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Tracking of Time-Varying Mobile Radio
Channels—Part |I: The Wiener
LMS Algorithm

Lars Lindbom, Mikael Sternadsenior Member, IEEEand Anders AhlénSenior Member, IEEE

Abstract—Adaptation algorithms with constant gains are by standard LMS and RLS algorithms (see, for example, [45]
designed for tracking smoothly time-varying parameters of linear  gnd [10])1
regression models, in particular channel models occurring in mo- A key insight is that prior information about the nature of

bile radio communications. In a companion paper, an application .. . . . . - .
to channel tracking in the 1S-136 TDMA system is discussed. The time-variations has to be utilized if an adaptation law is to sig-

proposed algorithms are based on two key concepts. First, the hificantly outperform RLS and LMS. Do the parameters change
design is transformed into a Wiener filtering problem. Second, erratically or smoothly, is their behavior oscillatory, or do they
the parameters are modeled as correlated ARIMA processes with rather drift as linear trends? Such information should be used in
known dynamics. This leads to a new framework for systematic an efficient way.

and optimal design of simple adaptation laws based on prior in- . . .
formation. The algorithms can be realized as Wiener filters, called Models of the dynamics of time-varying parameters have be-

Learning Filters, or as “LMS/Newton” updates complemented Come known asiypermodelsWhile used earlier in time series

by filters that provide predictions or smoothing estimates. The modeling [15], [22], their use in the design of adaptive algo-
simplest algorithm, named the Wiener LMS, is presented here. rithms for regression models has been discussed by Benveniste
All parameters are here assumed governed by the same dynamics o, ¢4.\orkers [4], [5]. This work, as well as many others, was
and the covariance matrix of the regressors is assumed known.f d th slowlv ti ina d . v E
The computational complexity is of the same order of magnitude ocused on cases with slowly time-varying dynamics only. For
as that of LMS for regressors which are either white or have Such cases, the powerful tools of weak convergence theory and

autoregressive statistics. The tracking performance is, however, various methods of averaging can be used for both analysis and

substantially improved. design [25], [32]. However, these tools are not applicable to fast
Index Terms—Adaptive estimation, channel modeling, least time variations. Our aim here is to systematically integrate prior
mean squares method. information into the design of algorithms which can also handle

fast parameter variations.
The time-varying Kalman filter constitutes the MSE-optimal
linear algorithm for estimating regression parameters based on
E here propose a novel way of extending and optimizinghear models of their behavior, [3], [34], and it can be used
the structure of LMS-like adaptation laws. These resulfer channel tracking [8], [17], [40]. Unfortunately, its compu-
were originally motivated by the difficult problem of accuratelytational complexity may often preclude its use. In this paper, we
tracking rapidly time-varying channel parameters in the IS-138opose an alternative approach, which avoids the online Riccati
TDMA cellular system. A design related to the proposed algopdate required in ordinary Kalman adaptation laws and poten-
rithm [27] has successfully been used on 1S-136 channels [2ti§l numerical problems of fast Kalman implementations.
[35], and a case study on this particular application can be foundWe shall focus on the class of adaptation laws with constant
in Part 11 [31]. gains of much lower complexity. Their design can be formulated
Motivated also by other applications such as multicarrier sy8s & Wiener problem by a transformation of variables, explained
tems, multi-antenna systems [12], [35], and multiuser detectdpsSection Ill-A. Minimization of the mean square tracking error
[42], a framework has been developed for designing low-corfflen becomes rather straightforward, using, for example, a poly-

plexity adaptation laws. These algorithms track coefficients 8PMial approach to Wiener filter design [1], [2]. A family of
linear regression models under assumptions which are re3fiaptation laws has been obtained [28], [29], with several prac-

istic in communications applications. Our aim is to improvically useful features.

upon the sometimes inadequate tracking performance offered® The complexity of the algorithm is directly coupled to the
choice of hypermodel. The user will in this way be able to

make systematic tradeoffs between complexity and model
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 Estimators providing predictions or smoothing estimatdsasis functions are a possible choice, but they often result in
can be obtained by optimizing the adaptation law for theoise-sensitive estimates [36], [37]. In the telecommunication
desired estimation horizon. area, the available information about the nature of time varia-
Channel parameter predictions are of use in decision-directézhs is in general statistical as in, for example, different types of
adaptive detectors [6] and in fast transmitter power contrahodels for fading channels. We will therefore use a stochastic
Smoothing improves the tracking performance and should Bpproach. The parameter vectgrwill be modeled by a sto-
used whenever the corresponding time delay is acceptable. chastic process, with known statistical properties.
Within this class of algorithms our paper focuses on the A large variety of parameter dynamics can be described by
variant of lowest complexity: The Wiener LMS algorithmlinear time-invariant stochastic hypermodels
(WLMS). It has close to LMS complexity for regressors with h o= Hig L
: o o> r=H(g Ve @)
white or autoregressive statistics, but offers a significant per-
formance improvement as compared to LMS. The traditionahereX is a stable or marginally stable transfer function matrix
LMS algorithm can be regarded as a special case, obtaineddddimensionn,, | n;, ande, is a white noise vector. The model
white regressors when assuming the time-varying parametegpresents either prior information about time variations or de-

to be random walks. sign assumptions.
Remarks on the NotationEor any polynomial Special cases of (4) with a simpler structure are often ade-
1 - . quate. A useful specialization is wh#f(¢~*) is diagonal, with
Plg ) =potpg  + +pupq " (1) equal elements along the diagonal:
. . 1/ —1. - -1
in the ba.ckv.vard shift qperatqr (qé a:*t Z:t_l), aco?ju%ate he = Hig—)e, = C(q,l)I o 5)
polynomial is then defined aB.(q) = p§+pig+---+p; .¢"" D(g—1)

whereq is the forward shift operatafys; = w.11) andp™ de-  our WLMS design will be based on this vector-ARIMA model.
notes the complex conjugate pf The argumentg ! or g are  \when (5) is further specialized to

often omitted where there is no risk of misunderstanding. When 1 1

po = 1, the polynomial is calleanonic Time-varying coef- hy = Dlo-1 Ie = P Ie, (6)
ficients of filters or polynomials (1) are denotedgs orp;,. (‘? ) T+ 24

Rational matrices, or transfer function matricR¢;—*) are de- With d, andd, being real-valued, we have introduced a model
fined stable if all elements have all poles|ir) < 1, and are forwhich explicit solutions to the design equations are available

marginally stable with poles ifx| < 1. (see Section V).
If the channel parametefs have nonzero mean, it is appro-
II. THE TRACKING PROBLEM priate to letD(z 1) have a zero in = 1. Unbiased estimates

of iy are then obtained (see (42) below). One special case is the
random walk mode{d; = —1,d» = 0) on which many adapta-
A sequence of measurement vectfys} of dimensiome, |1 tion schemes are indirectly based [18], [32], [40]. Another spe-

A. Linear Regressions and Hypermodels

is assumed available at the discrete time instari®),1,2,... cial case
and to be generated by a linear regression 1
N ht = htfl =+ ﬁICt (7)
Yr = iy + vy 2 T %2

where v; respresents noise and all terms may be corfp-obtained by settingjl': —(1+d2)in(6). This quel is com-
plex-valued. The known regression matrix sequepgg}, of monly referred_ to as filtered random walland, W'thc.b =1
dimensionn,, |, is defined as the Hermitian conjugate of & (7): We obtainntegratedrandom walk hypermodeling. Inte-
correspondingy, | , matrix ;. It is known up to time and is grated random walks, used, e.qg., in [22], model the elements of

assumed stationary with zero mean and nonsingular covariafi¢éS NOISy linear trends. .
matrix If no prior information is available about the dynamicshgf

then (7), withds chosen in the interval [0.90—0.999], will often
R2 Egpf. (3) beareasonable and robust first choice of hypermodel. It allows
for a certain degree of smoothness in the parameter evolution,
Our aim is to estimate the time-varying parameter colummhich is not the case with a random walk mode} = 0). If
vectorhy = [hoyt ... ha, —1.4])7 . We cannot, without further as- some knowledge is available, the “design” paramétecan be
sumptions, determine the sequence of paramétetsiquely used to match the smoothnessigf
from a sequence of measuremegis = ¢ih1 + v1, Y2 = In the estimation of communication channels, two complica-
w3ha + va,... even in the noise-free case,7if, < n;,. We tions are encountered: models of time variability and fading will
would have unknowné, /1o ... with more elements than thenot be exactly known. Furthermore, estimated transmitted sym-
available measurements, %- . ... To avoid this dilemma, as- bols, which act as regressors as illustrated in the example below,
sumptions must be introduced on the relationship between paay include decision errors and are thus not known completely.
rametersh, andh., for v £ ¢. These issues are discussed further in Part Il [31]. We there also
Over a time interval of interest, the elements/gfcould discuss the adjustment of (5) to fading statistics described by
be assumed to evolve as linear combinations of determinisiizkes model, in particular robust adjustment in situations when
basis functions, see, e.qg., [7], [26], [36], and [37]. Polynomighe Doppler frequency of mobile users is not exactly known.
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Example 1: A Fading Multi-Input-Multi-Output Mobile hy = Bm_l + pprey (12)
Radio Channel [29]: Consider a TDMA-based mobile cellular ilt+1 = hy (13)
communication system with several transmitters on the same . .
frequency in the same cell and in the same time slot. TMéere h; denotes the filtering estimatg,|;, hiy1): IS the
situation could either represent channel reuse within cells Bype-step prediction estimatg, is the scalar adaptation gain,
several mobile users [42] or one transmitter which uses multif@de; is the prediction error.
antennas to increase the data rate [12]. Receivers with multiplel) The update direction in (12) is modified R—¢;s;, as
diversity branches detect the users simultaneously. With two  in the LMS/Newton law [46}
transmitters and two received signals obtained at different2) Equation (13) must be modified by filterirg to obtain

positions and/or differing polarizations, a suitable model is the prediction and smoothing estimates for arbitrary lags
L 11/ -1 12/ —1 1 1 k (see (16) belowj.When the parameter dynamics differs
v\ = (B la) Bra) Y (v (8) from a random walk, the filter estimate will not be an
2 | =\ B2Yq™Y) B2(qY) 02 w2 ! : '
Yi ¢ ¢ t ¢ optimal predictor.
wherey is the baseband signal at anterintlere The modified algorithm is then described by
BIa™) = 4 W™ By o == gl 19
7 he = hye1 + PR e, (15)

represents ai -tap multipath fading channel from transmitter . N
j to antenna. The signals:] are the (possibly pulse-shaped) hirie = Prla " )he (16)
symbols from transmittef and have known and time-invariantwhere P (¢~ !) is a causal and stable rational matrix, which
statistics. The transmitted symbols are either known, during theay provide prediction or smoothing estimates for any horizon
training phase, or estimated by a multiuser detector which, i We shall refer tdP,.(¢~!) as thecoefficient smoothing-pre-

turn, is based on the channel estimates. With diction filter. The appropriate tuning dP(¢~!) will depend
e /1 1 2% 2 9 on the dynamics ok, and on the SNR. Note that the one-step
o= (o w ) 9= (W u ) prediction estimaté, 1|, = P1(¢~*)h: must always be made
and by collecting the unknown channel parameters in vect@¥éailable, sincé;|,_, is required in (14) and (15).
b = (bé’,; b;ff .. b?@[—l,t)T’ a linear regression model (2) is Inthe WI__MS algqrithm discu_ssed inthi_s pe_lpEﬁ,(q—l) will
obtained by stacking all vectobéj  as be constrained to dlagonz?\l rational matrix Wlth equal _stable_
u and causal transfer fu_nctlons along the dlagonal. With a diag-
) o bb ) onalP; (¢ 1), the required number of computations grows only
<yt ) _ <<Pt Py 0 0 ) by + <Ut ) linearly with the number of parameteig, whenR is diagonal.
i 0 0 ¢ & byt v For nondiagonaR, the productR 'y, can be updated with
by? a computational complexity proportional tg,, for scalar FIR
=y ht + vy (9)  models with autoregressive inputs [11].
0 To summarize, the time-varying parametggsn
hy = H(g e,
B. The WLMS Adaptation Structure Yt =i+ v 17

Assuming the system to be described by (2)~(4), paramelgp, 1 pe estimated by minimizing the criterion (10) within
tra_cklng becomes_a signal estimation problem, viffhin (4)  the class of tracking algorithms represented by (14)—(16)
being sought. Define the tracking error vector with Py (¢~ !) being diagonal, assuming?, R, H(g 1), and

= A A R. = Fesel to be known.
P = hoqr — Pogn) © o

whereh, 1|, is an estimate of.,,, at timet representing fil- lIl. WIENER LMS DESIGN
tering (k = 0), prediction(k > 0), or fixed lag smoothing A time-invariant filter, operating on a fictitious measurement
(k < 0). We will measure tracking performance by signal, will be shown to be equivalent to the adaptation law

(14)—(16). The optimization of the adaptation law will then be

Py = lim tr Bheyihiy, solved by an open-loop linear Wiener design, which gives sev-

nu—1 . eral advantages. It provides a systematic design technique, a
= lim Z E|Ritr — Pisin ol (10) numerically safe implementation, and an opportunity for using
‘ i=0 tools and design intuition from Wiener filtering.

where the ex.pclef:tatlon '? taken with respeattn (4) andv; in 20f course, this presupposes tHat ! is known, or is estimated separately.
(2) after the initial transients. If R is unknown, its invers® —' can be estimated online, with well-known
The class of adaptation algorithms within which we her@gethods [17], at the price of an increase in complexity to a level similar to that

S . . f RLS. SinceR ! is assumed constant or perhaps slowly time-varying, a long
chose to minimize (10), corresponds to introducing two moaéta window can be used for estimating it even whewaries quickly.

ifications in the LMS algorithm 3The use of one-stegoefficient prediction filtersor this purpose has been
. proposed by Kubin in [23], [24] and equivalent filter structures were introduced
et =Y — Py |1 (12) in[7] by Clark.
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Pt Ut is obtained by insertinge; from (22) in (12) and (13). The
stability requirement on this LMS learning filter corresponds to
hy R L fi the condition for convergence in the mean square [17]
~ 0O<p < (26)
Zt htlt_l )\max

wherel .« is the largest eigenvalue &. This is readily shown
through an eigenvalue decompositionifin (25).

¥ Three factors influence the tracking performance fidn
Y > €t = > ft (24) and (21). The scaled and rotated paramdds, repre-
f senting the useful signal, the noiggv;, and old tracking errors,
M via the feedback noisg;h,|,_; cf. (20).
j\ R iL The estimation error follows from (21) and (24) as
tt—1 . 4 _ _
X i hosr e = ("1 — Li(g YRRy — Li(g e (27)

Fig. 1. Two equivalent representations of the fictitious measurenfignt The first term of (27) is fok: = O usually referrt_ad toasthag .
The lower diagram constructg, via (22) from available signals when error. It could be eliminated completely by using the learning

R = E[p.p7] is known. filter £o(g~!) = R~1, but this would amplify the noise; by
R~L. The aim of our design will be to obtain an MSE-optimal
A. The Fictitious Measurements balance between the lag error and the influence of the gradient
Consider the signal prediction error (14) and insert (2) d8°iS€7:, by minimizing (10). o
scribingy; to obtain _If the |nnovat|qns sequence of the noigeis uncorrelgted
. with hy_;);—;—1,% > 0, then an open-loop Wiener design of
et = @i (he — hyjp—1) + vt L. in (24) can be performed. If it is uncorrelated with_;, an
orer = <pt<pfiit 1+ 1 (18) open-loop design is further simplified. These conditions are not

B always fulfilled but hold approximately under many practically
By adding and subtractinBh.,|,_, and defining important circumstances, since the multiplicationyyin (20)
acts as a scrambler.

Zy= ‘Pt‘f: -R (19) In the following filter designy, is assumed white and its un-
M = Zthy|i—1 + pev (20)  correlatedness with,_; andh,_;|;_;_, will be stated as an
fi =Rhy + 1, (21) assumption, under whick;(¢—!) will be optimized by just

) treatingr, in (27) as an additive noise with known properties.
the vector (18) is now reformulated as

rer = Ry — Rflt|t_1 i s + e C. Optw_nal Fl|t(-3I’ Design o _ _
N The diagonality constraintimposed h.(¢~1) in the imple-

=fe = Rhy i (22) mentation of (14)—(16) will correspond to a related constraint on
Here, f, can be regarded as a fictitious measurement, Rith  the structure of the learning filter. The so-constrained learning
andn, in (21) being the signal and the noise, respectively. It cd#er will now be optimized for parameter variations described
be constructed from known signals as depicted in the lower & (5)- The main reason for imposing the constraint (5) on the
agram of Fig. 1. In the sequel, the noise teW{landZtiit|t_1 hypermodgl is that thls_leads tmmglespalar design equation.
will be referred to as thgradient noiseand thefeedback noise ~ The design assumptions are formalized below. _
respectively. The matrixz;, of dimensionny, | ns, has zero  Assumption Al The signal, is described by (2), wheig is
mean by definition. This matrix was introduced by Gardndime-invariant, known, and nonsingular. The second-order mo-
[13] and was referred to as taetocorrelation matrix noise ~ ments off; are described by

Clg )
. — By — q I
B. Tracking Regarded as Filtering t = D(g~1) Ct
Based on the relations (19)—(22), we can design a time-in- Clg™h)
variant stable rational matri€,(¢—!) that operates orf, and = Ds(qfl)Du(qfl)Iet (28)

rovides an estimate @f; . . . .
P B with known and monic polynomials, with zeros6f~~1) and

fi = R/Amt,l +@er = Rhy + 14 (23) of D,(271)in|z| < 1, and zeros oD,,(»7*) on|z| = 1. The
ot = Lola=1V . 24) Vectore; is white and stationary, with zero mean and known
it =Le(q ) fe (24) R, = Feye! -

The filter £1.(¢*) will be referred to as théearning filter. If Assumption A2:The learning filter (24) of dimensiom;, | n;,
(14)—(16) is the preferred implementation, a corresponding gaénconstrained to have the structure
p and a stable filteP (¢~ 1) can be readily calculated. . Qr(g™Y) o,

For the LMS algorithm, the learning filter Li(g™) = WR (29)

LilgH=I-T-pR)¢g ) (25) with the polynomial3(z—1) having all zeros inz| < 1. O
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Assumption A3:The gradient noise; is uncorrelated with exist several iterative Newton algorithms for spectral factoriza-
he—; andh;_;|,—;—1,% > 0. Itis stationary and white, with zero tion, see, e.g., [19] and [9].

mean and covariance matik,,. O Polynomial spectral factors in general appear in Wiener fil-
Assumption A4:The parameter-drift-to-noise ratio, defineders as part of the whitening filter, the inverse of the innova-
by tions model for the measurement vector [1], [2], which is ob-

A tained when all contributing signal sources are combined into

7 =2 iR, /iRy = ttR. /tr(RT'R,R ™) (30) one stochastic process. Equation (31) does not have this intu-
) o itive interpretation, since our problem iscanstrainedWiener
is nonzero, known and limite) <~ < o). _ L optimization problem. The polynomigl(g—1) could be inter-

In A2, the inverse of the regressor covariance matrix |§reted as the numerator of an innovations model fecalar
includeda priori in the constrained learning filter (29). Amongmeasuremeny, of a scalar signalC(q—1)/D(q~1))e,, where
other possible structural constraints, suchCas= Qx/SL0r  z has variancer R., disturbed by a scalar noisg with vari-

Ly, = Qi/BR7/2, the choice (29) is made for two reasonsance (R 1R, R ). The innovations model of, would then
First, the learning filter formulation (24) becomes equivalent tﬁ’ave/} as numerator polynomial. (WheR(z~1) has zeros on
the algorithm (15) only ifR~" is a right factor ofCx. Second, || — 1, we would have a generalized innovations model [41].)
it assures that the constrained algorithm can attain perfecgq, predictorsf > 0, the computational complexity of the

tracking, withLo = Rl—l, in the noise-free case. estimator (the degree 6f,.(¢~*) by (33)) is independent of the
Assuming the gradient noise to be white in A3 simplifies thgregiction horizon.
design equations. Equation (32) is a polynomial Diophantine equation. If

Assumptions A1-A4 need not be fulfilled exactly in practiceequated for equal powers gfand ¢!, it constitutes a linear
For example, due to time-varying disturbance environmengsystem of equations, with an equal number of unknowns
scattering geometrics, and vehicle speeds, the fading model gpg equations. It can always be solved with respect to the
the gradient noise will have slowly time-varying statistics. Aolynomial coefficients ot (¢ 1) and L. (q) [1], [2].5 This
design based on our stationarity assumptions will then still bggeration can be simplified, since a closed-form solution exists.
good approximation if these properties vary much more slowly Corollary 1: Consider the Diophantine equation (32). For

than the time constants of the tracking loop. one-step predictiok = 1, its solution is

Furthermore, the covariance mati, of 7, will in practice
depend on the actual choice of estimator. This means that the Q1(a™Y) =a(Blg™") = D(g™)) (34)
scalary has to be adjusted iteratively. We will return to this issue Li.(q) = 7B.(q) — Di(q). (35)
at the end of this section, after having discussed the optimal
design. For k = 0, the filtering solution is given by

Theorem 1: The WLMS Learning Filtetdnder Assumptions 1 1
Al1-A4, the optimal constrained learning filter (29) minimizing Qo(g™") =B(g") — D(¢H)= = Ll(q_l); (36)
(10) is unique. The polynomiad(g—*) is the stable and monic _
solution to the polynomial spec(tral ?actorization Lox(a) = 47" (B:(a) = D+()) = Que(a)- (37)

_ If a solution is known for somé, solutions for highek: can be

7Bps =CC + DD, (1) optained through the forward recursions

with » being a real-valued positive scalar. The unique solution ‘ -1y _ (o= — Di(a— 1Ok 38

to the scalar Diophantine equation Qrerle) = (Qk(q ) (e X )QO) (38)
Lit14(0) = qLax(q) + 754 (0) Qo (39)

whereas, for lowek, the solutions can be obtained through the
backward recursions

*vCC, = rQuf. + qDLy, (32)

provides polynomial®;(¢~!) and L. (¢) with degrees

B B B B L*k
nQr = max(n. — k,np — 1) Qr-1(q 1) =4q le(q 1) + D(q 1)7_? (40)
nLy. = max(n, +k,ng) — 1. (33) Li—1:(q) = ¢ (L) — L§FBu(a)) - (41)
The erroriit+k |+ is stationary with zero mean. O Above,Q% andLi* are the leading coefficients ¢f; () and
Proof: See Appendix A. L. (q), respectively. O
Learning filters determined by the design equations (31) and Proof: See Appendix B. O

(32) all have the same denominator polynomigd—*) for any Remark 1: Fork = 0, Q) = 1 — (1/r). Since both3(¢~1)

lag k. SinceB(q 1) is a stable spectral factor, the learning filandD(g 1) are monic, their leading coefficients cancel in (34)
ters are causal and stableThe spectral factorization can beso no positive powers of will appear inQ;(¢~!). Note also
solved by computing the roots of the right-hand side of (31) artldat the leading coefficients inside the parentheses in (38) and
forming 3(¢~!) from the factors with stable roots. There alsin (41) cancel. O

4By Assumption Al, the terms on the right-hand side of (31) cannot have5Since3(z~1) is stable, it has all zeros ir| < 1, s043.(z) has all zeros
common zeros ofe| = 1, sinceC'(z ') must have all zeros inside| = 1. in|z| > 1. SinceD(z~!) has zeros ifz| < 1, 3.(z) andzD(z~!) will be
Thus, the spectral factdt is stable fory > 0. coprime, so (32) will have a solution for any left-hand side.
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The filter in (27) determining the lag error fér= 0 will by Uz I i

29) be given b € h k|t

(29) be g y e D R Lot o ~t+ |
iw Ble™™) — Qo(e™™) btk -1 hypre
I-L,(c7)R= : I k L

(6 ) /3(6_7’“" q @
D(Cfiw)
(42) Fig. 2. A filter design problem. The vectdr,, is to be estimated from

7’/3(@_Zw) measurementsf,, such that the steady-state mean square tracking error
. . . El|hyyr+|? is minimized.
in the frequency domain, where the second equality follows
from (36). When elements of the parameter vedtoare time-

invariant, their estimates will be biased, unless the hypermodel

Pevs LEARNING FILTER

byt

contains an integrator, that is, whéh> 1) = D;(»~1)(1 — R %\ i Ly
z~1) for someD; (2~1). The lag error gain (42) will then vanish
atw = 0ore™™ = 1 sinceD(1) = 0. hy Z heji1 :
We now return to the implementation (14)—(16). (%) o) Py
Lemma 1: For a learning filter designed according to The- \T/

orem 1, the adaptive filter implementation (14)—(16) is equiva-

lent to filtering by (24). The optimal adaptation gain is

1
p=Q3=1-- (43)
where@) constitutes the leading coefficient of the polynomial
Qo(g™1), andr originates from (31). O
Proof: See Appendix B. O

Remark 2:1n (31),~ €]0,o0[= » €]1, cc[ which implies

thatx €]0,1[.6 The step length increases with an increased

wheny — oo, 7 — ~v. Thus,;, — 1 andg — C,Qy — C'in

(31) and (32), s, — R~!. Onthe other hand, a vanishing pa-

Fig. 3. The feedback loop via the feedback noigg:, . . affects the
variance of the fictitious measuremefit, and may cause dependence with
hyji—1.

Proof: See Appendix B. O
Summary of WLMS design Steps:
1) Calculate the spectral fact@rand the scalar via (31).
2) Lety = ¢(8 — D) andQo = 8 — D/r. Obtain other
required@;, from Corollary 1 or (32).
3) Use the realization (24), (29), or use (14)—(16) th=
(Qr/Qo)landp = Qg = 1 — (1/7).

rameter drift-to-noise ratio leads to a vanishing adaptation galf@W is this procedure to be applied in practice, when the prop-

Whenvy — 0, 3 — D andr — 1. Thus,;, — 0 and£y — 0.OJ

erties of the gradient noisg may be hard to know in advance?

In order to determine the coefficient smoothing-predictiofin OPvious approach is to iterate the design a few times [29,
filter corresponding taC;,(¢~*), we note that, by (16) and (24),sect. V]. A design may first be based on preliminary assump-

hogrye=Pr(g Db and hy = Lo(g™ ") fr.

The k-step estimate may thus be expressed by

hurky e = Lala ) fe = P(a HLola )z
Thus,Px(¢~!) will be obtained as the diagonal matrix

_ Qk((]_l)I

Qo(q™1)
with Qx(¢~!) andQo(g~!) obtained from Corollary 1.
One iteration of (16) requires,(nQx. + 1 + nG}g) multipli-

cations. The steps (14) and (15) requitg2n,, + 1) multipli-
cations withR diagonal anch? + 2n,n;, multiplications oth-

Pile™) = Lala™ )Ly (a ) (44)

erwise, in general. See, however [11] for an efficient realizati

of R™*¢, when the elements of,
with known statistics.

Since Pi(g ') must be stable if the implementation
(14)—(16) is to be usefulo(g~!) must have all its zeros in
|z| < 1. This property is not obvious from the Wiener result

of Theorem 1, but is verified below.
Lemma 2: The zeros of)y(z~1) are all located irjz| < 1
for any parameter-drift-to-noise ratip> 0. O

SHere,]a, b represents the interval with the boundaries excluded.

tions on the gradient noise levalR,;, e.g., by neglecting the
feedback noise and assuming = ¢,v;. A better estimate of

the actual gradient noise level can then be obtained. In some sit-
uations, exact analytical expressions for the tracking MSE can
be used, see the next subsection. In others, the gradient noise
must be investigated by simulation. We then comg&itefrom

(20) and calculate a modified tracking algorithm.

Since the bandwidth of the learning filter is controlled by one
scalar parametey, an alternative is to just use it as a scalar
tuning knob, to obtain a desired tradeoff between noise sensi-
tivity and tracking ability.

D. Stability

Under assumptions Al and A3, the variance of the estima-
tion errorh, |,_, is bounded whenever the learning filir =
P.L, is stable andD, h; andn, have fixed and bounded vari-

, Yhces. However, due to the feedback loop via (20), (21), and (24)
are autoregressive Processeg, Fig. 3, the feedback nois&; . |,_, will not be independent

of ﬁt_m_i_l when Z, # 0, even when there is noorrela-
tion. The loop could become unstable if the learning filter has
too high a gain, and this must be taken into account in any sta-
%ility analysis. For bounded regressors, the small gain theorem
[44] provides (conservative) sufficient conditions for stability.
Other, less conservative conditions are presented in [30].

In [30] and [28], three important scenarios are discussed in
which an exact stability and performance analysis can be per-
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formed when assuming, ¢,, ande, to be independent. These Fork = 0 andk = 1, we obtain from (45)
results are summarized below.

1) “Slowly” Varying Parameters (Vanishing Feedback Qolg ) = m(l+pg ") (47)
Noise): We then have a true open-loop situation. When the Qg H=n <_—dl _ d2q1> ) (48)
power of the noise; which drives the parametels becomes 1+da(l—p)
small relative to the power of;v;, then the impact of the For smoothingk < 0), the polynomials;(¢~) are deter-
feedback noiseZ; /i, |;—, on our obtained tracking MSE van-mined from the recursions (40) and (41), usifg(q—') and
ishes. This situation occurs either when the paramétevary 1 () = Q,,(q¢) as the initial solution pair. The coefficient pre-
slowly, or when the noise level is high. Thep,~ ¢.v; and7:  dictor or smoother is readily obtained from (44) as a filter with

will be white whenevew, or ¢ is a white sequence. first-order denominator. For example, the one-step predictor is
2) Independent Consecutive Regression Matricés:? and  gjven by

@* are independent fdr# s, then the feedback noisé h, [t—1

will be white with zero mean, and its covariance can be derived /|, = —ph;|,_; — L}}t — dohy_1.  (49)
exactly. Stability is verified by evaluating the stability of a scalar 1+ dz(1—p)
transfer function [30]. Remark 3: For random walk parameter variatiofd, =

While commonly used, see, e.g., [13], [17], [20], [32], and, d; = —1), the optimal gain. = 1 — (1/r) can be expressed
[45], the assumption of independent regressor matrices is imterms ofy defined in (30) as
fortunately quite restrictive, as pointed out by Macchi [33]. In 1 I
particular, it does not apply to the modeling of dynamic systems, == <, /14— — 1) ~. (50)
for example, the finite-impulse response (FIR) channel of Ex- 2 v
ample 1. It does hold approximately in many array applicatiofi$is expression is obtained from (C.2)—(C.4) in Appendix C
[20] and for flat fading channels. in which (1/r) = (1/¢) = 2/(2 + v + ym), wherem =

3) FIR Channels With White Real or Circular ComplexX1 + 4/~)/2. When the parameter drift is slow, < 1, (50)
Scalar Inputs: This type of problem will appear in the casds well approximated by
study of Part Il of this paper [31]. Assume that SN (51)
Yo = hoe + hy w1 + vy O

Example 2: When Is an LMS Structure Appro-

and that:, is a white sequence. The performance and stability Fiatef,. Consider first-order low-pass dynamics faor

the WLMS algorithm can then be predicted without approxima-
tions. See Lemma 1 in [31]. Stability is checked by evaluating hi =ahi—1+ e (52)

the stability of a scalar transfer function. Under mild assume\;hdere|a| < 1. This corresponds td; = —a andd; = 0 in

tions, the stability and performance results can be used as g i . - -
approximations also for FIR channels of arbitrary order wit?]g)' The one-step predictor (49) beconigs |, = ah; S0 the

white circular complex inputs. See [30]. optimal filter estimate (15) is g|Aven by
&t =Y — 90:'@/%—1

V. SIMPLIFIED WIENER LMS h, = ah,_q + pR71pe,. (53)

We now confine the class _of hypermodels (5) to_ the set (g}, diagonalR anda < 1, this is LMS with leakage [43],
of second order autoregressive (integratedddels with real- [46] which for random walk dynamicéz = 1) reduces to the
valued coefficients. Spectral factors can then be calculated aBfdinary LMS algorithm.
lytically [39], as outlined by Lemma 3 in Appendix C. We then  an | MS algorithm (with leakage) will thus be the optimal
obtain the following result. WLMS algorithm if and only ifh; is first-order autoregressive
Theorem 2: The Simplified WLMS (SWLMS) Algong the regressors gt are white. 0
rithm: CorIS|d_er the WLMS algorithm (14)—(16), with Example 3: Tracking Based on Integrated Random Walk
andPy(q ~) given by Theorem 1 and (43) and (44). AssUMRyodels: Usingd; = —2 andd, = 1 in (49), we obtain the
thath, is described by (6). Them, = Q3 = 1 — (1/r), with » one-step coefficient predictor as
obtained from the explicit solution (C.2) in Appendix C to the

e . 1—p - 3 N
spectral factorization (31) and Pyt = 4“/““_1 4+ ——hy —hy_1. (B4
1—0.5u 1—0.5u
k
_ _ —d; 1 1 If the parameter drift-to-noise ratipis known or estimated;
1 1 1
. = u(l 45) | . - . .
Qulg ) =p a7 < —d3 0) < ) (45) is obtained via Lemma 3 in Appendix C. O

Several works have suggested improvements of LMS algo-
rithms by estimation of the derivative of the parameter drift,
dyda(1 — ) usir!g various difference approximations [7], [14]. In our for-
= m (46)  malism, such schemes are closely related to the use of integrated
random walk models. For example, when the (arbitrary) tuning
parametery in [14] is set toa = 1/(2 — ), that algorithm re-
duces to SWLMS with the predictor (54). Likewise, if the tuning

for £ > 0, wherep is defined as

oo

Proof. See Appendix C.
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TABLE | to LMS complexity whenR is diagonal or when FIR models
STEADY-STATE MEAN SQUARE TRACKING ERROR AND NUMBER OF have AR regressors, yet it has the power to capture a range of
REAL MULTIPLICATIONS PER TIME STEP OBTAINED BY OPTIMIZED . .. . . .
KALMAN . WLMS, LMS, AND RLS ADAPTATION ALGORITHMS, time variations of considerable practical importance.
FOR BINARY (B) AND GAUSSIAN () REGRESSORSLAST LINE: In the simplest case, when assuming autoregressive param-

-1 — . . . .
COMPLEXITY FOR R~ = T eter variations of second order, only simple algebraic expres-

; sions have to be evaluated in the design. Even when little prior
Eigenvalue information on the time variations is available, the three parame-
spread x(R) | Kalman WLMS LMS RLS tersd, , da, andy (or ;) can be adjusted rather straightforwardly.
B 1 0.011  0.0115 0.020 0.026 While dy, ds tailor the algorithm to the nature of the time vari-
ations,y (or 1) trades noise sensitivity against tracking ability.
G 1 0.012 0015 0.032 0.038 The WLMS algorithm can also be generalized to structures
G 10 0.026  0.038 0.085 0.075 with more degrees of freedom, which may offer higher perfor-
#mult. /step 214 44 18 72 mance in some applications and are better equipped to handle
R-l=T 914 30 18 79 large spreads in the properties of the elements of hese gen-
- eralizations, which remove the structural constraints on learning

filters and allow for colored gradient noisg, are presented in
parameters of the “degree-1 least squares fading memory gégl and [29], respectively.
dictor” of [7] and [16] are set t@, = /(2 — u), 62 = 1, then
that algorithm equals SWLMS with the predictor (54). APPENDIX A
Example 4: A Performance Comparison forAlRRodels: In
a scalar FIR systery, = ho uy + hyque_y + v, Wherew, A. Proof of Theorem 1

is white noise with variance 0.03, the parameter evolution is The estimaté, +k|t In (24) will be perturbed by a variational

described by term & which is based on the same constraints and the same
h 1 . measurement data as are availablé:fqy, |, = £Ls f; [1],[2]. In
0t ) = O:t (55) other words, all admissible stationary variations of the estimate
hae 1 —2pcoswoq !+ p2qg2 \ eve

can be represented lizerkU + &, where

whereR. = 107°I, p = 0.995, andw, = 0.015 (SNR 21 o

dB). The steady-state tracking performanceifet 0 has been & =TRhy+n)=T <R e + m) . (A1)
compared by simulation for the time-varying Kalman filter, the D.D,

simplified WLMS algorithm, LMS, and RLS with exponentiaISinceLk is constrained by (29)T is also required to be the

forgetting. The four-state Kalman estimator and the WLMS a]!)'roduct of a stable and causal diagonal rational matrix with
gorithms are both based on the known hypermodel (55) an%&um elements ar—!. Thus

known R. The step-size in LMS and the forgetting factor in
RLS were optimized by simulation. The regressarsvith unit T=D,7R! (A.2)
variance are either white and binary (B) or Gaussian (G). For
Gaussian signals, we investigate two cases: whiteesulting where 7’ is an arbitrary stable scalar transfer function. The
in R = I'and colored regressors, resulting in a covariance mactor D,, must be present in (A.2) to assure the stationarity of
trix with eigenvalue spreag(R) = 10. (A.1). By adding the variational terg to the proposed optimal
The results are summarized in Table |, where we also compee&imate’lprk |+» @ modified criterion value is obtained
the number of real multiplications per time step, using the im- . .
plementation (14)—(16) and (44) for WLMSIt is well known tr Pe =ttt E(hyqn e — &) (Pogne — &))"
for LMS that a large regressor eigenvalue spread will reduce the = tv Py, — 2Re(tr Ehyyp1&7) + tr EEE. (A3)
attainable performance in nonstationary environments. A less
known phenomenon, explained in [30], is that the use of binathe minimal criterion value is obtained by adjusting the
regressors, instead of Gaussian regressors improves the stegdi¢turally constrained filterl;, so that orthogonality is
state tracking performance. attained between, |, and&;. Then, the cross term in (A.3)
It can be noted that the WLMS design attains almost the saig vanish, so no admissible modificaticfs can improve the
performance as the optimal time-varying Kalman estimator akatimate. Thus, = 0 will minimize tr Pe.
much lower computational complexity, not much above that of By invoking assumptions A2 and A3 and making use of (21),
the LMS algorithm. O (29), (28), and (A.1), the cross term in (A.3) can be expressed
as

V. CONCLUDING REMARKS

We have here presented a novel way of designing adaptation W Ehir oSt

algorithms with constant gains. The resulting algorithm is close =trF <<ku — @R—IR) ¢ Ok R_lm)

3 DT 3
“Multiplications between complex numbers are counted as four real multipli- c *
cations, while multiplications or divisions between a real and a complex number % <T <R—ct + 77t> ) . (A.4)
are counted as two real multiplications.
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By using Parsevals formula [1], [38], this cross term is elimiwhen evaluating (32) and (31) at the zerodhf, we obtain
nated when
@k ok 1 1 7CCx
dz - — 2 ==

- N 1 Z =z Z
RIZAARAES 37 jlgl_lt“/)ﬁwtf:j =0 (A5 B, BB 1oy,

=0. (A.11)

wheretr ¢; _is the trace of the cross spectral density ma1:hus, the poles on the unit C|rcle‘of the first teml of (A.10) are
_ v | 28] o _ -7 "“canceled by zeros. In other word$3 — Q = D, X, for some
trix betweenh, .|, and the variatior; . This scalar function is polynomial X (g—1). The tracking error (A.10) will therefore

readily obtained from (A.4), using (A.2) and Assumption A3, 8§e generated by a stationary noise fed through a stable linear

X QY Co Co Qry . time-invariant system, so it will be stationary and have finite
tr <<7 1- /_3> DRe D, /TR R,R ) DT, varianceif D, (z71) is exactly known. n
= tr% {z’“CRGC* - %(CRGC* B. Proof of Corollary 1, Lemma 1, and Lemma 2
1 Proof of Corollary 1: The solutions (34)—(37) are verified
+DR_1R,7R_1D*)} 5 7! (A.6) by direct substitution into (32). The recursions (38) and (39) are
o* verified by noting tha€s41 and_L;.41.. will satisfy (32) fork+1
sinceD,,. = D./D;..Byinvoking Assumption A4 and making _—
use of the spectral factorization (31), (A.6) can thus be reformu- ¢ CC = 1Qp416x + qDLpt 14 (B.1)
lated as Multiplying the left- and right-hand sides of (B.1) by and
;i o making use of the assumed relation (38) yields
Ytk |15
=5 <Z’“'700* - @(voo* + DD*)> Ry 7o ¢*7CC, = 7 (Qr — DQG) fi + DLit1s
11) p R D.. = rQuBe + D (Lig1e —rQEB.) . (B.2)
— k % T P
= 5(2 YCOCx — Qrrfy) DS,:}T*/' (A7) The use of (39) in (B.2) reduces this equation to the Diophan-

tine equation for lagk, which is by definition satisfied by

In (A.7), we usedtraX = atrX for scalarse and matrices 1 . .
X. Orthogonality is attained if there are no poles inside the iﬁig(ganzéa’;;;(/@' Equations (40) and (41) can be ver|f|e.d n

. o X ,
tigfrf t'ol'; paqtﬂZ'.”_hal énngA.g?éSS.mceDsl a};‘ﬁe?;rtir: ifet)l!te’ Proof of Lemma 1:From (22), (24), and (29), we obtain
(rRy/Dev )7 will hav P inz| < 1. 9 Y an expression for the fictitious measurement

requirement (A.5) is therefore fulfilled if

1 _Rj _ 19
L(F90C, ~ Qurp)” = L. (A8) fo=Rhejis tpuee = 0 =g fo + e
y . B
where L, is a polynomial in positive powers af only. Evi- (B = a" Qufe = Porer
The Diophantine equation (32) will always have a solution
sinces, (z) has zeros only if| > 1 while z"” D(z~1) is stable f = E%Et_ (B.3)
or marginally stable and thereby will have no factors in common D
with 3.(z) [1]. Let(Qy, L. ) be one solution pair to (32). Every The k-step estimate (24) and (29) can then be expressed as
solution to (32) can then be expressed as 0
_ _ hovkie = Lifr = 2R Lppe;. B.4
(Qus Liw) = (Qr — aDX, Ly, + XrB)  (A9) ekl = fo = R e B4

whereX (g1, ¢) is an arbitrary polynomial. Sinc&, must be By evaluating (B.4) fqlk =0andk =1 ar11d subtracting, us?ng
causal,(¢—*) is required to be a polynomial in powersgf: (40) fork = 1 and noting from (35) thak§* = ~ — 1, we obtain

while L. from (A.8) is required to be a polynomial in Thus, . Qo—q Q1. _,
X = 0is the only choice, so (32) has a unique solution. The he —heje1 = TR Qe
degrees (33) of this solution are determined by the matching of r—1__,
the highest powers in~* andq on both sides of (32). = R prey
Finally, we shall verify that the estimation error o . .
which is (15) withy = (r — 1) /r. The relationl — 1/ = QY
hosi|e = <qk _ @) ¢ Te, — %Rflm (A.10) follows from (36). ]
B ) DsD, B Proof of Lemma 2:We will use the small gain theorem,

is stationary and zero mean with a finite valuetoPy, even See, €.9., [47] and observe that the inverse of the estimator (24),
when the hypermodel is marginally stable. Since the learnifgf # = 0 can be expressed as

filter L3P = (Q1./B8)R 1 is stable and the noisg is assumed 8 . B .

to be stationary, the last term of (A.10) has finite variance and fe= R—Q hijp = R————= 3 _ Dht [t
T . 0 7/

zero mean. By substitutingfor ¢ and observing that 1

k =R D
2"y CC; |7«’D“ = 1Qifx |ZD“§ 730x |7«’D“ =CC; |7«’D“ I— 8

}Alt|t
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in which D/r3 is always stable. According to the small gairwhich provides the coefficients fap;(¢~*) expressed in the
theorem, the inverse estimator will be stable if coefficients ofQo(¢ ). We proceed by deriving an explicit ex-
pression forQo(g~*). From (36), we obtain

Jw
% <1, Vw. 1
rhe) Qo(g™h) = <1_T>+</31—_,1> gt
Utilizing that 3 is a spectral factor, it readily follows from (31) 7 7
that + </32 - @) g2 (C.8)
,
"B = r(ICP + D) > IDP. |dl=1  (B5)

Substitution of the coefficients gf(¢—*) from the first line of
sincey|C(z~4)* > 0 andr > 1 forall v > 0. Thus, all zeros (C.4) into (C.8) yields

—1 .

of Qo(»71) arein|z| < 1 ) — < ) 1) X dhdyr—1) cs)

C. Proof of Theorem 2 o\ r (r +do)r 7 '
Lemma 3[39]: Consider the following second-order spectral he relation (43) gives = 1/(1 — 1), so with (46), we obtain

zZ

factorization, with real-valued coefficients), a; , ao QY = 11,Q% = up. Used in (C.7) withk substituted fogj, this
1 gives (45) ]
g )P0
=7 (14 /gt + Baq %) (L4 Prg+ Boq”) REFERENCES
=ap+a(g+g ) +ad® +q¢72) (C.1) [1] A. Ahlén and M. Sternad, “Wiener filter design using polynomial equa-
] - ] tions,” IEEE Trans. Signal Processingol. 39, pp. 2387-2399, 1991.
wherer is a positive scalar. Then, the solutiemnd3(g—!) to [2] ——, “Derivation and design of Wiener filters using polynomial equa-
) ; inzl < 1is ai tions,” in Control and Dynamic Systems, Stochastic Techniques in Dig-
(C.1) with zeros inz| < 1 is given by ital Signal ProcessingC. T. Leondes, Ed. New York, NY: Academic,
) 1994, vol. 64, pp. 353-418.
r= 5—}—5—4042 B = ! By = @2 (C.2) [3] B. D. O. Anderson and J. B. Moor&ptimal Filtering Englewood
2 =+ o g Cliffs, NJ: Prentice-Hall, 1979.
[4] A. Benveniste, M. Métivier, and P. Priourekdaptive Algorithms and
where Stochastic Approximations Berlin, Germany: Springer-Verlag, 1990.
5 [5] A. Benveniste, “Design of adaptive algorithms for tracking of
o o 2 time-varying systems,int. J. Adaptive Contr. Signal Processinepl.
=5 —at \/(7 T O‘?) - ar (C.3) 1, pp. 3-29, 1987.
[6] M.-C. Chiu and C. Chao, “Analysis of LMS-adaptive MLSE equaliza-
| tion on multipath fading channelslEEE Trans. Communvol. 44, pp.
With D(g™') = 1+ dig" + dag > andC(g™") = 1, the 7] /%\6?3436913'/3(199?: Detectors for Digital Modems London, U.K
. . : . . P. Clark, Adaptive Detectors for Digital Modems London, U.K.:
right-hand side of (C.1) is by (31) obtained as Pentech Press, 1989.
_1 _o > [8] L. Davis, I. Collings, and R. Evans, “Coupled estimators for equaliza-
Y+ (1 +dig7 +dog” )1 +dig + da2g”) tion of fast-fading mobile channeldEEE Trans. Communvol. 46, pp.
— 1 d2 d2 di(1+d -1 d 2 —2 . 1262-1265, 1998.
yHltatdy 1( + 2)((] T ) + 2(q T ) [9] C.J.Demeure and C. T. Mullis, “A Newton-Raphson method for moving
; average spectral factorization using the euclid algoritHBEE Trans.
From (C.2), we then obtain Acoust., Speech Signal Processingl. 38, pp. 1697-1709, 1990.
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di(l+d)(1—p) 4 9 [11] B. Farhang-Boroujeny, “Fast LMS/Newton algorithms based on autore-
=1+ 1+ dol1 q "+ d2(1 - N)q gressive modeling and their application to acoustic echo cancellation,”
+ 2( - “) IEEE Trans. Signal Processingol. 45, pp. 1987-2000, 1997.
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