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Tracking of Time-Varying Mobile Radio
Channels—Part Il: A Case Study

Lars Lindbom, Anders AhlérSenior Member, IEEBMikael SternagdSenior Member, IEEEand Magnus Falkenstrém

Abstract—ow-complexity WLMS adaptation algorithms, of The Wiener LMS (WLMS) algorithm, which has constant
use for channel estimation, have been derived in a companion gain but can efficiently utilize the fading statistics, was pre-
paper. They are here evaluated on the fast fading radio channels sented in Part | of this paper [14]. It enables a systematic and

encountered in 1S-136 TDMA systems, with the aim of clarifying . - ; .
several issues: How much can channel estimation performance structured design of high-performance adaptation laws with

be improved with these tools, as compared to LMS adaptation? LMS computational complexity. An early design related to
When can an improved tracking MSE be expected to result this class of algorithms [10] has been successfully applied to

in a meaningful reduction of the bit error rate? Will optimal  tracking problems in 1S-136 TDMA systems [1], [8], [19].
prediction of future channel estimates significantly improve the We will here investigate the application of WLMS algorithms

eqgualization? Can one single tracker with fixed gain be used for . . . . ..
aﬁ%ngou'mered Doppler lfrgquencies ;ﬂd S',in,Sg O'r muslt'l a more 10 the estimation of such fading channels. With large variations

elaborate scheme be adopted? These questions are here investiln the fading rate, a key issue is the selection of appropriate sta-
gated both analytically and by simulation. An exact analytical tistical fading modelsiiypermodels Several design approaches

expression for the tracking MSE on two-tap FIR channels is can be conceived, some of which are listed below in decreasing
presented and utilized. With this tool, the MSE performance and order of complexity.

robustness of WLMS algorithms based on different statistical ) )
models can be investigated. A simulation study then compares 1) An autoregressive model for fading channel taps may
the uncoded bit error rate of detectors, where channel trackers be adjusted on line. This estimator can be implemented
are used in decision directed mode in conjunction with Viterbi jointly with a WLMS algorithm or a Kalman tracker [25].

algorithms. A Viterbi detector combined with WLMS, based on 2) Some fading models, in particular Jakes’ model [7],

second order autoregressive fading models possibly combined o

with integration, provides good performance and robustness at a are specme_d by 6_‘ few parameters, such as the speed
reasonable complexity. of the mobile, which may be estimated separately. A
set of WLMS algorithms can be pre-designed within a
grid of these and other parameters. The parameters are
estimated on line and the appropriately tuned algorithm
is selected. Thigrid approach[6] is sometimes called

|. INTRODUCTION gain scheduling.

N 1S-136 digital mobile TDMA systems, a relatively low 3) A single robustly designed algorithm might provide ad-
I symbol rate and long data slots (6.67 ms) cause severe €quate performance over a wide range of Doppler shifts
fading. In such 1900-MHz systems, one or two fading dips can  and disturbance levels. .
be expected within each data slot. Furthermore, large variationé\t Present, we consider alternative 1 to be far too complex
in fading rates and frequency selectivity are encountered, ¥ Possibly nonrobust. The grid approach seems reasonable
well designed channel estimators are crucial for obtaining addld nas in [6] been found to work well. The use of a single fixed
guate performance. Estimates obtained from training sequen.@ggpt'\’e algorithm may at first sight seem over-optlmlst|c, but
(synchronization words) cannot be used within the wholgﬂ.Jrns out to be fea3|ble._The pre_sent paper will explore Prop-
slot and interpolation of channel estimates between trainiﬁat'es of the WLMS algorlthm which are relev_ant when using
sequences [15] here provides inadequate performance. £ her a grid approach or a single robustly designed tracker.

. g . ! The channel model will be outlined in Section Il and in Sec-
same is true for decision-directed LMS and RLS adaptation. f | 11, the WLMS algorithm is summarized. Section IV de-
Kalman filter with time-varying gain [3] would provide optimal

; but it : i date of the adaot tscribes the choice of hypermodel structure. It then discusses the
performance, but it requires an on-iiné update ot the adaplaliofy syment of autoregressive models to the fading statistics gen-

gain in every sample. This solution has so far been deemed [QQ:q py isotropic scattering, for known as well as for uncertain

complex. Doppler frequencies.
Analytical expressions for the steady state mean square param-
eter tracking error are presented in Section V. In this case study,
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The bit error rate performance is finally evaluated by simwtable autoregressive models of ordey, with equal dynamics
lation in Section VI, for adaptive Viterbi detectors working infor all channel taps
decision-directed mode. A peculiar nonlinear effect that appears
when estimating flat fading channels is here discovered and dis7,, — Ie,
cussed. D(g=)

1
S l4dig7t 4+ dupge

ICt . (6)

The notationh, is introduced to indicate that (6) will not be
a perfect description oh,. Here,¢~! denotes the backward
A sampled symbol-spaced baseband radio channel is @bift operator ¢y, = y,—1) ande, is a white zero mean

Il. THE CHANNEL MODEL

scribed by the time-varying linear regression random vector sequence with covariance maRix For sym-
metric fading spectra, the scalar coefficieqits} can be as-
hot sumed real-valued.
yr = (Up . Ut pra1) : +u =i +ve (1) The model (6) should approximate the essential behavior of

the time variability, in our case described by the autocorrela-
tion function (3). When (6)R., R andg, are given, Theorem
wherey,, here assumed to be a scalas the received signal 1 of [14] directly provides an optimized WLMS-algorithm for
at discrete time. The complex-valued fading/-tap channel tracking the parameter vectds in (1)

is represented b¥,. In 1S-136 systems, it is reasonable to as-

har—1e

sumeM = 1 (flat fading) orM = 2. The symbolgw, } are as- et =Yt — Y11 (7)
sumed to have zero mean and constant modulus. The regressor hy :}}tlt_l + uR e, (8)
vector ¢} is defined as the complex conjugate transpose of a ) On(g) - -

column vectory, that appears in the adaptation algorithms. Itis P ZWI hy. 9)

assumed stationary with a known nonsingular autocorrelation

m2atrixR = E¢pt. The noisev; has zero mean and varianceere, i, , ;; denotes an estimate bf.;, at discrete time and

To- ) . . ) h, = ﬁm. The scalar gain is a step size parameter and (9)
The fading properties of the channel coefficients will deper]g’ the coefficient smoothing-prediction estimator. An alterna-
on the maximum Doppler frequency tive equivalent implementation can be expressed in terms of the
learning filter £ (¢~ 1) [14]:

27,
v rad/s

wp =27 fp = -
Jt =Rbhy_1 + ey
wherew, denotes the speed of the mobile ahnds the carrier R = Qe Yo,
wavelength, which in the following is assumed to be 16 cm hosipe =Li(q ) fe = WR fr. (10)
(~1900 MHz). For the purpose of our channel estimator de-
sign demonstrations, we mainly assume Jakes’ fading motédiere
[7]. Whenw, is constant, the channel coefficients will then be ) ) ) )
stationary, circular Gaussian processes with zero means and co- Bl ") =Dl ") +q Qula )

variance function The polynomialg?;(¢~!) depend on the selected hypermodel

3) (6) and are calculated via Theorem 1 in [14] to minimize the

w(0) = Ehhi_, = Ry Jo(Qpl) £=0,+1,...
r(6) it nJo(€2p6) mean square parameter error

which yields the classical fading spectrum . . - ;
E|ht-|-k|t|2 = t7’(Eht+k|th{+k|t)é tr(Py) (11)

—2_R;, |Q<Q
$(Q) = VI [0 < €2 . (4) where
0 |Q| > QD _ .
. . ht+k|t = hyyn — ht+k|t-
Here,R;, = Eh;h;, while Jo(-) denotes the Bessel function of
the first kind and zero order and
IV. DYNAMIC FADING MODELS

Q=uwT; Qp =wpT. 5 . .
Wi D = en ©) A. Autoregressive/Integrating Models
The symbol time!l” will be set to 41.15:s as in IS-136. An exact representation of the fading statistics (3)—(4) would
require the use of an autoregressive fading model (6) of infinite
[ll. THE CHANNEL ESTIMATOR order. We will here use and compare the following special cases

We shall use the WLMS-algorithm presented in Part | of th@f 6). ) . .
paper [14] to track and predict the chanhgl To describeh,, 1) RW, Random walk modeling)(¢~") = 1—¢~*, results

we shall use simplified fading models in the form of marginally i @n LMS algorithm. Itis a common first choice when no
prior information is availabke
IThe tracking and equalization algorithms are applicable also to vector sig-
nals, which appear in multiple antenna systems and when sampling faster thafHowever, in such cases we would rather advocate the use of filtered random
the symbol rate. See [12] for a design example. walk modeling, see below, withh € [0.9-0.999.
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2) FRW (Filtered random walk): can be based directly on a known or estimated covariance func-
tion. We can adjusb(q—*) by considering row of (12). Intro-

_ _ _ duce the set of covariances
D) =(1—-qgH(1l—ag ),

with |a| < 1, is a useful model in many situations. The (76,2 ERj I, YN,
special case of an integrated random waRW , a =
1), will be appropriate if the short term behavior is welivhereh; ; denotes element (tag)of ~; and where/; are inte-

approximated by linear trends. gers such that & /; < --- < £y. Multiplying row j of (12)
3) AR (Autoregressive second order model): by 2 ,_,. and taking the expectation gives the equations
D(g7t) =1—2pcoswoq "+ p*q 2. Fo, +diFe 14+ dn,Tl—np =0 i=1,2...,N. (13)

Here, p and w, determine the degree of damping angh the particular case of, = i and N = np, we obtain the
the dominating frequency, respectively. For Jakes fadingle-Walker equations. HoweveN might very well be chosen
models (3), areasonable bandwidth is obtained wite=" muych larger tham p and the time-lagé; can be distributed over
Q9%,/v/2 wheref23, is a nominal or estimated Doppler fre-g large interval.
quency. The covariances; can be replaced by data-based estimates.
4) AR,I (Autoregressive and integrating model): The resulting polynomiab(z~1) could then have roots outside
the unit circle and should in that case be adjusted so that all roots

Die-1) = (1 —2 QY 1 5 1_ o1 are in|z| < 1. Estimation of7; based on data, as suggested in
(™) = (1—2pcos /2! +ri )1 —q7). [25], will require an initial training period of considerable length

and will give reliable estimates only at high SNR’s.
This model is useful when some parameters are oscil-We therefore prefer to use theoretical expressions for the co-
lating while others are slowly varying or constant. Theariances, parametrized by the maximum Doppler frequency.
integrating term (1- ¢~!) will guarantee an unbiasedWhen adjusting the AR model to the fading model (3), we re-
estimate of constant parameters wins nonsingular, place,. _,, in (13) by Jo(Q2p(¢; — w)) and solve the pos-
see [14, eq (42)]. ThelR,I model is also of use for sibly over-determined system of equations by the least squares
long-range prediction of oscillations around a nonzenmmethod.
mean, which occurs in Rician fading; without an inte- In Fig. 1, the Bessel function in (3) fé6tp, = 0.02 (45 km/h)
grating model factor, prediction estimates would in thdag compared to thet R5 covariance function adjusted wiffi =
case be biased toward zero. 6, for £y = 61 and/y = 251. Clearly, including higher-lag
5) AR, ,, autoregressive models of ordes = 3 or higher, covariancesin (13) yields a better agreement between the Bessel
are appropriate when important properties of the covafiinction and the AR model for large lags.
ance function of the time-variation are difficult to match The correlation between taps, modeledRy in (3) andR..
with a few parameters. Their adjustment is described in (6), can be estimated from data. With well synchronized
Section IV-B. IS-136 receivers, the tap correlation will be small.
Design based on RW modeling results in an LMS algorithm,
while FRW orAR; modeling leads to a simplified Wiener LMS ¢ Robust Design of Adaptation Laws
algorithm, which is simple to design and to readjust on-line, see . . -
Section IV of [14]. WithAR»I or AR,,, models, readjustment ' the Doppler frequency, is uncertain, one could mini-

of the algorithm (at most once per slot) will require the numef?'Z€ the WOFSt-C?.SG eﬁe_ct of this uncertainty by perfo_rmlng a
ical solution of a polynomial spectral factorization of ordey. minimax robust filter design [9], [18]. A less conservative and

When usingd R, and AR, I models, we need to select the papften much less computationally demanding, alternative is to re-

rameters23, andp. In this case study, the pole radinss fairly 92/d€p as arandom variable. The MSE tracking performance
easy to select. For maximum normalized Doppler frequenciiSulting from the outcomes o, is averaged and we minimize
of interest hereQ?;, < 0.1, the valuep = 0.999— 0.1, is by th!S average [23], [26]. As is shown in [24] a_nd [11, Sect. 3.5],
our experience reasonable for Jakes’ model. TE¥njs set to this problem can be solved by specirallyeraging over the hy-

), which can be estimated on line reasonably well using eith@frmodel{6). Such averaging has also been used in [17, Sect.

the assumed correlation Bessel function (3) of the fading pattdMfl: A Doppler spectrum averaged with respect to an uncer-
[11], or level crossing rates. tain parameteflp is given by

™

B. Adjusting AR Model Parameters to Fading Covariance S D B () = Q.0 Q1) dQ 14
Statistics n(2) én () Hn(2,Qp)p(2p) dQ2p  (14)

The adjustment of (6)

—_—T

whereg, (£, Qp ) represents the spectrum of the channel coeffi-
- - - cients ang(2 ) denotes the probability density function of the
he +dihe—1 4+ +dnyhten, =c (12) normalized maximum Doppler frequenfy,. When assuming
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Fig. 1. Adjusting third-order AR hypermodels to the Bessel functiofrig. 2. Autocovariance functiory, (€) = Jo(€2pf) with Qp = 0.02 (solid)
Jo(Qp0), atQp = 0.02 (45 km/h), (solid) according to (13) at six evenly and the averaged covariance function (15), with € U[0.01 0.03] (dotted)
spaced points, for the maximum l&g = 61 (dotted) and'y = 251 (dashed). and{lp € U[0.015 0.025] (dashed).

Jakes model and (3), the covariance function correspondingsieqd

(14) is
SNR2 1010 ”’3E|h ) (20)
/ - .= g — t
OE / rn(O)p(Qp)dQp o2
—r _
= [ RuJo(QpO)p(Qip)dQp (15) Proof: Obtained from [13] for constant modulus regres-
- sors (with kurtosis 1), by observing thatV¥ = tr(Ry,)[

An averaged AR hypermodel can now be adjusted ugifg) andE|h:|? = trRy,.
instead ofr;,(¢). A robust tracking algorithm can then be de- Lemma 1 holds exactly fak4 < 3, but is a good approxima-
signed using this model. tion also for higher order FIR channels.

In Fig. 2, the averaged covariance function (15) is displayedAbove, (M — 1)X; < 1 is a condition for convergence in
for a uniformly distributed probability density functigf€2p) MSE. This condition will always be fulfilled for flat fading
with different uncertainty regions. A wider uncertainty regiochannels. Note also that the tei@. vanishes fork = 1. All
will increase the damping of the averaged covariance functigereconditions for Lemma 1 are fulfilled in the I1S-136 TDMA
yielding a spectrum with a less pronounced peak. system: The symbolsg; are uncorrelated due to the interleaving

Deviations from Jakes’ model can be regarded as unstramd are circular with constant modulus. The delay spread is not
tured uncertainty, which can be incorporated in an averaged farger than one symbol interval, so channel models with/ <

bust design, see [11], [23], [26]. 2 are appropriate. The term represents mainly co-channel in-
terference and thermal noise. It can be assumed zero mean and
V. PERFORMANCEANALYSIS independent of both.. and’. for all 7.

Based ortwo-tapchannel models (1) and on a known fadin?é For filters and smoothers (7)—(9) designed to minimize (11)

model such as Jakes’ model (3), we can obtain an exact exp %ged on perfect models, the error will vanish with a vanishing

sion for the steady state tracking MS&P;.. The expression NOISE variance. ) ) , .
is valid for arbitrarily fast fading and for all algorithms with For _predmtors, the tra_(:klr_1g_ error (17) .W'” not va_msh evenin
WLMS structure. Introduce the learning filter gain the n0|se_-free case and it will increase Wlth the fading rate. Itde-
creases if more accurate AR-approximations of the true fading
Q1(e"?) spectrumy,, are used in the WLMS design.
W It is of interest to know to what extent improved linear
regression modeling of the parameter dynamics can improve
Lemma 1: Consider the channel model (1), witf < 3.As-  the end result for which it is intended. Filtering or detec-
sumeh;, ¢; andv; to be mutually independent and stationaryjon performance is essentially determined by the ambient
Let the fading channel coefficient vector have specttiiff2) SNR. With Lemma 1, the variance of the “tracking noise”
and coyanange matri¥h.h; = Ry. The zero mean noise ﬁ‘igl Bi,t|t—kut7i1 caused by nonperfect tracking, can be
has variance;. Let the zero mean symbois be uncorrelated cajculated and compared to the variance of the nojsés a

in time, with constant modulus and variangg(R = oI). As-  rough but useful performance indicator, we define the relative
sume(M —-1)¥; < 1.Ifan estimator foh,; with the structure gise level

(20) or (7)—(9) is used, then the steady-state mean square esti-

2

! dx. (16)

:% -

Xk

: o / 2trPy + o2
mation error (11) is given by v 2 10log <70“ ! ’;Jr a") (dB) (22)
P, = L E MIOTT N 4 (M = DG g 17) b
TR = I—(M-1%,; i where the numerator describes the variangg ing; |, due
to the tracking error plus noise, #f, « andv are mutually un-
where . . .
correlated. We can use the increase of the noise level to predict
1™ | A7) — % Qu () | trey the performance deterioration in e.g., an equalizer
Iy =— o T dy (18)
21 ) /3(6 ) trRp, 3A similar investigation is performed for Kalman trackers and decision feed-

Gy =I'12, — Xy (19) back equalizers in [22].
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Fig. 3. Optimized tracking erraE||%. 41 ¢]|2 = t+P; (lower part) and relative tracking noise leviél (dB) (upper part) in Section VI for WLMS algorithms
based on RW modeling (dashed-dotted), IRW (dashe®) (circles) andA R, (solid). All AR models are matched to the true normalized Doppler frequ@ngy

TABLE |
THE ATTAINABLE TRACKING ERROR?r Py OBTAINED BY LEMMA 1 FOR WLMS ALGORITHMS BASED ON DIFFERENT HYPERMODELSMATCHED TO THE
TRUE DOPPLERFREQUENCY. FOR FRW, @ = 0.98. @WMPARE TOFIG. 3

Qp 0.01 0.02 0.04 0.06
SNR 15dB 25dB 15dB 25dB 15dB 25dB 15dB 25dB
RW 0.0159 0.0040 0.0271 0.0075 0.0485 0.0160 0.0711 0.0269

FRW 0.0101 0.0019 0.0161 0.0030 0.0292 0.0058 0.0447 0.0096
IRW 0.0086 0.0014 0.0159 0.0028 0.0312 0.0059 0.0484 0.0101
AR, 0.0067 0.0011 0.0117 0.0021 0.0218 0.0042 0.0329 0.0067
AR, 0.0057 0.0009 0.0108 0.0016 0.0203 0.0034 0.0329 0.0055
ARs; 0.0050 0.0008 0.0092 0.0014 0.0175 0.0030 0.0264 0.0048

AR, 0.0047 0.0006 0.0082 0.0012 0.0165 0.0026 0.0245 0.0042

WhenV is above 3 dB, the tracking noise dominates ovek. MSE Performance: The Ideal Case

the output noise. It is then worthwhile to consider a supe- |/ ihe lower half of Fig. 3, the mean square sum of tap predic-

rior adaptation law based on, for example, a higher order hyp%—n errorst+ P, has been calculated by Lemma 1, usiagrom
model. IfV is below 1 dB, then the noise dominates, so even a 4) and#rR,, = 2. We investigate WLMS algo’rithms based

Fotal elimination of the tracking errors Wo.uld result in margin adjusted hypermodels of various structures, with optimized

improvements of the performance of a filter or detector basa&ins“’ for SNR of 15-25 dB. The corresponding numerical re-

on the estimated model. sults are presented in Table |. While the attainable performance

improves with the complexity of the hypermodel, the use of in-
V1. MSE PERFORMANCE creasingly complex models gives diminishing returns.

We will here investigate the performance of the tracking al- The top diagrams in Fig. 3 display the relative tracking noise
gorithm theoretically, by using Lemma 1 for two-tap Rayleigkevel (21), under the assumptio] = 1, E|h¢|? = E|hi|? =1
fading channels with taps of equal variance and regressors vathdS N R = 10log(2/o2). For LMS tracking (WLMS based on
constant modulus and variance 1. random walks), the tracking error is in many of the considered
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Fig. 4. Learning filter magnitudd€), (¢?*)/3(e?)| (left) and phases (right) for optimally tuned WLMS algorithms based on RW (dash-detfég)dashed)
and AR, T (solid) fading models a& , = 0.04 (fp, = 160 Hz), forSNR = 25 dB andSN R = 15 dB, respectively.

cases so large that it dominates ove(V" > 3 dB in the upper B. Mismatched Designs

diagrams of Fig. 3). The tracking performance can be improvedrpe performance of incorrectly tuned algorithms has also
significantly by simply extending LMS (RW hypermodeling),een computed from Lemma 1 and are presented in Table II.

with an integrator, i.e., _by using an 'RW hypermodel. If we USErom Table | and Table II, we can draw the following conclu-
an AR, model, we obtain a better tracking MSE fop, = 0.06

(~ 140 km/h) than can be obtained by using the RW model with
Qp = 0.02 (~ 45 km/h). In terms of the effect of the noise level
on the tracking MSE, more than 10 dB can be gained at both
Qp =0.02 and?p = 0.06 by using am R, model instead of

a random walk model (bottom diagrams).

The properties of different adaptation algorithms can also be
understood by comparing their learning filters (10). See Fig. 4, e : .
which compares RW (LMS)AR, and AR, designs afp, = model, even if2s, is severely mismatched in the latter case
0.044 The bandwidth of the learning filter approacties — (T_able |, Table “.)' .

0.04 as the SNR decreases but, as can be seen in Fig. 4, jt & F19- 5. the tracking algorithms were matched to a max-
significantly higher for moderate and high SNR’s. The reasdfum Doppler frequency Of. 140 H£2p = 0.035) and an S,NR

is that the lag error will, to a large extent, be determined tf 1° dB- These results indicate that e, hypermodel is a
the phase lag introduced by the learning filter in frequency réuPerior choice if wainderestimatéhe SNR andverestimate
gions whereh, has significant energy. When the noise level i€ Doppler frequency. _

low, a Wiener design can give priority to suppressing lag errorsThe bottom line of the evaluation so far can be formulated

by attaining low phase shifts at these frequencies (at or bel8 follows:If an uncertain estimate a2 is available and low
Qp = 0.04), at the price of widening the bandwidth of thé:_omputatlonal complexity is required, then use a WLMS algo-

learning filter. When the SNR decreases, noise rejection is givaiim b%\sed on a nominal %, I hypermodelSelect the design
higher priority. value(2}, at the high end of the uncertainty interval@}, and
Note that the RW/LMS learning filter has the highest gain dhe design value of the SNR at the lower limit of its uncertainty

high frequencies. This makes this estimator most sensitive/@'9€- Such a design should provide good performance for all
noise. Doppler frequencies from zero up &),.

The robust averaged design proposed in Section IV-C has
been investigated on 1S-136 channels in [24], based on aver-

. . o . _ :
L gggijlf”ido2%00082f)zfdgffzged”é)”t‘;%attggéz g;‘ég’}et:ﬁﬁqpar)ar;el;me agedA Rz hypermodels. Itturned out to give a further reduction
0.36, 0,21 and 0.17 for RWAR, and AR, I-based designs, respectively. ForOf the averaged traCk'ng MSE, as compared to deS|gn|ng forthe

15 dB,; = 0.27, 0.13 and 0.127, respectively. maximal29,.

« Ifthe Doppler frequenc§p, is uncertain A R> 1 modeling
seems to be the best choice whep is overestimated.
WhenQp, is underestimated4d Rs models appear to per-
form slightly better. (Bold numbers in Table II.)

e The use of a higher order AR hypermodel results in con-
siderably better tracking performance than the use of a RW
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TABLE I
AS IN TABLE | BUT FOR HYPERMODELSMATCHED TO THE FADING STATISTICS FOR AN INCORRECTDOPPLERFREQUENCY. THE MINIMAL VALUES OF
EACH COLUMN ARE EMPHASIZED

AR,,, matched to Qp =0.02 AR, matched to Qp =0.04
Qp 0.01 0.04 0.01 0.02
SNR 15dB 25dB 15dB 25dB 15dB 25dB 15dB  25dB
ARy 0.0122 0.0021 0.0279 0.0053 0.0257 0.0049 0.0231 0.0044
AR, 0.0085 0.0013 0.0287 0.0045 0.0129 0.0022 0.0154 0.0025
AR; 00100 0.0015 0.0260 0.0042 0.0193 0.0033 0.0199 0.0034
AR; 0.0085 0.0013 0.0285 0.0042 0.0185 0.0029 0.0182 0.0029

0.1 - 0.03 Vi
SNR = 15 dB , ) SNR =20 dB h
0.08 . 0.025 :
0.02
0.06
0.015
0.04
0.01
0.02| - 0.005
0 0
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(b)
0.05 5 0.025 .
SNR = 15 dB / SNR =25 dB !
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0.03 0.015
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Fig. 5. MSE performance-P, as a function off, for different choices of WLMS algorithmsatched to 140 Hz and 15 dBhe algorithms are based on IRW
(dashed)A R, (dotted),AR,I (dash-dotted) and R (solid) hypermodels. Compare to a fully match&&; design (bulleted). The lower left-hand plot expands
the upper left-hand diagram.

C. Optimal Channel Prediction VII. SIMULATION STUDY

Optimized channel predictors can be designed using eithete shall investigate the bit error rate performance of adap-
Kalman trackers or WLMS algorithris Fig. 6 illustrates the tive decision-directed Viterbi receivers, as described by Fig. 7.
MSE performance obtained by usialyis prediction (circles) The channel estimator utilizes estimated symbols as regressors
instead of just extrapolating the current estimate into the fin decision-directed mode. It provides predicted channel taps,
ture (crosses). The improvement is large and it increases withich are used in the metric computation of the Viterbi algo-
the prediction length. Naturally, the gain will increase with arithm.
increasing vehicle speed and a decreasing noise level. SimilaiFor adaptive detectors working in decision directed mode, the
but somewhat smaller improvements were obtained when ustrgcking is required to be accurate and robust against erroneous
AR>I and AR hypermodels. regressors, which will occur in particular around fading dips,

The use of this type of linear prediction can also be of intereghere|h,| is small.

e.g., for fast power control in CDMA systems. Long-range pre-
diction is of interest for resource scheduling and adaptive mod-
ulation [4], [5]- A. Specifications

5fl'he use ofe.g an_LMS filter es_timate and a separate predictor for this tinﬁwe fOCl.JS ona S.e.tuD suitable for the IS-6 standard [ZO]’ with

series [2] is a suboptimal alternative. the following conditions.
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Fig. 6. Relative MSE increaseP, /trP., of k-step channel prediction of Rayleigh fading channel taps, compared to one-step prediction, as a fuction of
The most recent channel estimate usek-agep predictor (crosses) is compared to the use of an optisiap predictor (circles), fot R;-based WLMS tracking
algorithms.

the form of robustified linear trends, based on the initial

Viterbi (@)l - ,
detector tS Nent1 training sequencée We also study the flat fading case.
R  Disturbance propertiesThe scenario is interference-lim-
{y:}1 — | | Ptk ited with burst-synchronized interferers propagating via
Adaptation of N the same type of fading channel as the signal. In the sim-
parameters o— {u}y'* ulations, the interference was also symbol-synchronized.

The color of the interference is not estimated. (In a noise-
limited scenario with Gaussian noise, the BER perfor-
Fig. 7. Adaptive equalization based on decision directed channel estimation. ~ mance improves.)
In learning-directed mode, the adaptation is based on training data. At time o |dealized simulation conditionsfo isolate the tracking
instantt = N,,. + 1, the adaptation is switched into decision-directed mode . h d decision di dad .
and decisioned symbotls, are used as regressor variables. properties, we have compared decision directed a ap;atlon
to the use of correct symbols as regressors. To quantify
the loss of performance due to imperfect initialization, we
also compare to initialization with known channel taps.

(Channel parameters)

* Slot structure:As in the forward link of 1S-136 with
N = 162 differential QPSK-modulated symbols, in-

cluding Ny, = 14 leading training symbofks. B. BER Performance at 90 km/h

» Channel properties: A two tap Rayleigh fading . .
symbol-spaced baseband channel model with inde-WLMS tracking algorithms based on random walk (LMS),

pendently fading tapsis simulated ARQ a_ndAR_QI fa_ding models are now evaluated in combina-
tion with a Viterbi algorithm at2p, = 0.04, orfp = 160 Hz
Y = hour +hajue 1 +v 5 R=1 (22) (speed 90 km/h). - .

We use a recursively updated Viterbi detector [8], [11], [21]
with R, diagonal and®|ho ¢|? = F|h1.|? = 1. The taps which needs to process its input over a few samples before a re-
h; + are generated according to [7], using 12 offset oscilable symbol decision can be reached. A decision delay of three
lators with uniformly distributed[Q, 2r]) phases. Hence, steps here provides the best performance. Due to an additional

the level crossing statistics is close to that of a classical_. . . . .
. . . . e Since the slope of a linear trend will be more uncertain than its average level,
Rayleigh fading environment. All estimators are initialye initialize the model as
ized from least squares estimates of the channel taps in
O =(ho e + (t = 8)ahg )u(t) + (hi,e + (t — 8)ahy )ult — 1);
6A known CDVCC sequence of six differential symbols is placed after 85  ; —9 15
symbols of the slot. It is here not used to improve the tracking performance,
since this would complicate the performance evaluation. wherea = STR/22for 0< SIR < 22 dB, with SIR being the signal-to-in-
"The more realistic case of correlated taps would result in higher bit er@rference ratio estimated from the model residuals during the training phase.
rates due to partial loss of diversity, but will otherwise not provide any neiere,k; , andh; ., are estimated jointly by off-line least squares. The robusti-
fundamental problems for the tracking. fication parametetnx de-emphasizes uncertain slope estimates at low SIR’s.
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Fig. 8. Real and imaginary parts of tap 1 and tap 2, showing true trajectories and estimated Byadesigned WLMS algorithm a¥ /R = 20 dB. In the
upper left figure, dots at the zero level symbolize correct decisions while dots at level 0.9 indicate decision errors.

unavoidable delay in the regressor feedback loop, channel p . TWO TAPS OF EQUAL MAGNITUDE, 160Hz FADING

diction & = 4 steps ahead is then required. For LMS, a decisic
delay of two steps provided the best performance.

Fig. 8 illustrates a rather typical tracking and bit error perfoi
mance obtained at 20 dB with R, /-based tracking. The esti- N
mates are initialized as linear trends. Everything goes wellun  1g2 "~
the fading dip occurs at sampie 130, leading to several deci-
sion errors. When these errors are fed back as regressors ta
tracker, they disturb the tracking in the interval 130-150. TrH
system recovers after symbol no. 150.

More conclusions can be drawn from statistics on the BE 10~
when the correcfl, and signal-to-interference ratios (SIR’S)
are used in the design. Table lll, supported by Fig. 9, presents
uncoded bit error rate for two-tap channels. Table IV illustrate
the flat fading case.

LMS

AR2

‘| AR2i

. X 1 N
The performance indicato¥ from (21) in Table Il and 0 . . —
. - 15 20 25 30
Table IV provides adequate predictions of how much the BE SIR, dB
plot for cases based on known regressors is shifted to the right,
relative to the curve for a known channel. Fig. 9. The Bit error rate as a function of the signal-to-interference ratio for

. .. the adaptive Viterbi equalizer. The BER with correct channel (lower solid) is
Comparing the dotted to the lower dash-dotted curve in Flgc mpared to WLMS tracking withi R. I modeling with trueu; as regressors

we see that not much performance is lost due to imperfect ifibwer dash-dotted) and estimated regressors (upper dash-dotted) and to
tialization. (If the algorithms were initialized with levels insteadVLMS tracking withA R, modeling with truex, as regressors (lower dashed)
£ i trends. th f Id deteri te furth and estimated regressors (upper dashed). Compare to LMS with optimized
of linear trenas, the performance wou eteriorate turther tgéép length and true:; as regressors (middle solid) and with estimated
1-2 dB.) regressors (upper solid). Also shown i8R [ tracking using trueu, and
Decision-directed adaptation results in a performance |g&¥rect initialization (dotted).
due to nonlinear feedback effects caused by decision errors in
the regressors. It is approximately 3dB for WLMS based arompletely inadequate, partly due to its inappropriate structure
AR, andAR,I models in Fig. 9. and not least due to its inability to predict the channels; With a
In Table Il and Fig. 9, WLMS based onR,I models random walk modely;: = h4.. This results in a significant
show the best performance, but the performancdagf-based lag error, which will not vanish at low disturbance levels.
trackers is rather close. LMS tracking will in this case belence, the error floor at 1.7% BER. (Error floors also exist for
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TABLE Il » WLMS-AR2I, AR2: ~ WLMS-AR2I, AR2:
ADAPTIVE EQUALIZATION OF THE CHANNEL (22) AT 2p = 0.04 WTH 10 10
E\ho.|? = Elh1,|* = 1. 10000 $OTS PER SMULATION CASE. IN THE L
LOWER PART OF THE SYMBOLS ARE USED IN ¢} IN THE CHANNEL S RPRPReE
ESTIMATORS. THE RIGHT-HAND COLUMNS SHOW OPTIMAL ADAPTATION AN L = RS
GAINS g AND RELATIVE TRACKING NOISE LEVELS (21) WITH PREDICTION 102 ’\.\\ """ v
HORIZONk = 4 (k = 3 FORLMS) ' f»i_\\
E B _\..\\ S10 2
BER (%) pand V @ . ]
SIR (dB): 15 20 25 15 20 25 107°
DECISIONED REGRESSORS: Iy
LMS 3.3 41 19 31 31 36 160Hz FADING 14.8dB SIR
WLMS AR2 40 92 .17 |.14 .18 .21 1074 107
5 20 25 50 100 150
WLMS AR2I 40 & 12 113 15 .17 SIGNAL-TO-INTERFERENCE. dB  DOPPLER FREQUENCY. Hz
TRUE REGRESSORS: V (dB): (@) b)
LMS 28 11 62 |58 9.0 131
WLMS AR2 15 .30 .054|31 43 58 Fig. 10. The BER as function of the SIR at 160 Hz (left figure) and as a
WLMS AR2I 15 28 044|209 37 48 function of the Doppler frequency at 14.8 dB SIR (right figure) for an adaptive
K h | 058 09 010! o 0 0 Viterbi detector with k=4 step prediction. Performance éf?,I-based
nown channe : : : (dash-dotted) andiR,-based (dashed) WLMS channel estimataissigned

for STR = 15 dB andfp = 160 Hz.Compare to the performance of
ARs-based WLMS designed for the true SIR afig (dotted) and to the

performance for a known channel (solid).
TABLE IV

FLAT FADING AT Qp = 0.04,E |hg +|* = 1, E |h. +|> = 0. 10000 §0TS
ARE CONSIDERED FOREACH SIMULATION CASE. IN Row 4 TO 6, A TRUE

SYMBOL IS USED ASREGRESSOR THE RELATIVE NOISELEVEL (V) IS for true regressors a significantly lower BER is attained4dt,

OBTAINED WITH k = 1 or AR, I-based designs than for LMS. This can be predicted by
the values oftV from (21) in the right-hand part of Table IV.
BER (%) | pwandV For flat fading channels, all the algorithms provide about the
SNR (dB): 15 20 25 |15 25 same performance. The detector becomes trivially simple, so no
DECISIONED REGRESSORS: w channel prediction beyond = 1 is required.
LMs 28 1.00 36| .39 .73 One can note an oddity in the results in Table IV: The BER
WLMS AR2 27 095 .32|.17 .25 is in several casdewer when a decisioned symbol is used as
WLMS AR2I 27 096 .33 (.14 .19 regressory; = hyity, as compared to using the correct symbol
TRUE REGRESSORS: V (dB): i = fztut. This effect is peculiar tdlat fading channels on
LMS 31 124 52|15 32 which differential detectiorand adaptive decision-directed re-
WLMS AR2 32 112 37|07 12 ceivers withhigh gainare used. As verified by simulation, a
WLMS AR2I 25 088 31|06 1.0 single error in a differential symbol normally results in two
Known channel 21 060 23| 0 o consecutive bit errors with correct channel estimates. In this

case, the large estimation errarresulting from an incorrect
regressor often causes the real parkf to start tracking the

the AR, and AR,I-based designs, but they are far below thinaginary part ofag,, and Im(ho,.) to track Re(ho,), if the
BER levels investigated in Fig. 9.) adaptation gain is high. This flip in the model tends to pre-

To test our conclusions from Section VI-B, we have design&§nt the second bit error in the pair from occurring and thus to
AR, andAR,I-based WLMS algorithms fofp = 160 Hz and rgduce the BER.. The (_affect is strongest for LMS, which has the
SIR = 15 dB and evaluated their performance at other opdtighest adaptation gain.
ating points. The results, presented in Fig. 10, confirm that one
single fixed adaptive filter, designed at the high end of the uncer-
tainty interval of the Doppler frequency and the low end of the
SIR range can indeed be used over the whole parameter rangén the 1S-136 system, LMS adaptation is competitive only in
If the operating area is considered to be boundedbj® = the flat fading case. The WLMS algorithm provides efficient
[15,29 dB and fp = [0, 16Q Hz, this filter does in fact consti- tracking also for two-tap channels. Our results indicate that a
tute a minimax robust design, since the so-called saddle-pasirigle tracking filter designed by underestimating the SIR and
condition [9] is fulfilled: The resulting performance attains it®verestimating the Doppler speed could offer adequate perfor-
worst value at the nominal (worst-case) design point. In the mestince over the entire range of operating conditions. Based on
critical regions, with low SIR and/or high Doppler frequencyFig. 10, we conclude that théR, and AR,I designs provide
the performance for ad R»/-based design is about the same asqual performance in the worst cases, with high disturbance
for an AR»-based design. levels and/or fast fading. Due to its simple design, see Theorem

In the flat fading case, with; ; = 0, not much can be gained2 in [14], WLMS based ond R; modeling becomes the pre-
by improving the tracking. An exception is at high SNR, wherterred choice, as long as the parameters have zero mean.

VIIl. CONCLUSIONS
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The class of WLMS tracking algorithms provides a versa-{15] N. Lo, D. Falconer, and A. Sheikh, “Adaptive equalization and diversity
tile tool for estimating fast fading channels. Their MSE per- combining for mobile radio using interpolated channel estimatE&€E

f in th id d b luated th tical Trans. Veh. Technglvol. 40, pp. 636-645, 1991.
ormance can in the considered case be evaluaie eoretica HG] A. Morgul and D. Dzung, “Decision directed channel parameter estima-

which reduces the amount of simulation needed in the design of ~ tion and tracking using erroneous detecto8ignal Processingol. 25,
adaptive equalizers. pp. 307-318, 1991.

. 7] J.Lin,J. G. Proakis, F. Ling, and H. Lev-Ari, “Optimal channel tracking
It should be noted, though, that the predicted Steady'Stal% of time-varying channels: A frequency domain approach for known

MSE performance neglects initial transient effects. In practice,  and new algorithms,IEEE Trans. Select. Areas Commuvol. 13, pp.
care must be taken in the initialization of the estimates, so  141-154, 1995.

that transient effects do not dominate the actual tracking® J: G- Martin and M. Mintz, *Robust filtering and prediction for linear
systems with uncertain dynamics: A game-theoretic approdeitE

performance over short data bursts. Trans. Automat. Contrvol. AC-28, pp. 888-896, 1983.
It would be of value if tools could also be developed which[19] K. J. Molnar and G. E. Bottomley, “Adaptive array processing MLSE

; il receivers for TDMA digital cellular PCS communicationtfEE J. Se-
model and predict the performance loss due to decision errors lect. Areas Communvol. 16, pp. 13401351, 1998,

for adaptive receivers working in decision-directed mode. Fronkg) “pcs 1S136-Based Air-Interface Compatibility 1900 MHz Standard,
simulations, our experience is that the gaithat minimizes the Part | and I,”, SP 3388-1, SP 3388-2, J-STD-011.

bit error rate is somewhat higher than the gain that minimize&1] W- H. Sheen and G. L. Stiiber, "MLSE equalization and decoding
for multipath fading channels,/EEE Trans. Communvol. 39, pp.

the MSE tracking performance for known regressors. Another 1455 1464 1991.
possible generalization is to take information about the regress@@2] M. Stojanovic, J. G. Proakis, and J. A. Catipovic, “Analysis of the impact
uncertainty into account in the tracking design, as suggested in of channel estimation errors on the performance of a decision-feedback
[16] equalizer in fading multipath channel$EE Trans. Communvol. 43,
. . ) . ] pp. 877-886, 1995.
We have here evaluated the tracking algorithm without uti{23] M. Sternad and A. Ahlén, “Robust filtering and feedforward control

lizing antenna diversity. High-performance channel trackers are, based on probabilistic descriptions of model errofstomatica vol.

. ; . . . . ~ 29, pp. 661-679, 1993.
of course, of interest also in conjunction with multi-antenna re [24] M. Sternad, L. Lindbom, and A. Ahlén, “Robust Wiener design of adap-
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