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Tracking of Time-Varying Mobile Radio
Channels—Part II: A Case Study

Lars Lindbom, Anders Ahlén, Senior Member, IEEE, Mikael Sternad, Senior Member, IEEE, and Magnus Falkenström

Abstract—Low-complexity WLMS adaptation algorithms, of
use for channel estimation, have been derived in a companion
paper. They are here evaluated on the fast fading radio channels
encountered in IS-136 TDMA systems, with the aim of clarifying
several issues: How much can channel estimation performance
be improved with these tools, as compared to LMS adaptation?
When can an improved tracking MSE be expected to result
in a meaningful reduction of the bit error rate? Will optimal
prediction of future channel estimates significantly improve the
equalization? Can one single tracker with fixed gain be used for
all encountered Doppler frequencies and SNR’s, or must a more
elaborate scheme be adopted? These questions are here investi-
gated both analytically and by simulation. An exact analytical
expression for the tracking MSE on two-tap FIR channels is
presented and utilized. With this tool, the MSE performance and
robustness of WLMS algorithms based on different statistical
models can be investigated. A simulation study then compares
the uncoded bit error rate of detectors, where channel trackers
are used in decision directed mode in conjunction with Viterbi
algorithms. A Viterbi detector combined with WLMS, based on
second order autoregressive fading models possibly combined
with integration, provides good performance and robustness at a
reasonable complexity.

Index Terms—Adaptive estimation, fading channels, least mean
square methods, prediction methods.

I. INTRODUCTION

I N IS-136 digital mobile TDMA systems, a relatively low
symbol rate and long data slots (6.67 ms) cause severe

fading. In such 1900-MHz systems, one or two fading dips can
be expected within each data slot. Furthermore, large variations
in fading rates and frequency selectivity are encountered, so
well designed channel estimators are crucial for obtaining ade-
quate performance. Estimates obtained from training sequences
(synchronization words) cannot be used within the whole
slot and interpolation of channel estimates between training
sequences [15] here provides inadequate performance. The
same is true for decision-directed LMS and RLS adaptation. A
Kalman filter with time-varying gain [3] would provide optimal
performance, but it requires an on-line update of the adaptation
gain in every sample. This solution has so far been deemed too
complex.
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The Wiener LMS (WLMS) algorithm, which has constant
gain but can efficiently utilize the fading statistics, was pre-
sented in Part I of this paper [14]. It enables a systematic and
structured design of high-performance adaptation laws with
LMS computational complexity. An early design related to
this class of algorithms [10] has been successfully applied to
tracking problems in IS-136 TDMA systems [1], [8], [19].

We will here investigate the application of WLMS algorithms
to the estimation of such fading channels. With large variations
in the fading rate, a key issue is the selection of appropriate sta-
tistical fading models (hypermodels). Several design approaches
can be conceived, some of which are listed below in decreasing
order of complexity.

1) An autoregressive model for fading channel taps may
be adjusted on line. This estimator can be implemented
jointly with a WLMS algorithm or a Kalman tracker [25].

2) Some fading models, in particular Jakes’ model [7],
are specified by a few parameters, such as the speed
of the mobile, which may be estimated separately. A
set of WLMS algorithms can be pre-designed within a
grid of these and other parameters. The parameters are
estimated on line and the appropriately tuned algorithm
is selected. Thisgrid approach[6] is sometimes called
gain scheduling.

3) A single robustly designed algorithm might provide ad-
equate performance over a wide range of Doppler shifts
and disturbance levels.

At present, we consider alternative 1 to be far too complex
and possibly nonrobust. The grid approach seems reasonable
and has in [6] been found to work well. The use of a single fixed
adaptive algorithm may at first sight seem over-optimistic, but
it turns out to be feasible. The present paper will explore prop-
erties of the WLMS algorithm which are relevant when using
either a grid approach or a single robustly designed tracker.

The channel model will be outlined in Section II and in Sec-
tion III, the WLMS algorithm is summarized. Section IV de-
scribes the choice of hypermodel structure. It then discusses the
adjustment of autoregressive models to the fading statistics gen-
erated by isotropic scattering, for known as well as for uncertain
Doppler frequencies.

Analyticalexpressions for thesteadystatemeansquareparam-
eter tracking error are presented in Section V. In this case study,
with a two-tap fading channel and a symbol alphabet with con-
stant modulus, anexactperformance analysis can be performed.

In Section VI, the tracking performance is investigated for
fading rates at which the adaptation laws are tuned, as well as
for other fading rates. The use of predicted channel estimates
is also investigated and is shown to improve the performance
significantly.
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The bit error rate performance is finally evaluated by simu-
lation in Section VII, for adaptive Viterbi detectors working in
decision-directed mode. A peculiar nonlinear effect that appears
when estimating flat fading channels is here discovered and dis-
cussed.

II. THE CHANNEL MODEL

A sampled symbol-spaced baseband radio channel is de-
scribed by the time-varying linear regression

... (1)

where , here assumed to be a scalar1 , is the received signal
at discrete time. The complex-valued fading -tap channel
is represented by . In IS-136 systems, it is reasonable to as-
sume 1 (flat fading) or 2. The symbols are as-
sumed to have zero mean and constant modulus. The regressor
vector is defined as the complex conjugate transpose of a
column vector that appears in the adaptation algorithms. It is
assumed stationary with a known nonsingular autocorrelation
matrix . The noise has zero mean and variance

.
The fading properties of the channel coefficients will depend

on the maximum Doppler frequency

rad/s (2)

where denotes the speed of the mobile andis the carrier
wavelength, which in the following is assumed to be 16 cm
( 1900 MHz). For the purpose of our channel estimator de-
sign demonstrations, we mainly assume Jakes’ fading model
[7]. When is constant, the channel coefficients will then be
stationary, circular Gaussian processes with zero means and co-
variance function

(3)

which yields the classical fading spectrum

(4)

Here, , while denotes the Bessel function of
the first kind and zero order and

(5)

The symbol time will be set to 41.15 s as in IS-136.

III. T HE CHANNEL ESTIMATOR

We shall use the WLMS-algorithm presented in Part I of this
paper [14] to track and predict the channel. To describe ,
we shall use simplified fading models in the form of marginally

1The tracking and equalization algorithms are applicable also to vector sig-
nals, which appear in multiple antenna systems and when sampling faster than
the symbol rate. See [12] for a design example.

stable autoregressive models of order, with equal dynamics
for all channel taps

(6)

The notation is introduced to indicate that (6) will not be
a perfect description of . Here, denotes the backward
shift operator ( ) and is a white zero mean
random vector sequence with covariance matrix. For sym-
metric fading spectra, the scalar coefficients can be as-
sumed real-valued.

The model (6) should approximate the essential behavior of
the time variability, in our case described by the autocorrela-
tion function (3). When (6), , and are given, Theorem
1 of [14] directly provides an optimized WLMS-algorithm for
tracking the parameter vector in (1)

(7)

(8)

(9)

Here, denotes an estimate of at discrete time and
. The scalar gain is a step size parameter and (9)

is the coefficient smoothing-prediction estimator. An alterna-
tive equivalent implementation can be expressed in terms of the
learning filter [14]:

(10)

where

The polynomials depend on the selected hypermodel
(6) and are calculated via Theorem 1 in [14] to minimize the
mean square parameter error

(11)

where

IV. DYNAMIC FADING MODELS

A. Autoregressive/Integrating Models

An exact representation of the fading statistics (3)–(4) would
require the use of an autoregressive fading model (6) of infinite
order. We will here use and compare the following special cases
of (6).

1) RW, Random walk modeling, 1 , results
in an LMS algorithm. It is a common first choice when no
prior information is available2 .

2However, in such cases we would rather advocate the use of filtered random
walk modeling, see below, witha 2 [0.9–0.999].
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2) FRW (Filtered random walk):

with 1, is a useful model in many situations. The
special case of an integrated random walk (IRW ,
1), will be appropriate if the short term behavior is well
approximated by linear trends.

3) (Autoregressive second order model):

Here, and determine the degree of damping and
the dominating frequency, respectively. For Jakes fading
models (3), a reasonable bandwidth is obtained with

2 where is a nominal or estimated Doppler fre-
quency.

4) (Autoregressive and integrating model):

This model is useful when some parameters are oscil-
lating while others are slowly varying or constant. The
integrating term (1 ) will guarantee an unbiased
estimate of constant parameters whenis nonsingular,
see [14, eq (42)]. The model is also of use for
long-range prediction of oscillations around a nonzero
mean, which occurs in Rician fading; without an inte-
grating model factor, prediction estimates would in that
case be biased toward zero.

5) , autoregressive models of order 3 or higher,
are appropriate when important properties of the covari-
ance function of the time-variation are difficult to match
with a few parameters. Their adjustment is described in
Section IV-B.

Design based on RW modeling results in an LMS algorithm,
while FRW or modeling leads to a simplified Wiener LMS
algorithm, which is simple to design and to readjust on-line, see
Section IV of [14]. With or models, readjustment
of the algorithm (at most once per slot) will require the numer-
ical solution of a polynomial spectral factorization of order.

When using and models, we need to select the pa-
rameters and . In this case study, the pole radiusis fairly
easy to select. For maximum normalized Doppler frequencies
of interest here, 0.1, the value 0.999 0.1 is by
our experience reasonable for Jakes’ model. Then,is set to

which can be estimated on line reasonably well using either
the assumed correlation Bessel function (3) of the fading pattern
[11], or level crossing rates.

B. Adjusting AR Model Parameters to Fading Covariance
Statistics

The adjustment of (6)

(12)

can be based directly on a known or estimated covariance func-
tion. We can adjust by considering row of (12). Intro-
duce the set of covariances

where denotes element (tap)of and where are inte-
gers such that 0 . Multiplying row of (12)
by and taking the expectation gives the equations

(13)

In the particular case of and , we obtain the
Yule-Walker equations. However, might very well be chosen
much larger than and the time-lags can be distributed over
a large interval.

The covariances can be replaced by data-based estimates.
The resulting polynomial could then have roots outside
the unit circle and should in that case be adjusted so that all roots
are in 1. Estimation of based on data, as suggested in
[25], will require an initial training period of considerable length
and will give reliable estimates only at high SNR’s.

We therefore prefer to use theoretical expressions for the co-
variances, parametrized by the maximum Doppler frequency.
When adjusting the AR model to the fading model (3), we re-
place in (13) by and solve the pos-
sibly over-determined system of equations by the least squares
method.

In Fig. 1, the Bessel function in (3) for (45 km/h)
is compared to the covariance function adjusted with
, for and . Clearly, including higher-lag

covariances in (13) yields a better agreement between the Bessel
function and the AR model for large lags.

The correlation between taps, modeled by in (3) and
in (6), can be estimated from data. With well synchronized
IS-136 receivers, the tap correlation will be small.

C. Robust Design of Adaptation Laws

If the Doppler frequency is uncertain, one could mini-
mize the worst-case effect of this uncertainty by performing a
minimax robust filter design [9], [18]. A less conservative and
often much less computationally demanding, alternative is to re-
gard as a random variable. The MSE tracking performance
resulting from the outcomes of is averaged and we minimize
this average [23], [26]. As is shown in [24] and [11, Sect. 3.5],
this problem can be solved by spectrallyaveraging over the hy-
permodels(6). Such averaging has also been used in [17, Sect.
IV.A]. A Doppler spectrum averaged with respect to an uncer-
tain parameter is given by

(14)

where represents the spectrum of the channel coeffi-
cients and denotes the probability density function of the
normalized maximum Doppler frequency . When assuming
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Fig. 1. Adjusting third-order AR hypermodels to the Bessel function
J (
 `), at 
 = 0:02 (45 km/h), (solid) according to (13) at six evenly
spaced points, for the maximum lag` = 61 (dotted) and̀ = 251 (dashed).

Jakes model and (3), the covariance function corresponding to
(14) is

(15)

An averaged AR hypermodel can now be adjusted using
instead of . A robust tracking algorithm can then be de-
signed using this model.

In Fig. 2, the averaged covariance function (15) is displayed
for a uniformly distributed probability density function
with different uncertainty regions. A wider uncertainty region
will increase the damping of the averaged covariance function,
yielding a spectrum with a less pronounced peak.

Deviations from Jakes’ model can be regarded as unstruc-
tured uncertainty, which can be incorporated in an averaged ro-
bust design, see [11], [23], [26].

V. PERFORMANCEANALYSIS

Based ontwo-tapchannel models (1) and on a known fading
model such as Jakes’ model (3), we can obtain an exact expres-
sion for the steady state tracking MSE, . The expression
is valid for arbitrarily fast fading and for all algorithms with
WLMS structure. Introduce the learning filter gain

(16)

Lemma 1: Consider the channel model (1), with 3. As-
sume , and to be mutually independent and stationary.
Let the fading channel coefficient vector have spectrum
and covariance matrix . The zero mean noise
has variance . Let the zero mean symbols be uncorrelated
in time, with constant modulus and variance . As-
sume 1 1. If an estimator for with the structure
(10) or (7)–(9) is used, then the steady-state mean square esti-
mation error (11) is given by

(17)

where

(18)

(19)

Fig. 2. Autocovariance functionr (`) = J (
 `) with 
 = 0:02 (solid)
and the averaged covariance function (15), with
 2 U [0:01 0:03] (dotted)
and
 2 U [0:015 0:025] (dashed).

and

dB (20)

Proof: Obtained from [13] for constant modulus regres-
sors (with kurtosis 1), by observing that
and .

Lemma 1 holds exactly for 3, but is a good approxima-
tion also for higher order FIR channels.

Above, 1 1 is a condition for convergence in
MSE. This condition will always be fulfilled for flat fading
channels. Note also that the term vanishes for 1. All
preconditions for Lemma 1 are fulfilled in the IS-136 TDMA
system: The symbols are uncorrelated due to the interleaving
and are circular with constant modulus. The delay spread is not
larger than one symbol interval, so channel models with
2 are appropriate. The term represents mainly co-channel in-
terference and thermal noise. It can be assumed zero mean and
independent of both and for all .

For filters and smoothers (7)–(9) designed to minimize (11)
based on perfect models, the error will vanish with a vanishing
noise variance.

For predictors, the tracking error (17) will not vanish even in
the noise-free case and it will increase with the fading rate. It de-
creases if more accurate AR-approximations of the true fading
spectrum are used in the WLMS design.

It is of interest to know to what extent improved linear
regression modeling of the parameter dynamics can improve
the end result for which it is intended. Filtering or detec-
tion performance is essentially determined by the ambient
SNR. With Lemma 1, the variance of the “tracking noise”

, caused by nonperfect tracking, can be
calculated and compared to the variance of the noise. As a
rough but useful performance indicator, we define the relative
noise level

dB (21)

where the numerator describes the variance in due
to the tracking error plus noise, if and are mutually un-
correlated. We can use the increase of the noise level to predict
the performance deterioration in e.g., an equalizer3 .

3A similar investigation is performed for Kalman trackers and decision feed-
back equalizers in [22].
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(a) (b)

(c) (d)

Fig. 3. Optimized tracking errorEk~h k = trP (lower part) and relative tracking noise levelV (dB) (upper part) in Section VI for WLMS algorithms
based on RW modeling (dashed-dotted), IRW (dashed)AR (circles) andAR (solid). All AR models are matched to the true normalized Doppler frequency
 .

TABLE I
THE ATTAINABLE TRACKING ERRORtrP OBTAINED BY LEMMA 1 FOR WLMS ALGORITHMS BASED ON DIFFERENTHYPERMODELSMATCHED TO THE

TRUE DOPPLERFREQUENCY. FOR FRW,a = 0.98. COMPARE TOFIG. 3

When is above 3 dB, the tracking noise dominates over
the output noise . It is then worthwhile to consider a supe-
rior adaptation law based on, for example, a higher order hyper-
model. If is below 1 dB, then the noise dominates, so even a
total elimination of the tracking errors would result in marginal
improvements of the performance of a filter or detector based
on the estimated model.

VI. MSE PERFORMANCE

We will here investigate the performance of the tracking al-
gorithm theoretically, by using Lemma 1 for two-tap Rayleigh
fading channels with taps of equal variance and regressors with
constant modulus and variance 1.

A. MSE Performance: The Ideal Case

In the lower half of Fig. 3, the mean square sum of tap predic-
tion errors has been calculated by Lemma 1, usingfrom
(4) and 2. We investigate WLMS algorithms based
on adjusted hypermodels of various structures, with optimized
gains , for SNR of 15–25 dB. The corresponding numerical re-
sults are presented in Table I. While the attainable performance
improves with the complexity of the hypermodel, the use of in-
creasingly complex models gives diminishing returns.

The top diagrams in Fig. 3 display the relative tracking noise
level (21), under the assumption 1 1
and 10 2 . For LMS tracking (WLMS based on
random walks), the tracking error is in many of the considered
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(a) (b)

(c) (d)

Fig. 4. Learning filter magnitudesjQ (e )=�(e )j (left) and phases (right) for optimally tuned WLMS algorithms based on RW (dash-dotted)AR (dashed)
andAR I (solid) fading models at
 = 0.04 (f = 160 Hz), forSNR = 25 dB andSNR = 15 dB, respectively.

cases so large that it dominates over( 3 dB in the upper
diagrams of Fig. 3). The tracking performance can be improved
significantly by simply extending LMS (RW hypermodeling)
with an integrator, i.e., by using an IRW hypermodel. If we use
an model, we obtain a better tracking MSE for 0.06
( 140 km/h) than can be obtained by using the RW model with

0.02 ( 45 km/h). In terms of the effect of the noise level
on the tracking MSE, more than 10 dB can be gained at both

0.02 and 0.06 by using an model instead of
a random walk model (bottom diagrams).

The properties of different adaptation algorithms can also be
understood by comparing their learning filters (10). See Fig. 4,
which compares RW (LMS), and designs at
0.04.4 The bandwidth of the learning filter approaches
0.04 as the SNR decreases but, as can be seen in Fig. 4, it is
significantly higher for moderate and high SNR’s. The reason
is that the lag error will, to a large extent, be determined by
the phase lag introduced by the learning filter in frequency re-
gions where has significant energy. When the noise level is
low, a Wiener design can give priority to suppressing lag errors
by attaining low phase shifts at these frequencies (at or below

0.04), at the price of widening the bandwidth of the
learning filter. When the SNR decreases, noise rejection is given
higher priority.

Note that the RW/LMS learning filter has the highest gain at
high frequencies. This makes this estimator most sensitive to
noise.

4The tuned second orderAR denominator is given byD(q ) = 1 �
1.9891q + 0.990 03q . For 25 dB, the tuned step length parameters� are
0.36, 0,21 and 0.17 for RW,AR andAR I-based designs, respectively. For
15 dB,� = 0.27, 0.13 and 0.127, respectively.

B. Mismatched Designs

The performance of incorrectly tuned algorithms has also
been computed from Lemma 1 and are presented in Table II.
From Table I and Table II, we can draw the following conclu-
sions.

• If the Doppler frequency is uncertain, modeling
seems to be the best choice when is overestimated.
When is underestimated, models appear to per-
form slightly better. (Bold numbers in Table II.)

• The use of a higher order AR hypermodel results in con-
siderably better tracking performance than the use of a RW
model, even if is severely mismatched in the latter case
(Table I, Table II).

In Fig. 5, the tracking algorithms were matched to a max-
imum Doppler frequency of 140 Hz ( 0.035) and an SNR
of 15 dB. These results indicate that the hypermodel is a
superior choice if weunderestimatethe SNR andoverestimate
the Doppler frequency.

The bottom line of the evaluation so far can be formulated
as follows:If an uncertain estimate of is available and low
computational complexity is required, then use a WLMS algo-
rithm based on a nominal hypermodel.Select the design
value at the high end of the uncertainty interval of and
the design value of the SNR at the lower limit of its uncertainty
range. Such a design should provide good performance for all
Doppler frequencies from zero up to .

The robust averaged design proposed in Section IV-C has
been investigated on IS-136 channels in [24], based on aver-
aged hypermodels. It turned out to give a further reduction
of the averaged tracking MSE, as compared to designing for the
maximal .
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TABLE II
AS IN TABLE I BUT FOR HYPERMODELSMATCHED TO THE FADING STATISTICS FOR ANINCORRECTDOPPLERFREQUENCY. THE MINIMAL VALUES OF

EACH COLUMN ARE EMPHASIZED

(a) (b)

(c) (d)

Fig. 5. MSE performancetrP as a function off for different choices of WLMS algorithmsmatched to 140 Hz and 15 dB. The algorithms are based on IRW
(dashed),AR (dotted),AR I (dash-dotted) andAR (solid) hypermodels. Compare to a fully matchedAR design (bulleted). The lower left-hand plot expands
the upper left-hand diagram.

C. Optimal Channel Prediction

Optimized channel predictors can be designed using either
Kalman trackers or WLMS algorithms5 . Fig. 6 illustrates the
MSE performance obtained by using prediction (circles)
instead of just extrapolating the current estimate into the fu-
ture (crosses). The improvement is large and it increases with
the prediction length. Naturally, the gain will increase with an
increasing vehicle speed and a decreasing noise level. Similar,
but somewhat smaller improvements were obtained when using

and hypermodels.
The use of this type of linear prediction can also be of interest

e.g., for fast power control in CDMA systems. Long-range pre-
diction is of interest for resource scheduling and adaptive mod-
ulation [4], [5].

5The use of e.g an LMS filter estimate and a separate predictor for this time
series [2] is a suboptimal alternative.

VII. SIMULATION STUDY

We shall investigate the bit error rate performance of adap-
tive decision-directed Viterbi receivers, as described by Fig. 7.
The channel estimator utilizes estimated symbols as regressors
in decision-directed mode. It provides predicted channel taps,
which are used in the metric computation of the Viterbi algo-
rithm.

For adaptive detectors working in decision directed mode, the
tracking is required to be accurate and robust against erroneous
regressors, which will occur in particular around fading dips,
where is small.

A. Specifications

We focus on a setup suitable for the IS-6 standard [20], with
the following conditions.
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(a) (b)

(c) (d)

Fig. 6. Relative MSE increasetrP =trP , of k-step channel prediction of Rayleigh fading channel taps, compared to one-step prediction, as a function ofk.
The most recent channel estimate used ask-step predictor (crosses) is compared to the use of an optimalk-step predictor (circles), forAR -based WLMS tracking
algorithms.

Fig. 7. Adaptive equalization based on decision directed channel estimation.
In learning-directed mode, the adaptation is based on training data. At time
instantt = N + 1, the adaptation is switched into decision-directed mode
and decisioned symbols�u are used as regressor variables.

• Slot structure:As in the forward link of IS-136 with
162 differential QPSK-modulated symbols, in-

cluding 14 leading training symbols.6

• Channel properties: A two tap Rayleigh fading
symbol-spaced baseband channel model with inde-
pendently fading taps7 is simulated

(22)

with diagonal and 1. The taps
are generated according to [7], using 12 offset oscil-

lators with uniformly distributed (0 2 ) phases. Hence,
the level crossing statistics is close to that of a classical
Rayleigh fading environment. All estimators are initial-
ized from least squares estimates of the channel taps in

6A known CDVCC sequence of six differential symbols is placed after 85
symbols of the slot. It is here not used to improve the tracking performance,
since this would complicate the performance evaluation.

7The more realistic case of correlated taps would result in higher bit error
rates due to partial loss of diversity, but will otherwise not provide any new
fundamental problems for the tracking.

the form of robustified linear trends, based on the initial
training sequence8 . We also study the flat fading case.

• Disturbance properties:The scenario is interference-lim-
ited with burst-synchronized interferers propagating via
the same type of fading channel as the signal. In the sim-
ulations, the interference was also symbol-synchronized.
The color of the interference is not estimated. (In a noise-
limited scenario with Gaussian noise, the BER perfor-
mance improves.)

• Idealized simulation conditions:To isolate the tracking
properties, we have compared decision directed adaptation
to the use of correct symbols as regressors. To quantify
the loss of performance due to imperfect initialization, we
also compare to initialization with known channel taps.

B. BER Performance at 90 km/h

WLMS tracking algorithms based on random walk (LMS),
and fading models are now evaluated in combina-

tion with a Viterbi algorithm at 0.04, or 160 Hz
(speed 90 km/h).

We use a recursively updated Viterbi detector [8], [11], [21]
which needs to process its input over a few samples before a re-
liable symbol decision can be reached. A decision delay of three
steps here provides the best performance. Due to an additional

8Since the slope of a linear trend will be more uncertain than its average level,
we initialize the model as

ŷ =(h + (t� 8)�h )u(t) + (h + (t� 8)�h )u(t� 1);

t =2 . . . 15

where� = SIR=22 for 0< SIR < 22 dB, with SIR being the signal-to-in-
terference ratio estimated from the model residuals during the training phase.
Here,h andh are estimated jointly by off-line least squares. The robusti-
fication parameter� de-emphasizes uncertain slope estimates at low SIR’s.
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(a) (b)

(c) (d)

Fig. 8. Real and imaginary parts of tap 1 and tap 2, showing true trajectories and estimates by anAR I-designed WLMS algorithm atSIR = 20 dB. In the
upper left figure, dots at the zero level symbolize correct decisions while dots at level 0.9 indicate decision errors.

unavoidable delay in the regressor feedback loop, channel pre-
diction 4 steps ahead is then required. For LMS, a decision
delay of two steps provided the best performance.

Fig. 8 illustrates a rather typical tracking and bit error perfor-
mance obtained at 20 dB with -based tracking. The esti-
mates are initialized as linear trends. Everything goes well until
the fading dip occurs at sample130, leading to several deci-
sion errors. When these errors are fed back as regressors to the
tracker, they disturb the tracking in the interval 130–150. The
system recovers after symbol no. 150.

More conclusions can be drawn from statistics on the BER
when the correct and signal-to-interference ratios (SIR’s)
are used in the design. Table III, supported by Fig. 9, presents the
uncoded bit error rate for two-tap channels. Table IV illustrates
the flat fading case.

The performance indicator from (21) in Table III and
Table IV provides adequate predictions of how much the BER
plot for cases based on known regressors is shifted to the right,
relative to the curve for a known channel.

Comparing the dotted to the lower dash-dotted curve in Fig. 9
we see that not much performance is lost due to imperfect ini-
tialization. (If the algorithms were initialized with levels instead
of linear trends, the performance would deteriorate further by
1–2 dB.)

Decision-directed adaptation results in a performance loss
due to nonlinear feedback effects caused by decision errors in
the regressors. It is approximately 3dB for WLMS based on

and models in Fig. 9.
In Table III and Fig. 9, WLMS based on models

show the best performance, but the performance of -based
trackers is rather close. LMS tracking will in this case be

Fig. 9. The Bit error rate as a function of the signal-to-interference ratio for
the adaptive Viterbi equalizer. The BER with correct channel (lower solid) is
compared to WLMS tracking withAR I modeling with trueu as regressors
(lower dash-dotted) and estimated regressors (upper dash-dotted) and to
WLMS tracking withAR modeling with trueu as regressors (lower dashed)
and estimated regressors (upper dashed). Compare to LMS with optimized
step length and trueu as regressors (middle solid) and with estimated
regressors (upper solid). Also shown isAR I tracking using trueu and
correct initialization (dotted).

completely inadequate, partly due to its inappropriate structure
and not least due to its inability to predict the channels; With a
random walk model, . This results in a significant
lag error, which will not vanish at low disturbance levels.
Hence, the error floor at 1.7% BER. (Error floors also exist for
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TABLE III
ADAPTIVE EQUALIZATION OF THE CHANNEL (22) AT 
 = 0.04 WITH

E jh j = E jh j = 1. 10 000 SLOTS PER SIMULATION CASE. IN THE

LOWER PART OF THE SYMBOLS ARE USED IN ' IN THE CHANNEL

ESTIMATORS. THE RIGHT-HAND COLUMNS SHOW OPTIMAL ADAPTATION

GAINS � AND RELATIVE TRACKING NOISE LEVELS (21) WITH PREDICTION

HORIZON k = 4 (k = 3 FOR LMS)

TABLE IV
FLAT FADING AT 
 = 0.04,E jh j = 1; E jh j = 0. 10 000 SLOTS

ARE CONSIDERED FOREACH SIMULATION CASE. IN ROW 4 TO 6, A TRUE

SYMBOL IS USED ASREGRESSOR. THE RELATIVE NOISE LEVEL (V) IS

OBTAINED WITH k = 1

the and -based designs, but they are far below the
BER levels investigated in Fig. 9.)

To test our conclusions from Section VI-B, we have designed
and -based WLMS algorithms for 160 Hz and

15 dB and evaluated their performance at other oper-
ating points. The results, presented in Fig. 10, confirm that one
single fixed adaptive filter, designed at the high end of the uncer-
tainty interval of the Doppler frequency and the low end of the
SIR range can indeed be used over the whole parameter range.
If the operating area is considered to be bounded by
15,25 dB and 0 160 Hz, this filter does in fact consti-
tute a minimax robust design, since the so-called saddle-point
condition [9] is fulfilled: The resulting performance attains its
worst value at the nominal (worst-case) design point. In the most
critical regions, with low SIR and/or high Doppler frequency,
the performance for an -based design is about the same as
for an -based design.

In the flat fading case, with 0, not much can be gained
by improving the tracking. An exception is at high SNR, where

(a) (b)

Fig. 10. The BER as function of the SIR at 160 Hz (left figure) and as a
function of the Doppler frequency at 14.8 dB SIR (right figure) for an adaptive
Viterbi detector with k=4 step prediction. Performance ofAR I-based
(dash-dotted) andAR -based (dashed) WLMS channel estimators,designed
for SIR = 15 dB andf = 160 Hz.Compare to the performance of
AR -based WLMS designed for the true SIR andf (dotted) and to the
performance for a known channel (solid).

for true regressors a significantly lower BER is attained for
or -based designs than for LMS. This can be predicted by
the values of from (21) in the right-hand part of Table IV.
For flat fading channels, all the algorithms provide about the
same performance. The detector becomes trivially simple, so no
channel prediction beyond 1 is required.

One can note an oddity in the results in Table IV: The BER
is in several caseslower when a decisioned symbol is used as
regressor, , as compared to using the correct symbol

. This effect is peculiar toflat fading channels on
which differential detectionand adaptive decision-directed re-
ceivers withhigh gain are used. As verified by simulation, a
single error in a differential symbol normally results in two
consecutive bit errors with correct channel estimates. In this
case, the large estimation error resulting from an incorrect
regressor often causes the real part of to start tracking the
imaginary part of and to track , if the
adaptation gain is high. This flip in the model tends to pre-
vent the second bit error in the pair from occurring and thus to
reduce the BER. The effect is strongest for LMS, which has the
highest adaptation gain.

VIII. C ONCLUSIONS

In the IS-136 system, LMS adaptation is competitive only in
the flat fading case. The WLMS algorithm provides efficient
tracking also for two-tap channels. Our results indicate that a
single tracking filter designed by underestimating the SIR and
overestimating the Doppler speed could offer adequate perfor-
mance over the entire range of operating conditions. Based on
Fig. 10, we conclude that the and designs provide
equal performance in the worst cases, with high disturbance
levels and/or fast fading. Due to its simple design, see Theorem
2 in [14], WLMS based on modeling becomes the pre-
ferred choice, as long as the parameters have zero mean.
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The class of WLMS tracking algorithms provides a versa-
tile tool for estimating fast fading channels. Their MSE per-
formance can in the considered case be evaluated theoretically,
which reduces the amount of simulation needed in the design of
adaptive equalizers.

It should be noted, though, that the predicted steady-state
MSE performance neglects initial transient effects. In practice,
care must be taken in the initialization of the estimates, so
that transient effects do not dominate the actual tracking
performance over short data bursts.

It would be of value if tools could also be developed which
model and predict the performance loss due to decision errors
for adaptive receivers working in decision-directed mode. From
simulations, our experience is that the gainthat minimizes the
bit error rate is somewhat higher than the gain that minimizes
the MSE tracking performance for known regressors. Another
possible generalization is to take information about the regressor
uncertainty into account in the tracking design, as suggested in
[16].

We have here evaluated the tracking algorithm without uti-
lizing antenna diversity. High-performance channel trackers are,
of course, of interest also in conjunction with multi-antenna re-
ceivers.
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