 

  Out = Po[∆t⋅µ⋅ΜΙΝ(1,q)] for the M/M/1 case; 
  Out = Po[∆t⋅µ⋅ΜΙΝ(c,q)] for the M/M/c case; and 
  Out = Po[∆t⋅µ⋅q] for the M/M/∞ case. 

Here, ΜΙΝ(c,q) means that at most c entities can be served 
simultaneously,  and  if  q<c only  q entities  are  served. 
However, there is a complication. The number of entities q 
in the state  variable must not  become negative.  CSS and 
PoS have no automatic mechanism protecting from negative 
numbers. A guard mechanism should be included to prevent 
the output from draining the state variable of more than its 
actual  content.  This  can  be  accomplished  by  including 
another  MIN function  comparing  the  kernel  introduced 
above to the actual content. Thus Out = MIN{kernel, q}. 

The complete algorithm of a queuing system then is:

      q(t+∆t) = q(t) + In – Out
      In = Po[∆t⋅λ]
      Out = MIN{Po[∆t⋅µ], q} [M/M/1 case]
         or
       Out = MIN{Po[∆t⋅µ⋅ΜΙΝ(c,q)], q} [M/M/c case]
         or
      Out = MIN{Po[∆t⋅µ⋅q], q} [M/M/∞ case]

For more information on queuing models in PoS, see [5]. 
Figure 4 shows an M/M/c queue with a number of statistical 
devices that are discussed in Section 4.2. 

Figure 4. An M/M/c queuing system presented as a Forrester 
diagram  [2,16].  A  die  in  a  symbol  means  that  a  random 
number  (here  Poisson)  from  some  specified  distribution  is 
drawn for each time-step. A clock in a symbol means that time 
is  involved  in  the  calculations.  Here,  Q is  a  state  variable 
holding  the  total  number  of  queuing  and  currently  served 
entities.  The arrival rate is  λ (lambda),  and the service rate 
(per server) is µ (mu). Of course λ,  µ and also the number of 
servers c can be varied during the simulation. The lower part 
of  the  figure  shows  devices  for  counting  arrivals  and 
departures,  and  calculating  queue-time,  queue-length  and 
server utilisation, as discussed in Section 4.2.  ▄ 

 

Because PoS can handle any number of discrete entities, it 
can  of  course  also  handle  single  entities  separately.  The 
next example shows how a single entity (actor) can also be 
modelled in PoS when needed. 

Example 4: A single actor in PoS
A single (or a few) entities (physicians, fire trucks, machi-
nes, etc.) can be in different states in the same meaning as 
an actor in a DES model. As an example, see the sketch in 



Figure 5, which can be part of a larger PoS model. When 
the change to a new state is affected by some external event, 
this  is  coded  within  the  proper  flow  equation.  When  a 
sojourn time distribution of a stage is required, a number of 
state variables in series or parallel can be used to generate 
the appropriate distribution. When there is a random choice 
between  branches  (e.g.  F23  and  F24  in  Figure  5),  an 
information  link  between  the  flow equations  involved  is 
needed (not shown) to prevent an entity from taking more 
than one branch.

Figure 5. Example of a PoS model where a single entity or a 
few entities can be in different states S1, S2, S3, S4, S5 and S0 
(S0 is a cloud symbol representing that the entity has left).  ▄

The  Po[ ]-mechanism handles the randomness describing 
the  numbers  of  events  over  time  intervals,  but  various 
statistical distributions can be used for other purposes.

Example 5: Mixed stochastic processes
Events  may happen  irregularly.  Furthermore,  the  conse-
quences  of the events can be described by random distri-
butions  other  than  Poisson.  Assume  that  an  insurance 
company  intends  to  study  the  variations  in  the  annual 
number of accidents and in total  costs of these accidents 
during the year. The expected intensity of accidents varies 
strongly over  the year  as described  by a known intensity 
∆tλ(t).

The  cost  per  accident  is  modelled  as  exponentially 
distributed  with  average  µ(t);  most  accidents  are  not 

expensive but  a  few are.  Each randomly occurring event 
then has the real-valued attribute: cost, which is obtained 
from a  random number generator  named  Expo[µ(t)].  We 
express the corresponding PoS model in pseudo-code as:

Time=0;  CumAccidents=0;  CumCosts=0
 While Time < OneYear do
   N = Po[∆t⋅λ(t)]          [No. of accidents during ∆t]
   CostsInDT = 0
   For i=1 to N do CostsInDT = CostsInDT + Expo[µ(t)]
   CumAccidents = CumAccidents + N
   CumCosts = CumCosts + CostsInDT
   Time = Time + ∆t
End 

Remark:  The  innermost  loop  generates  an  N-Erlang[µ] 
distributed  variable,  and  can  be  substituted  by a  random 
number generator for that distribution, if available.  ▄

4.2 Internal and External Statistics
Two kinds of statistics are needed in stochastic simulation, 
irrespective of whether it is implemented in DES, PoS or 
otherwise.  First,  there  are  internal  data  collection  and 
statistics related to what happens within a replication (pdf, 
average, variations, min, max, etc.). Second,  external  data 
collection and statistics from many replications of a simula-
tion model are needed to explore various behaviours of a 
stochastic model.

4.2.1  Internal data collection and statistics
Below we exemplify how data and statistics can be handled 
swiftly within a  replication by counters,  tallies  and other 
statistical devices implemented as part of the PoS model.

Example 6 (Example 3, continued): Internal data collection 
and statistics in PoS
Counters,  tallies,  histograms,  etc.  for  averages,  standard 
variations, pdfs, min, max, etc., to be updated for each time-
step, are easily constructed within the PoS model.  Below 
the  queuing model  in  Figure  4,  devices  for  internal  data 
collection and statistics within a replication are shown. The 
flows of arrivals and departures are accumulated over time 
in In_Counter and Out_Counter, respectively. The queuing 
customers are also integrated over time to CumQTime. By 
dividing  CumQTime by In_Counter,  the  average  time in 
queue, AvQTime, is obtained. By dividing CumQTime by 
time,  the average  queue  length,  AvQLength,  is  obtained. 
Server utilisation is calculated from the fraction of time the 
c servers are busy. ▄



4.2.2  External data collection and statistics
Because  PoS  models  are  stochastic,  large  numbers  of 
replications  are  needed  to  estimate  the  pdfs,  confidence 
intervals, correlations, etc. It is therefore convenient to use 
a supervisory program that can carry out a specified number 
of  replications,  collect  specified  results  and  present 
statistical  estimates.  Such  programs  exist  for  Powersim 
[6,16] and Matlab [11,19].

5.  COMBINED DES/PoS SIMULATION
The aggregation  into  a  PoS model  has  consequences  for 
size and execution speed. When a large number of entities 
are aggregated into a small number of state variables, the 
model will be comprehensive. The size and computational 
complexity of this model will furthermore not grow with the 
number of entities in the system, while a DES model grows 
proportionally with the number of entities (if e.g. they are 
modelled as objects). Furthermore, in PoS many entities in 
many flows may be transferred for each time-step, while in 
DES one event is handled per ‘time cycle’, which makes the 
PoS  approach  significantly  faster  than  DES  for  large 
populations.

However, although it is in principle possible to model indi-
vidual entities, queues, behavioural logics, etc. in PoS, it is 
not  always  comprehensive,  practical  or  fast.  Especially 
when  a  system  under  study  contains  a  heterogeneous 
population of entities or many entity attributes, the number 
of state variables may become very large, so DES usually is 
a better option than PoS. Furthermore, in DES any sojourn 
time distribution (even empirical) may be used, while such 
a distribution has to be approximated with a structure of 
state  variables  in  series  and/or  parallel  in  PoS.  The 
modeller should therefore carefully consider when or what 
parts of a system under study should be modelled in DES or 
aggregated into PoS.

6.  DISCUSSION AND CONCLUSIONS
Poisson Simulation (PoS) constitutes a straightforward way 
to  perform  an  aggregation  of  discrete  entities  without 
producing  undesired  side-effects  of  grinding  down  the 
discrete  entities  into a  continuous mass and  thereby also 
eliminating  the  original  variations  because  of  numbers. 
Only when the number of entities is so large that flows can 
be  considered  continuous  should  the  modeller  consider 
further  simplifying  the  PoS  model  into  a  (deterministic) 
CSS setting. We have also seen that PoS alone, in principle, 
can  handle  most  combined  problems.  When  it  is  still 
practical  to use a combined approach, the DES/PoS app-
roach is a more structured, versatile and powerful approach 
than DES/CSS.

Because of limited space, only some illustrative aspects of 
PoS  have  been  presented.  We refer  to  the  literature  for 
more  details.  In  [4]  the  fundamental  rules  of  PoS  are 
presented.  That  paper  describes  e.g.  when multiple flows 
may be superimposed or how to control correlation when 
flows  are  dependent.  A  number  of  PoS  examples  are 
presented  in  [7].  The  full  consistency between DES and 
PoS  (despite  of  e.g.  different  concepts,  building  blocks, 
level of aggregation, time handling, etc.) is demonstrated in 
[8] and [10]. The modelling of queuing problems is treated 
in [5].  In [3],  stochastic integration algorithms other than 
Euler are given. Finally, devices for external data collection 
and statistics are presented in [6] and [11].

In  conclusion,  the  combined  DES/PoS  concept  has  a 
number  of  advantages  compared  with  the  combined 
DES/CSS concept and provides a consistent, complete and 
powerful way to combine modelling and simulation.

APPENDIX.  UNDESIRED CONSE-
QUENCES OF CSS AGGREGATION

A.1  Very Different Results from DES and CSS 
Even For a Large Population
As  an  example  of  how  CSS  can  distort  results  and 
conclusions  even  when  the  studied  population  is  large, 
consider the following example of an epidemic model.

Example 7: SIR (Susceptible-Infectious-Recovered) model
SIR models constitute a class of standard lumped models 
used  for  describing  the  effect  of  infectious  diseases  on 
populations  of  interacting  individuals  [1,12].  Here  we 
compare the results when a simple SIR model is realised as 
a  DES and  a  CSS model.  The  SIR model  to  be  studied 
assumes three  types  of  individuals  in  the population,  the 
Susceptible population of size  S,  the Infectious of size  I, 
and the persons who Recover and are permanently immune 
of size  R. In a conceptual model, the following transition 
probability scheme is assumed for the change of subpopu-
lation size at each time-step:

   Type of transition:    Infinitesimal probability:
     S→S-1,  I→I+1                 p⋅S⋅I⋅ dt
     I→I-1,   R→R+1               (I/T)⋅ dt .

This model is studied here for a relatively large population 
of  1001 persons, initially divided into:  S(0)=1000, I(0)=1 
and  R(0)=0 persons.  The  risk  parameter  p  is  set  to 
p=0.0003 per  individual  and  time unit  and  the  expected 



sojourn time as Infectious is T=4 time units (exponentially 
distributed).  The  quantity to be studied  is  the number of 
Susceptible  individuals  that  will  eventually  become 
infected, S(0)-S(End). 

In  a  DES  setting,  the  results  are  a  probability  density 
function (pdf)  of the total number of infected individuals 
after the epidemic has run its course.  Figure 6 shows the 
results from 10 000 replications of the DES model.  

Figure  6. The  pdf  of  the  number of  susceptible  individuals 
becoming  infected  during  the  epidemic  [S(0)-S(End)]  as 
calculated from 10 000 replications of the DES model. The bar 
intervals are 0-9, 10-19, ..., 570-579. The first bar (0-9) is cut 
and has value 0.7388.

Now, consider a CSS model of the form: 

   S(t+∆t)  = S(t) -∆t⋅f1

   I(t+∆t)  =  I(t)+ ∆t⋅f1 -∆t⋅f2

   R(t+∆t) = R(t)+ ∆t⋅f2

   f1 = p⋅S(t)⋅I(t)
   f2 = I(t)/T . 

Using  this  CSS  model  causes  loss  of  shadings  of  the 
problem  by  producing  a  categorical  answer  that  318.5 
individuals  of  the  Susceptible  population  will  become 
infected.  This  expected  number  of  318.5 susceptible 
persons  getting  the  disease  is  very  far  from  the  DES 
prediction of  54.6 (52.2-57.0 for  95% C.I.).  Furthermore, 
the correct conclusion that in 74% of the cases less than 10 
Susceptibles will become ill is not reflected at all. ▄

The reason for CSS producing such a poor estimate of the 
expected value of infected individuals (close to  600% too 
large) is that not all subpopulations were large all the time. 
The epidemic starts with a single infected individual!  

The  model  considered  above  was  bilinear,  but  a  linear 
deterministic model  will also lose the range  of  outcomes 
described  by a  pdf  and  it  may produce  wrong estimates 
when the number of entities is small, see [9]. 

A.2  Restoring Stochastic Variations in CSS
CSS models are usually deterministic, but a CSS modelling 
language  usually provides  random number  generators  for 
different  distributions.  However,  trying  to  restore 
stochasticity to  a  deterministic  CSS model  by adding  or 
multiplying  back  noise  of  a  certain  distribution  is  not  a 
good idea, since the stochastics are an intrinsic part of the 
changing process originally defined by events.

Example 8 (Example 1, continued): Radioactive decay
Radioactive  decay,  where  x(t) represents  the  number  of 
non-decayed radioactive atoms with a decay fraction a per 
time unit, can be implemented in a deterministic CSS model 
as  x(t+∆t) = x(t) -  ∆t⋅a⋅x(t),   see Example 1. If we try to 
restore stochasticity by adding random perturbations as:

x(t+∆t) = x(t) - ∆t⋅a⋅x(t)+ b⋅e(t) ,

where  e(t)  is  a  zero-mean discrete-time white noise,  here 
assumed Gaussian, we would obtain results as in Figure 7.

Figure 7. Simply adding noise to a deterministic CCS model 
may create a number of artefacts.

As illustrated by Figure 7, the stochastic CSS model would 
then produce a number of unfeasible phenomena such as: 1) 
Non-integer numbers of (non-decayed) atoms; 2) stochastic 
variations unrelated to the remaining number of atoms; 3) 
sudden  increases  in  the  number  of  atoms;  4)  continued 
variations around the equilibrium state even when there are 
no atoms left;  5) a negative number of atoms may occur. 
Furthermore,  6)  the  ensemble  of  trajectories  from many 
replications not having the correct distribution; and 7) the 
model  behaviour  will  strongly  depend  on  the  time-step 
used.



The  artefacts  in  this  example  may  seem  innocent  and 
obvious, but when part of a larger model, they may generate 
severe  consequences.  Variations  without  appropriate 
reasons  may  excite  other  parts  of  the  model.  Negative 
numbers of entities may trigger various phenomena. ▄

The reason for failure is that stochasticity is an intrinsic part 
of irregular events, and has to be modelled correctly. This is 
what  Poisson  Simulation  does  and,  as  a  consequence, 
artefacts as exemplified above are eliminated.
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