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Tracking of Time-Varying Mobile Radio
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LMS Algorithm
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Abstract—Adaptation algorithms with constant gains are
designed for tracking smoothly time-varying parameters of linear
regression models, in particular channel models occurring in mo-
bile radio communications. In a companion paper, an application
to channel tracking in the IS-136 TDMA system is discussed. The
proposed algorithms are based on two key concepts. First, the
design is transformed into a Wiener filtering problem. Second,
the parameters are modeled as correlated ARIMA processes with
known dynamics. This leads to a new framework for systematic
and optimal design of simple adaptation laws based on prior in-
formation. The algorithms can be realized as Wiener filters, called
Learning Filters, or as “LMS/Newton” updates complemented
by filters that provide predictions or smoothing estimates. The
simplest algorithm, named the Wiener LMS, is presented here.
All parameters are here assumed governed by the same dynamics
and the covariance matrix of the regressors is assumed known.
The computational complexity is of the same order of magnitude
as that of LMS for regressors which are either white or have
autoregressive statistics. The tracking performance is, however,
substantially improved.

Index Terms—Adaptive estimation, channel modeling, least
mean squares method.

I. INTRODUCTION

WE here propose a novel way of extending and optimizing
the structure of LMS-like adaptation laws. These results

were originally motivated by the difficult problem of accurately
tracking rapidly time-varying channel parameters in the IS-136
TDMA cellular system. A design related to the proposed algo-
rithm [27] has successfully been used on IS-136 channels [21],
[35], and a case study on this particular application can be found
in Part II [31].

Motivated also by other applications such as multicarrier sys-
tems, multi-antenna systems [12], [35], and multiuser detectors
[42], a framework has been developed for designing low-com-
plexity adaptation laws. These algorithms track coefficients of
linear regression models under assumptions which are real-
istic in communications applications. Our aim is to improve
upon the sometimes inadequate tracking performance offered
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by standard LMS and RLS algorithms (see, for example, [45]
and [10]).1

A key insight is that prior information about the nature of
time-variations has to be utilized if an adaptation law is to sig-
nificantly outperform RLS and LMS. Do the parameters change
erratically or smoothly, is their behavior oscillatory, or do they
rather drift as linear trends? Such information should be used in
an efficient way.

Models of the dynamics of time-varying parameters have be-
come known ashypermodels. While used earlier in time series
modeling [15], [22], their use in the design of adaptive algo-
rithms for regression models has been discussed by Benveniste
and co-workers [4], [5]. This work, as well as many others, was
focused on cases with slowly time-varying dynamics only. For
such cases, the powerful tools of weak convergence theory and
various methods of averaging can be used for both analysis and
design [25], [32]. However, these tools are not applicable to fast
time variations. Our aim here is to systematically integrate prior
information into the design of algorithms which can also handle
fast parameter variations.

The time-varying Kalman filter constitutes the MSE-optimal
linear algorithm for estimating regression parameters based on
linear models of their behavior, [3], [34], and it can be used
for channel tracking [8], [17], [40]. Unfortunately, its compu-
tational complexity may often preclude its use. In this paper, we
propose an alternative approach, which avoids the online Riccati
update required in ordinary Kalman adaptation laws and poten-
tial numerical problems of fast Kalman implementations.

We shall focus on the class of adaptation laws with constant
gains of much lower complexity. Their design can be formulated
as a Wiener problem by a transformation of variables, explained
in Section III-A. Minimization of the mean square tracking error
then becomes rather straightforward, using, for example, a poly-
nomial approach to Wiener filter design [1], [2]. A family of
adaptation laws has been obtained [28], [29], with several prac-
tically useful features.

• The complexity of the algorithm is directly coupled to the
choice of hypermodel. The user will in this way be able to
make systematic tradeoffs between complexity and model
approximations, using insights offered by classical Wiener
theory.

1For fast time variations, an RLS algorithm must use a short data window, so
the estimated covariance matrix, or Hessian, will be inaccurate. In the problems
considered in this paper, the regressors are stationary. If their statistics is un-
known, it is then both possible and natural to estimate their covariance matrix
separately and accurately, using a long data window.
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• Estimators providing predictions or smoothing estimates
can be obtained by optimizing the adaptation law for the
desired estimation horizon.

Channel parameter predictions are of use in decision-directed
adaptive detectors [6] and in fast transmitter power control.
Smoothing improves the tracking performance and should be
used whenever the corresponding time delay is acceptable.

Within this class of algorithms our paper focuses on the
variant of lowest complexity: The Wiener LMS algorithm
(WLMS). It has close to LMS complexity for regressors with
white or autoregressive statistics, but offers a significant per-
formance improvement as compared to LMS. The traditional
LMS algorithm can be regarded as a special case, obtained for
white regressors when assuming the time-varying parameters
to be random walks.

Remarks on the Notation:For any polynomial

(1)

in the backward shift operator , a conjugate

polynomial is then defined as
where is the forward shift operator and de-
notes the complex conjugate of. The arguments or are
often omitted where there is no risk of misunderstanding. When

, the polynomial is calledmonic. Time-varying coef-
ficients of filters or polynomials (1) are denoted as, or .
Rational matrices, or transfer function matrices, are de-
fined stable if all elements have all poles in , and are
marginally stable with poles in .

II. THE TRACKING PROBLEM

A. Linear Regressions and Hypermodels

A sequence of measurement vectors of dimension
is assumed available at the discrete time instants
and to be generated by a linear regression

(2)

where respresents noise and all terms may be com-
plex-valued. The known regression matrix sequence , of
dimension , is defined as the Hermitian conjugate of a
corresponding matrix . It is known up to time and is
assumed stationary with zero mean and nonsingular covariance
matrix

(3)

Our aim is to estimate the time-varying parameter column
vector . We cannot, without further as-
sumptions, determine the sequence of parametersuniquely
from a sequence of measurements

even in the noise-free case, if . We
would have unknowns with more elements than the
available measurements . To avoid this dilemma, as-
sumptions must be introduced on the relationship between pa-
rameters and for .

Over a time interval of interest, the elements of could
be assumed to evolve as linear combinations of deterministic
basis functions, see, e.g., [7], [26], [36], and [37]. Polynomial

basis functions are a possible choice, but they often result in
noise-sensitive estimates [36], [37]. In the telecommunication
area, the available information about the nature of time varia-
tions is in general statistical as in, for example, different types of
models for fading channels. We will therefore use a stochastic
approach. The parameter vectorwill be modeled by a sto-
chastic process, with known statistical properties.

A large variety of parameter dynamics can be described by
linear time-invariant stochastic hypermodels

(4)

where is a stable or marginally stable transfer function matrix
of dimension and is a white noise vector. The model
represents either prior information about time variations or de-
sign assumptions.

Special cases of (4) with a simpler structure are often ade-
quate. A useful specialization is when is diagonal, with
equal elements along the diagonal:

(5)

Our WLMS design will be based on this vector-ARIMA model.
When (5) is further specialized to

(6)

with and being real-valued, we have introduced a model
for which explicit solutions to the design equations are available
(see Section IV).

If the channel parameters have nonzero mean, it is appro-
priate to let have a zero in . Unbiased estimates
of are then obtained (see (42) below). One special case is the
random walk model on which many adapta-
tion schemes are indirectly based [18], [32], [40]. Another spe-
cial case

(7)

is obtained by setting in (6). This model is com-
monly referred to as afiltered random walkand, with
in (7), we obtainintegratedrandom walk hypermodeling. Inte-
grated random walks, used, e.g., in [22], model the elements of

as noisy linear trends.
If no prior information is available about the dynamics of,

then (7), with chosen in the interval [0.90–0.999], will often
be a reasonable and robust first choice of hypermodel. It allows
for a certain degree of smoothness in the parameter evolution,
which is not the case with a random walk model . If
some knowledge is available, the “design” parametercan be
used to match the smoothness of.

In the estimation of communication channels, two complica-
tions are encountered: models of time variability and fading will
not be exactly known. Furthermore, estimated transmitted sym-
bols, which act as regressors as illustrated in the example below,
may include decision errors and are thus not known completely.
These issues are discussed further in Part II [31]. We there also
discuss the adjustment of (5) to fading statistics described by
Jakes model, in particular robust adjustment in situations when
the Doppler frequency of mobile users is not exactly known.
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Example 1: A Fading Multi-Input-Multi-Output Mobile
Radio Channel [29]: Consider a TDMA-based mobile cellular
communication system with several transmitters on the same
frequency in the same cell and in the same time slot. The
situation could either represent channel reuse within cells by
several mobile users [42] or one transmitter which uses multiple
antennas to increase the data rate [12]. Receivers with multiple
diversity branches detect the users simultaneously. With two
transmitters and two received signals obtained at different
positions and/or differing polarizations, a suitable model is

(8)

where is the baseband signal at antenna. Here

represents an -tap multipath fading channel from transmitter
to antenna. The signals are the (possibly pulse-shaped)

symbols from transmitter and have known and time-invariant
statistics. The transmitted symbols are either known, during the
training phase, or estimated by a multiuser detector which, in
turn, is based on the channel estimates. With

and by collecting the unknown channel parameters in vectors
, a linear regression model (2) is

obtained by stacking all vectors , as

(9)

B. The WLMS Adaptation Structure

Assuming the system to be described by (2)–(4), parameter
tracking becomes a signal estimation problem, within (4)
being sought. Define the tracking error vector

where is an estimate of at time representing fil-
tering , prediction , or fixed lag smoothing

. We will measure tracking performance by

(10)

where the expectation is taken with respect toin (4) and in
(2) after the initial transients.

The class of adaptation algorithms, within which we here
chose to minimize (10), corresponds to introducing two mod-
ifications in the LMS algorithm

(11)

(12)

(13)

where denotes the filtering estimate is the
one-step prediction estimate, is the scalar adaptation gain,
and is the prediction error.

1) The update direction in (12) is modified to , as
in the LMS/Newton law [46].2

2) Equation (13) must be modified by filtering to obtain
the prediction and smoothing estimates for arbitrary lags

(see (16) below).3 When the parameter dynamics differs
from a random walk, the filter estimate will not be an
optimal predictor.

The modified algorithm is then described by

(14)

(15)

(16)

where is a causal and stable rational matrix, which
may provide prediction or smoothing estimates for any horizon

. We shall refer to as thecoefficient smoothing-pre-
diction filter. The appropriate tuning of will depend
on the dynamics of and on the SNR. Note that the one-step
prediction estimate must always be made
available, since is required in (14) and (15).

In the WLMS algorithm discussed in this paper, will
be constrained to adiagonal rational matrix, with equal stable
and causal transfer functions along the diagonal. With a diag-
onal , the required number of computations grows only
linearly with the number of parameters, when is diagonal.
For nondiagonal , the product can be updated with
a computational complexity proportional to , for scalar FIR
models with autoregressive inputs [11].

To summarize, the time-varying parametersin

(17)

are to be estimated by minimizing the criterion (10) within
the class of tracking algorithms represented by (14)–(16)
with being diagonal, assuming and

to be known.

III. W IENER LMS DESIGN

A time-invariant filter, operating on a fictitious measurement
signal, will be shown to be equivalent to the adaptation law
(14)–(16). The optimization of the adaptation law will then be
solved by an open-loop linear Wiener design, which gives sev-
eral advantages. It provides a systematic design technique, a
numerically safe implementation, and an opportunity for using
tools and design intuition from Wiener filtering.

2Of course, this presupposes thatR is known, or is estimated separately.
If R is unknown, its inverseR can be estimated online, with well-known
methods [17], at the price of an increase in complexity to a level similar to that
of RLS. SinceR is assumed constant or perhaps slowly time-varying, a long
data window can be used for estimating it even whenh varies quickly.

3The use of one-stepcoefficient prediction filtersfor this purpose has been
proposed by Kubin in [23], [24] and equivalent filter structures were introduced
in [7] by Clark.
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Fig. 1. Two equivalent representations of the fictitious measurementf .
The lower diagram constructsf via (22) from available signals when
R = E[' ' ] is known.

A. The Fictitious Measurements

Consider the signal prediction error (14) and insert (2) de-
scribing to obtain

(18)

By adding and subtracting and defining

(19)

(20)

(21)

the vector (18) is now reformulated as

(22)

Here, can be regarded as a fictitious measurement, with
and in (21) being the signal and the noise, respectively. It can
be constructed from known signals as depicted in the lower di-
agram of Fig. 1. In the sequel, the noise termsand
will be referred to as thegradient noiseand thefeedback noise,
respectively. The matrix , of dimension , has zero
mean by definition. This matrix was introduced by Gardner
[13] and was referred to as theautocorrelation matrix noise.

B. Tracking Regarded as Filtering

Based on the relations (19)–(22), we can design a time-in-
variant stable rational matrix that operates on and
provides an estimate of

(23)

(24)

The filter will be referred to as thelearning filter. If
(14)–(16) is the preferred implementation, a corresponding gain

and a stable filter can be readily calculated.
For the LMS algorithm, the learning filter

(25)

is obtained by inserting from (22) in (12) and (13). The
stability requirement on this LMS learning filter corresponds to
the condition for convergence in the mean square [17]

(26)

where is the largest eigenvalue of. This is readily shown
through an eigenvalue decomposition ofin (25).

Three factors influence the tracking performance viain
(24) and (21). The scaled and rotated parameters, repre-
senting the useful signal, the noise , and old tracking errors,
via the feedback noise cf. (20).

The estimation error follows from (21) and (24) as

(27)

The first term of (27) is for usually referred to as thelag
error. It could be eliminated completely by using the learning
filter , but this would amplify the noise by

. The aim of our design will be to obtain an MSE-optimal
balance between the lag error and the influence of the gradient
noise , by minimizing (10).

If the innovations sequence of the noiseis uncorrelated
with , then an open-loop Wiener design of

in (24) can be performed. If it is uncorrelated with , an
open-loop design is further simplified. These conditions are not
always fulfilled but hold approximately under many practically
important circumstances, since the multiplication byin (20)
acts as a scrambler.

In the following filter design, is assumed white and its un-
correlatedness with and will be stated as an
assumption, under which will be optimized by just
treating in (27) as an additive noise with known properties.

C. Optimal Filter Design

The diagonality constraint imposed on in the imple-
mentation of (14)–(16) will correspond to a related constraint on
the structure of the learning filter. The so-constrained learning
filter will now be optimized for parameter variations described
by (5). The main reason for imposing the constraint (5) on the
hypermodel is that this leads to asinglescalar design equation.

The design assumptions are formalized below.
Assumption A1:The signal is described by (2), where is

time-invariant, known, and nonsingular. The second-order mo-
ments of are described by

(28)

with known and monic polynomials, with zeros of and
of in , and zeros of on . The
vector is white and stationary, with zero mean and known

Assumption A2:The learning filter (24) of dimension
is constrained to have the structure

(29)

with the polynomial having all zeros in .
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Assumption A3:The gradient noise is uncorrelated with
and . It is stationary and white, with zero

mean and covariance matrix .
Assumption A4:The parameter-drift-to-noise ratio, defined

by

(30)

is nonzero, known and limited .
In A2, the inverse of the regressor covariance matrix is

includeda priori in the constrained learning filter (29). Among
other possible structural constraints, such as or

, the choice (29) is made for two reasons.
First, the learning filter formulation (24) becomes equivalent to
the algorithm (15) only if is a right factor of . Second,
it assures that the constrained algorithm can attain perfect
tracking, with , in the noise-free case.

Assuming the gradient noise to be white in A3 simplifies the
design equations.

Assumptions A1–A4 need not be fulfilled exactly in practice.
For example, due to time-varying disturbance environments,
scattering geometrics, and vehicle speeds, the fading model and
the gradient noise will have slowly time-varying statistics. A
design based on our stationarity assumptions will then still be a
good approximation if these properties vary much more slowly
than the time constants of the tracking loop.

Furthermore, the covariance matrix of will in practice
depend on the actual choice of estimator. This means that the
scalar has to be adjusted iteratively. We will return to this issue
at the end of this section, after having discussed the optimal
design.

Theorem 1: The WLMS Learning Filter:Under Assumptions
A1–A4, the optimal constrained learning filter (29) minimizing
(10) is unique. The polynomial is the stable and monic
solution to the polynomial spectral factorization

(31)

with being a real-valued positive scalar. The unique solution
to the scalar Diophantine equation

(32)

provides polynomials and with degrees

(33)

The error is stationary with zero mean.
Proof: See Appendix A.

Learning filters determined by the design equations (31) and
(32) all have the same denominator polynomial for any
lag . Since is a stable spectral factor, the learning fil-
ters are causal and stable.4 The spectral factorization can be
solved by computing the roots of the right-hand side of (31) and
forming from the factors with stable roots. There also

4By Assumption A1, the terms on the right-hand side of (31) cannot have
common zeros onjzj = 1, sinceC(z ) must have all zeros insidejzj = 1.
Thus, the spectral factor� is stable for > 0.

exist several iterative Newton algorithms for spectral factoriza-
tion, see, e.g., [19] and [9].

Polynomial spectral factors in general appear in Wiener fil-
ters as part of the whitening filter, the inverse of the innova-
tions model for the measurement vector [1], [2], which is ob-
tained when all contributing signal sources are combined into
one stochastic process. Equation (31) does not have this intu-
itive interpretation, since our problem is aconstrainedWiener
optimization problem. The polynomial could be inter-
preted as the numerator of an innovations model for ascalar
measurement of a scalar signal , where

has variance , disturbed by a scalar noise with vari-
ance . The innovations model of would then
have as numerator polynomial. (When has zeros on

, we would have a generalized innovations model [41].)
For predictors, , the computational complexity of the

estimator (the degree of by (33)) is independent of the
prediction horizon.

Equation (32) is a polynomial Diophantine equation. If
equated for equal powers ofand , it constitutes a linear
system of equations, with an equal number of unknowns
and equations. It can always be solved with respect to the
polynomial coefficients of and [1], [2].5 This
operation can be simplified, since a closed-form solution exists.

Corollary 1: Consider the Diophantine equation (32). For
one-step prediction , its solution is

(34)

(35)

For , the filtering solution is given by

(36)

(37)

If a solution is known for some, solutions for higher can be
obtained through the forward recursions

(38)

(39)

whereas, for lower , the solutions can be obtained through the
backward recursions

(40)

(41)

Above, and are the leading coefficients of and
, respectively.

Proof: See Appendix B.
Remark 1: For . Since both

and are monic, their leading coefficients cancel in (34)
so no positive powers of will appear in . Note also
that the leading coefficients inside the parentheses in (38) and
in (41) cancel.

5Since�(z ) is stable, it has all zeros injzj < 1, so� (z) has all zeros
in jzj > 1. SinceD(z ) has zeros injzj � 1; � (z) andzD(z ) will be
coprime, so (32) will have a solution for any left-hand side.
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The filter in (27) determining the lag error for will by
(29) be given by

(42)

in the frequency domain, where the second equality follows
from (36). When elements of the parameter vectorare time-
invariant, their estimates will be biased, unless the hypermodel
contains an integrator, that is, when

for some . The lag error gain (42) will then vanish
at or since .

We now return to the implementation (14)–(16).
Lemma 1: For a learning filter designed according to The-

orem 1, the adaptive filter implementation (14)–(16) is equiva-
lent to filtering by (24). The optimal adaptation gain is

(43)

where constitutes the leading coefficient of the polynomial
, and originates from (31).

Proof: See Appendix B.
Remark 2: In (31), which implies

that .6 The step length increases with an increased:
when . Thus, and in
(31) and (32), so . On the other hand, a vanishing pa-
rameter drift-to-noise ratio leads to a vanishing adaptation gain.
When and . Thus, and .

In order to determine the coefficient smoothing-prediction
filter corresponding to , we note that, by (16) and (24),

and

The -step estimate may thus be expressed by

Thus, will be obtained as the diagonal matrix

(44)

with and obtained from Corollary 1.
One iteration of (16) requires multipli-

cations. The steps (14) and (15) require multipli-
cations with diagonal and multiplications oth-
erwise, in general. See, however [11] for an efficient realization
of when the elements of are autoregressive processes
with known statistics.

Since must be stable if the implementation
(14)–(16) is to be useful, must have all its zeros in

. This property is not obvious from the Wiener results
of Theorem 1, but is verified below.

Lemma 2: The zeros of are all located in
for any parameter-drift-to-noise ratio .

6Here,]a; b[ represents the interval with the boundaries excluded.

Fig. 2. A filter design problem. The vectorh is to be estimated from
measurementsf , such that the steady-state mean square tracking error
Ej~h j is minimized.

Fig. 3. The feedback loop via the feedback noiseZ ~h affects the
variance of the fictitious measurementf , and may cause dependence with
~h .

Proof: See Appendix B.
Summary of WLMS design Steps:

1) Calculate the spectral factorand the scalar via (31).
2) Let and . Obtain other

required from Corollary 1 or (32).
3) Use the realization (24), (29), or use (14)–(16) with

and .
How is this procedure to be applied in practice, when the prop-
erties of the gradient noise may be hard to know in advance?
An obvious approach is to iterate the design a few times [29,
sect. V]. A design may first be based on preliminary assump-
tions on the gradient noise level , e.g., by neglecting the
feedback noise and assuming . A better estimate of
the actual gradient noise level can then be obtained. In some sit-
uations, exact analytical expressions for the tracking MSE can
be used, see the next subsection. In others, the gradient noise
must be investigated by simulation. We then computefrom
(20) and calculate a modified tracking algorithm.

Since the bandwidth of the learning filter is controlled by one
scalar parameter, an alternative is to just use it as a scalar
tuning knob, to obtain a desired tradeoff between noise sensi-
tivity and tracking ability.

D. Stability

Under assumptions A1 and A3, the variance of the estima-
tion error is bounded whenever the learning filter

is stable and and have fixed and bounded vari-
ances. However, due to the feedback loop via (20), (21), and (24)
in Fig. 3, the feedback noise will not be independent
of when , even when there is nocorrela-
tion. The loop could become unstable if the learning filter has
too high a gain, and this must be taken into account in any sta-
bility analysis. For bounded regressors, the small gain theorem
[44] provides (conservative) sufficient conditions for stability.
Other, less conservative conditions are presented in [30].

In [30] and [28], three important scenarios are discussed in
which an exact stability and performance analysis can be per-
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formed when assuming , and to be independent. These
results are summarized below.

1) “Slowly” Varying Parameters (Vanishing Feedback
Noise): We then have a true open-loop situation. When the
power of the noise which drives the parameters becomes
small relative to the power of , then the impact of the
feedback noise on our obtained tracking MSE van-
ishes. This situation occurs either when the parametersvary
slowly, or when the noise level is high. Then, and
will be white whenever or is a white sequence.

2) Independent Consecutive Regression Matrices:If and
are independent for , then the feedback noise

will be white with zero mean, and its covariance can be derived
exactly. Stability is verified by evaluating the stability of a scalar
transfer function [30].

While commonly used, see, e.g., [13], [17], [20], [32], and
[45], the assumption of independent regressor matrices is un-
fortunately quite restrictive, as pointed out by Macchi [33]. In
particular, it does not apply to the modeling of dynamic systems,
for example, the finite-impulse response (FIR) channel of Ex-
ample 1. It does hold approximately in many array applications
[20] and for flat fading channels.

3) FIR Channels With White Real or Circular Complex
Scalar Inputs: This type of problem will appear in the case
study of Part II of this paper [31]. Assume that

and that is a white sequence. The performance and stability of
the WLMS algorithm can then be predicted without approxima-
tions. See Lemma 1 in [31]. Stability is checked by evaluating
the stability of a scalar transfer function. Under mild assump-
tions, the stability and performance results can be used as good
approximations also for FIR channels of arbitrary order with
white circular complex inputs. See [30].

IV. SIMPLIFIED WIENER LMS

We now confine the class of hypermodels (5) to the set (6)
of second order autoregressive (integrated)models with real-
valued coefficients. Spectral factors can then be calculated ana-
lytically [39], as outlined by Lemma 3 in Appendix C. We then
obtain the following result.

Theorem 2: The Simplified WLMS (SWLMS) Algo-
rithm: Consider the WLMS algorithm (14)–(16), with
and given by Theorem 1 and (43) and (44). Assume
that is described by (6). Then, , with
obtained from the explicit solution (C.2) in Appendix C to the
spectral factorization (31) and

(45)

for , where is defined as

(46)

Proof: See Appendix C.

For and , we obtain from (45)

(47)

(48)

For smoothing , the polynomials are deter-
mined from the recursions (40) and (41), using and

as the initial solution pair. The coefficient pre-
dictor or smoother is readily obtained from (44) as a filter with
first-order denominator. For example, the one-step predictor is
given by

(49)

Remark 3: For random walk parameter variations
, the optimal gain can be expressed

in terms of defined in (30) as

(50)

This expression is obtained from (C.2)–(C.4) in Appendix C
in which , where

. When the parameter drift is slow, , (50)
is well approximated by

(51)

Example 2: When Is an LMS Structure Appro-
priate?: Consider first-order low-pass dynamics for

(52)

where . This corresponds to and in
(6). The one-step predictor (49) becomes so the
optimal filter estimate (15) is given by

(53)

For diagonal and , this is LMS with leakage [43],
[46] which for random walk dynamics reduces to the
ordinary LMS algorithm.

An LMS algorithm (with leakage) will thus be the optimal
WLMS algorithm if and only if is first-order autoregressive
and the regressors in are white.

Example 3: Tracking Based on Integrated Random Walk
Models: Using and in (49), we obtain the
one-step coefficient predictor as

(54)

If the parameter drift-to-noise ratio is known or estimated,
is obtained via Lemma 3 in Appendix C.

Several works have suggested improvements of LMS algo-
rithms by estimation of the derivative of the parameter drift,
using various difference approximations [7], [14]. In our for-
malism, such schemes are closely related to the use of integrated
random walk models. For example, when the (arbitrary) tuning
parameter in [14] is set to , that algorithm re-
duces to SWLMS with the predictor (54). Likewise, if the tuning
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TABLE I
STEADY-STATE MEAN SQUARE TRACKING ERROR AND NUMBER OF

REAL MULTIPLICATIONS PER TIME STEP OBTAINED BY OPTIMIZED

KALMAN , WLMS, LMS, AND RLS ADAPTATION ALGORITHMS,
FOR BINARY (B) AND GAUSSIAN (G) REGRESSORS. LAST LINE:

COMPLEXITY FORR = I

parameters of the “degree-1 least squares fading memory pre-
dictor” of [7] and [16] are set to , then
that algorithm equals SWLMS with the predictor (54).

Example 4: A Performance Comparison for ARModels: In
a scalar FIR system where
is white noise with variance 0.03, the parameter evolution is
described by

(55)

where , and (SNR 21
dB). The steady-state tracking performance for has been
compared by simulation for the time-varying Kalman filter, the
simplified WLMS algorithm, LMS, and RLS with exponential
forgetting. The four-state Kalman estimator and the WLMS al-
gorithms are both based on the known hypermodel (55) and a
known . The step-size in LMS and the forgetting factor in
RLS were optimized by simulation. The regressorswith unit
variance are either white and binary (B) or Gaussian (G). For
Gaussian signals, we investigate two cases: white, resulting
in and colored regressors, resulting in a covariance ma-
trix with eigenvalue spread .

The results are summarized in Table I, where we also compare
the number of real multiplications per time step, using the im-
plementation (14)–(16) and (44) for WLMS.7 It is well known
for LMS that a large regressor eigenvalue spread will reduce the
attainable performance in nonstationary environments. A less
known phenomenon, explained in [30], is that the use of binary
regressors, instead of Gaussian regressors improves the steady
state tracking performance.

It can be noted that the WLMS design attains almost the same
performance as the optimal time-varying Kalman estimator at a
much lower computational complexity, not much above that of
the LMS algorithm.

V. CONCLUDING REMARKS

We have here presented a novel way of designing adaptation
algorithms with constant gains. The resulting algorithm is close

7Multiplications between complex numbers are counted as four real multipli-
cations, while multiplications or divisions between a real and a complex number
are counted as two real multiplications.

to LMS complexity when is diagonal or when FIR models
have AR regressors, yet it has the power to capture a range of
time variations of considerable practical importance.

In the simplest case, when assuming autoregressive param-
eter variations of second order, only simple algebraic expres-
sions have to be evaluated in the design. Even when little prior
information on the time variations is available, the three parame-
ters , and (or ) can be adjusted rather straightforwardly.
While tailor the algorithm to the nature of the time vari-
ations, (or ) trades noise sensitivity against tracking ability.

The WLMS algorithm can also be generalized to structures
with more degrees of freedom, which may offer higher perfor-
mance in some applications and are better equipped to handle
large spreads in the properties of the elements of. These gen-
eralizations, which remove the structural constraints on learning
filters and allow for colored gradient noise, are presented in
[28] and [29], respectively.

APPENDIX A

A. Proof of Theorem 1

The estimate in (24) will be perturbed by a variational
term which is based on the same constraints and the same
measurement data as are available for [1], [2]. In
other words, all admissible stationary variations of the estimate
can be represented by , where

(A.1)

Since is constrained by (29), is also required to be the
product of a stable and causal diagonal rational matrix with
equal elements and . Thus,

(A.2)

where is an arbitrary stable scalar transfer function. The
factor must be present in (A.2) to assure the stationarity of
(A.1). By adding the variational term to the proposed optimal
estimate , a modified criterion value is obtained

(A.3)

The minimal criterion value is obtained by adjusting the
structurally constrained filter so that orthogonality is
attained between and . Then, the cross term in (A.3)
will vanish, so no admissible modification can improve the
estimate. Thus, will minimize .

By invoking assumptions A2 and A3 and making use of (21),
(29), (28), and (A.1), the cross term in (A.3) can be expressed
as

(A.4)
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By using Parsevals formula [1], [38], this cross term is elimi-
nated when

(A.5)

where is the trace of the cross spectral density ma-

trix between and the variation . This scalar function is
readily obtained from (A.4), using (A.2) and Assumption A3, as

(A.6)

since . By invoking Assumption A4 and making
use of the spectral factorization (31), (A.6) can thus be reformu-
lated as

(A.7)

In (A.7), we used for scalars and matrices
. Orthogonality is attained if there are no poles inside the in-

tegration path in (A.5). Since and are stable,
will have no poles in . The orthogonality

requirement (A.5) is therefore fulfilled if

(A.8)

where is a polynomial in positive powers of only. Evi-
dently, (A.8) coincides with (32).

The Diophantine equation (32) will always have a solution
since has zeros only in while is stable
or marginally stable and thereby will have no factors in common
with [1]. Let be one solution pair to (32). Every
solution to (32) can then be expressed as

(A.9)

where is an arbitrary polynomial. Since must be
causal, is required to be a polynomial in powers of
while from (A.8) is required to be a polynomial in. Thus,

is the only choice, so (32) has a unique solution. The
degrees (33) of this solution are determined by the matching of
the highest powers in and on both sides of (32).

Finally, we shall verify that the estimation error

(A.10)

is stationary and zero mean with a finite value of , even
when the hypermodel is marginally stable. Since the learning
filter is stable and the noise is assumed
to be stationary, the last term of (A.10) has finite variance and
zero mean. By substitutingfor and observing that

when evaluating (32) and (31) at the zeros of, we obtain

(A.11)

Thus, the poles on the unit circle of the first term of (A.10) are
canceled by zeros. In other words, , for some
polynomial . The tracking error (A.10) will therefore
be generated by a stationary noise fed through a stable linear
time-invariant system, so it will be stationary and have finite
varianceif is exactly known.

B. Proof of Corollary 1, Lemma 1, and Lemma 2

Proof of Corollary 1: The solutions (34)–(37) are verified
by direct substitution into (32). The recursions (38) and (39) are
verified by noting that and will satisfy (32) for

(B.1)

Multiplying the left- and right-hand sides of (B.1) by and
making use of the assumed relation (38) yields

(B.2)

The use of (39) in (B.2) reduces this equation to the Diophan-
tine equation for lag , which is by definition satisfied by

. Equations (40) and (41) can be verified in
the same way.

Proof of Lemma 1:From (22), (24), and (29), we obtain
an expression for the fictitious measurement

which, by use of (34), becomes

(B.3)

The -step estimate (24) and (29) can then be expressed as

(B.4)

By evaluating (B.4) for and and subtracting, using
(40) for and noting from (35) that , we obtain

which is (15) with . The relation
follows from (36).

Proof of Lemma 2:We will use the small gain theorem,
see, e.g., [47] and observe that the inverse of the estimator (24),
for can be expressed as
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in which is always stable. According to the small gain
theorem, the inverse estimator will be stable if

Utilizing that is a spectral factor, it readily follows from (31)
that

(B.5)

since and for all . Thus, all zeros
of are in

C. Proof of Theorem 2

Lemma 3 [39]: Consider the following second-order spectral
factorization, with real-valued coefficients

(C.1)

where is a positive scalar. Then, the solutionand to
(C.1) with zeros in is given by

(C.2)

where

(C.3)

With and , the
right-hand side of (C.1) is by (31) obtained as

From (C.2), we then obtain

(C.4)

where in the last line we utilized from (43). The
expression (45) for follows from (38). With
from (33), we obtain

(C.5)

Clearly, from (C.5), we have

(C.6)

and, by iterating (C.6) times, we obtain, for

(C.7)

which provides the coefficients for expressed in the
coefficients of . We proceed by deriving an explicit ex-
pression for . From (36), we obtain

(C.8)

Substitution of the coefficients of from the first line of
(C.4) into (C.8) yields

(C.9)

The relation (43) gives , so with (46), we obtain
. Used in (C.7) with substituted for , this

gives (45)
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