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Robust Filtering and Feedforward Control 
Based on Probabilistic Descriptions of Model 

Errors* 

M I K A E L  S T E R N A D ?  and  A N D E R S  A H L I ~ N t  

f f  model errors are represented by stochastic variables, performance 
robustness can be optimized by using a polynomial equations approach. 
Simple closed-form solutions minimize quadratic criteria, averaged with 
respect to model error distributions. 
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AI~IrKI--A new approach to robust estimation of signals, 
prediction of time-series and robust feedforward control is 
considered. Modelling errors are parametrized by random 
variables, with known covariances. A robust design is 
obtained by minimizing the squared estimation error, 
averaged both with respect to model errors and the noise. A 
polynomial equations approach, based on averaged spectral 
factorizations and averaged Diophantine equations, is 
derived. Mild solvability conditions guarantee the existence 
of stable optimal filters and feedforward regulators. The 
robust design turns out to be no more complicated than the 
design of an ordinary Wiener filter or LQG regulator. 

The proposed approach avoids two drawbacks of minimax 
design. First, probabilistic descriptions of model uncer- 
tainties may have soft bounds. These are more readily 
obtainable in a noisy environment than the hard bounds 
required for minimax design. Furthermore, not only the 
range of uncertainties, but also their likelihood is taken into 
account; common model deviations will have a greater 
impact on an estimator design than do very rare "worst 
cases". The conservativeness is thus reduced. 

1. INTRODUCTION 
I s  ROBUST FmTER SYNTHESIS, the  eve r  p r e s e n t  
m o d e l  unce r t a in ty ,  and  the  who le  r ange  o f  
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expec t ed  sys tem be ha v iou r ,  is t a k e n  into 
account .  W e  he re  p r o p o s e  a novel  a p p r o a c h  to 
robus t  des ign  for  o p e n - l o o p  p r o b l e m s  such as 
signal e s t ima t ion ,  s ta te  e s t ima t ion  and  feedfor -  
wa rd  cont ro l .  I t  is b a s e d  on  a s tochas t ic  
desc r ip t ion  o f  m o d e l  e r ro rs ,  shown to be  r e l a t ed  
to the  s tochas t ic  e m b e d d i n g  concep t  o f  G o o d w i n  
and Sa lgado  (1989). C o m p a r e d  to  a l t e rna t ives  in 
the  l i t e ra tu re ,  the  p r o p o s e d  m e t h o d  is s imple  
and s t r a igh t fo rward ,  ye t  f lexible.  I t  cons t i tu tes  a 
genera l i za t ion  of  the  p o l y n o m i a l  equa t ions  
app roach ,  which was p i o n e e r e d  by Ku~era  
(1979, 1981, 1991). 

In  robus t  des ign p r o b l e m s ,  the  t rue  sys tem is 
only  par t i a l ly  known.  R o b u s t  e s t ima to r s  a re  
based  on  nomina l  mode l s ,  ~0, of  t r ans fe r  
funct ions.  E r r o r  mode l s  a re  also r equ i red .  T h e y  
specify mode l l ing  e r ro r s  A ~  as be long ing  to  a 
cer ta in  class of  sys tems.  N o m i n a l  and  e r r o r  
mode l s  will,  t a k e n  toge the r ,  be  ca l led  e x t e n d e d  
design mode ls .  E r r o r  m o d e l s  a re  by necess i ty  
imprec ise ;  exac t  mode l l i ng  o f  the  u n m o d e l l e d  
dynamics  wou ld  be  a con t r ad i c t i on  in te rms.  
H a r d  bounds  in the  f r equency  d o m a i n  are  one  
e xa mple  of  speci f ica t ions ,  c o m m o n l y  charac-  

t e r ized  as 
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I A ~ ( w ) l  < L(~o). (1.1) 

F o r  o the r  mode l s  o f  spec t ra l  unce r t a in ty ,  see  
K a s s a m  and  Poo r  (1985) o r  G o o d w i n  and  
Sa lgado  (1989). E r r o r  m o d e l s  m a y  be  o b t a i n e d  
f rom off-l ine e x p e r i m e n t s  o r  via  on- l ine  a d a p t a -  
t ion.  W a y s  to ut i l ize e s t ima te s  o f  m o d e l  
unce r t a in ty  are  o f  va lue  in a d a p t i v e  as well  as in 
fixed fi l ter des ign.  
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We will consider mainly estimation problems,  
with scalar stationary measurements  in discrete 
time. During the last two decades, several 
schemes for robust estimation have been 
suggested. The most obvious ad hoc approach is 
perhaps to detune a filter, by increasing the 
measurement  noise variance used in the design. 
Optimization of Ha-criteria has been applied to 
estimation problems. So far, however,  the 
Ha-criterion appears  to be of limited utility for 
obtaining robust filters.t Instead,  almost all 
systematic schemes have considered minimax 
optimization, usually of the mean square 
estimation error (MSE). This approach goes 
back to work by D 'Appol i to  and Hutchinson 
(1972) and Leondes and Pearson (1972) who 
dealt with large uncertainties in the noise 
covariances as well as in the plant dynamics. 

Minimax design is simplified if there exists a 
saddle-point solution. One may then search for a 
least favourable pair of signal and noise spectra, 
in prespecified uncertainty classes. Under  
certain conditions, the optimal est imator is a 
filter designed for that pair. See Kassam and 
Poor (1985) and also Kassam and Lim (1977), 
Poor (1980), Moustakides and Kassam (1983, 
1985) and Vastola and Poor (1984). Uncert-  
ainties can be described in a state space 
framework.  See e.g. Martin and Minz (1983), 
Wang et al. (1987) or Haddad  and Bernstein 
(1988). The computat ional  effort involved is 
considerable. Closed-form solutions mostly do 
not exist. Fur thermore,  minimax implies a worst 
case design, with the following drawbacks.  
• Even when extremely unlikely, a worst case 

still determines the est imator completely. 
There is a considerable risk that this may lead 
to a very conservative design, with poor  
performance in the normal range of model  
errors. (The conservativeness can be reduced 
by using fictitious tighter model error  bounds. 
But then the whole point of using a minimax 
approach becomes unclear. Why design for a 
worst case which is not really worst?) 

• An error model with hard bounds is required. 
Otherwise, a worst case is mostly impossible 
to find. In noisy environments ,  it may be 
possible to obtain statistical 'soft '  model  error 
bounds, but much more  difficult to obtain 

f For methods, see e.g. Nagpal and Khargonekar (1991). 
The main known connection of H=-filtering to robustness, is 
the case when both signal and noise models have 
multiplicative errors, for which only power amplification 
bounds are known (Grimble and EISayed, 1989). Then, an 
H=-optimal filter can be shown to minimize the worst case 
mean square error. However, such situations are of rather 
limited practical relevance. A less conservative design could 
possibly be obtained from a Hz/H~ approach. See Limebeer 
et al. (1991). 

reliable hard bounds,  such as (1.1).$ Paramete r  
errors obtained by system identification have, 
asymptotically, a Gaussian distribution under 
very general conditions. See e.g. Ljung 
(1987). With a distribution with infinite tails, 
hard bounds cannot really be justified. 

There do exist applications where worst case 
design is well motivated. However ,  the mean 
performance of estimators and regulators is 
normally of greater  interest. We will consider 
situations where one time-invariant linear filter is 
to be applied on a number  of systems, with 
different dynamics. A probabilistic description of 
model errors is then appropriate .  We utilize the 
criterion 

/~(E Iz(t)12), (1.2) 

where z( t )  is the estimation error ,  E denotes 
expectation over  noise and /~ is the expectation 
over a (continuous or discrete) distribution of 
systems. If, for example,  there is a single 
uncertain parameter ,  attaining three possible 
values h~, he, h3 with probabilities Pl ,P2 ,  P3, 
respectively (1.2) becomes 

PlEz ( t )  2 Ih=h, + p2Ez( t )  2 Ih=h2 + PaEz( t )  2 Ih=h3. 

The criterion (1.2) takes not only the effect, but 
also the likelihood of different modelling errors 
into account. It has been proposed,  and used, by 
Chung and B61anger (1976) and by Grimble  
(1984). Related is also the work by Speyer and 
Gustafson (1975) who used a conditional 
expectation. For discrete distributions, Nahi and 
Knobbe (1976) derived robust filters of very high 
order. For continuous distributions, errors in 
time constants had to be assumed small, because 
these solutions were based on series expansion. 
However ,  as will be exemplified in Section 4, 
robust design is then of limited interest. One 
might often just as well use a nominal filter for 
small model errors. A quest for simpler and 
more useful design methods has motivated our 
present work. Its main contributions are listed 
below. 
• A special type of stochastic error  model for 

transfer functions is introduced in Section 3. 
We will argue that it is flexible enough to 
describe a wide range of uncertainties, 
structured and unstructured, large and small, 

If the noise is bounded, hard bounds may be obtained. 
See Fogel and Huang (1982). These bounds are extremely 
wide, compared to statistical standard deviation estimates. 
Furthermore if noise bounds are over-estimated, parameter 
error bounds do not converge to zero with an increasing 
number of data. If noise bounds are under-estimated, 
parameter set identification results in an empty set; 
algorithms such as those of Fogel and Huang will fail. 
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with soft or hard bounds. Besides series 
expansion, it may be obtained from considera- 
tion of time-domain responses, identification 
by functional series expansion or from a 
stochastic frequency-domain description. 
Under mild conditions, only second order  
moments of stochastic model coefficients need 
to be known. 

• Based on this error  model and on the criterion 
(1.2), a polynomial equations approach to/-/2 
(or Wiener) design for open-loop problems is 
developed in Section 4 and Appendix B. The 
design equations are of the same type as for 
the nominal solution: spectral factorizations 
and Diophantine equations. Only trivial 
additional computations are required for 
obtaining a robust design. 

• In Sections 2-4,  the method is developed in 
some detail for filtering, prediction and 
smoothing estimators of scalar signals, which 
we call cautious Wiener filters. The filters 
balance the importance of uncertainties due to 
noise and model errors. The performance 
difference between robust and nominal designs 
is also discussed. It can be extremely large 
when the nominal design is sensitive. It 
increases for large model errors and decreases 
with an increased noise level. 

• In Section 5, a polynomial approach to robust 
state estimation is outlined. 

• Section 6 presents design equations and a 
design example for robust disturbance measu- 
rement feedforward regulators and model 
matching or reference feedforward filters. The 
way in which uncertainties in different transfer 
functions affect the solution is explained. 

Remarks on the notation. For any complex 
polynomial in the backward shift operator  q - l ,  
of degree np, p(q-1) = po + p~q-l  + . . . + 
pnoq -no, the conjugate polynomial is defined as 
p.(q)  a__pt~ +p~q + . . .  +p,pq,p .  For matrices 
H, H* means conjugate transpose. For polyno- 
mial matrices P(q-~),  P . ~ P * ( q ) .  In the 
frequency domain, z or e i~' will be substituted 
for q. For convenience, polynomial arguments 
are often omitted. We call P(q-~) stable if all 
zeros of P(z -~) are in [ z [ < l .  Note that 
whenever P is stable, all zeros of P .  are in 
I z l > l .  

2. A SIGNAL ESTIMATION PROBLEM 
2.1. The problem set-up 

In the Sections 2-4 ,  a generalized deconvolu- 
tion problem will be considered, to illustrate the 
design principles. It includes, e.g. ordinary 
output filtering and prediction of ARMA-  
processes as special cases. It also includes the 
design of linear recursive equalizers for digital 

e ( t ) ~  + rn) 

FiG. 1. A general scalar filtering problem. A filtered version 
f(t) of the signal u(t) is to be estimated, from noisy 
measurements y(t). The uncertainties in transfer functions 
are represented by additive model errors A~, A~ and A~, 

described by stochastic error models. 

communications. Measurements are described as 

y(t) = (~(q-')u(t - k) + w(t). (2.1) 

The stable, linear, causal, and possibly uncertain 
transfer function C~(q-1) may e.g. represent a 
transducer or a transmission channel. The delay 
k denotes the minimum value of a possibly 
incompletely known time delay. The input u(t) 
and the measurement noise w(t) are described 
by possibly uncertain A R M A  models 

u(t) = ~T(q-1)e(t); w(t) = ~(q-1)v(t)  
(2.2) 

Ele( t ) l  2-- 1; E Iv(t)l 2--a p. 

The white time-series e(t) and v(t) are assumed 
mutually uncorrelated. They are stationary, with 
zero mean. All transfer functions are assumed 
time-invariant. In the next section, they will be 
partitioned into exactly known nominal models 
and additive errors o~'(q -1) = ~0(q -I)  + 
A~(q-~) ,  etc. as in Fig. 1. For  now, we 
represent the extended design models as 
fractions of (partly known) polynomials, 

~ ,  -1, a C(q -1) 
(q ) = ~ ,  

~(q-1) a= B(q -1) (2.3) 
A(q-1)  ' 

~a(q-1) ___A M(q -1) 
N(q-1)  " 

The polynomial degrees nc, nd, etc. are known 
to (or determined by) the designer. t  The 
polynomials D, A and N in (2.3) are all assumed 
stable. Model uncertainty more or less forces us 
to restrict attention to sets of stable systems.~ 
Signals and polynomial coefficients may be 

t Note that we are talking about extended design models. 
In practice, they might only be approximations of classes of 
possibly infinite dimensional and time-varying true systems. 

~:With uncertain unstable poles, the design problem 
becomes unsolvable, in the open-loop context considered 
here. Thus, only a single Diophantine equation will be 
required. (If unstable poles were exactly known, a finite 
estimation error could, theoretically, be obtained.) 
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complex-valued; this is the case, e.g. in digital 
communications applications. A stable, linear 
and time-invariant estimator 

f ( t  I t + m) = Q(q- ' )  "t + m), 
R(q- ' )  y[ 

(2.4) 

of the possibly filtered input 

f ( t )  = S(q-'__.____)) u(t), 
T ( q  -1)  

(2.5) 

minimal MSE is 

1 ~ LoLo. SS. 
E [z(t)10 2 = ~ / J  rofloflo, F p - ~ .  

CoCo.MoMo.AoAo, dz 
x - -  (2.10) 

rofloflo, z 

This is a Wiener filter, optimized by using 
polynomial equations. Its derivation is a special 
case of that in Appendix B. See Ahl6n and 
Sternad (1989) for details. 

is sought. See Fig. 1. The stable filter S / T  is 
assumed to be specified by the user, and thus to 
be exactly known.t Depending on m, the 
estimator is a predictor (m < 0), a filter (m = 0) 
or a fixed lag smoother (m > 0). We minimize 
(1.2), or 

E(E Iz(t)l 2) =/~E If(t) -)~(t I t + m)l 2. (2.6) 

2.2. The nominal solution 
Assume a stable nominal model 

{Co/Do, Bo/Ao, Mo/No} of (2.1)-(2.3) to be 
known. Assume CoBo and pMo to have no 
common zeros on Izl  = 1. (When p = 0, Co and 
B0 are not allowed to have zeros on Izl  = 1 . )  A 
stable estimator may then be designed to 
minimize the mean square error (MSE) 
E If(t) - f ( t  I t + m)l 2, without taking the model 
uncertainty into account. This estimator is given 
by 

Q loNoAo . 
)~0(tlt+ m) = ~ 0  y ( t + m ) .  (2.7) 

Here, flo(q -~) is the numerator of the nominal 
innovations model of y(t). It is the stable and 
monic solution of the polynomial spectral 
factorization equation 

rofloflo, = Co Co, BoBo, NoNo, 

+ pMoMo,AoAo,DoDo,, (2.8) 

with r0 being a scalar. The polynomial Q~o(q-~), 
together with a polynomial Lo,(q), is the unique 
solution to the Diophantine equation 

q-m+kSCoCo,Bo,No, = roflo, Q lo + qDo TLo,. 

(2.9) 

If the true system equals the nominal model, the 

t It can be used, e.g. to reduce the estimator gain outside 
a restricted interesting frequency range, see Ahi6n and 
Sternad (1989). For another application, see Cadsson et  al.  
(1991, 1992). Alternatively, one could use a filter in the 
criterion, J = F . E  I ( S / T ) ( u ( t )  - Ft(t I t + m))l 2. The design 
equations to be discussed are easily modified to apply to that 
problem. 

3. PROBABILISTIC ERROR MODELS 

3.1. Properties of  the error models 
Our goal is now to obtain a simple closed-form 

solution to the robust estimation problem 
(2.1)-(2.6). The perhaps most obvious way of 
parametrizing errors in polynomial coefficients, 

C Co+ AC 

D Do+ A D '  

is unsuitable in this respect. The reason is that 
AD would not, as opposed to AC, appear 
linearly when expectations with respect to 
parameters are evaluated in the criterion. This 
would cause severe difficulties in the derivation 
of design equations. A crucial simplification is to 
proceed instead from error models which are 
linear in all parameters treated as stochastic 
variables. Additive transfer functions A~:, A~d, 
A~ ,  with partly unknown stochastic numerators 
and pre-specified denominators, will be con- 
sidered. They provide flexibility, without sacrifi- 
cing the linearity mentioned above. The 
extended design model (2.1)-(2.3) is thus 
specified as 

C Co+C1AC CoDI+DoCIAC 

D Do D1 DoDI ' 

B Bo B l A B  BoAI+AoB1AB 

A Ao A1 AcrA1 ' 

M Mo M~AM MoN~+NoMxAM 

N No N1 NoN1 
(3.1) 

Above, the nominal models Co~Do, etc. are 
assumed known and stable, with degrees 
nCo, ndo, etc. Stable "error denominators" 
D1, AI and N~, of degrees ndl, na~ and nnl, as 
well as numerator factors C1, B~, M1, of degrees 
nc~,nbl and nm~, may be specified by the 
designer or obtained from data. Coefficients of 
numerator polynomials 

AP(q -1) = Apo + Aplq -1 + • . .  + Apapq -~ ,  

(3.2) 

are stochastic variables. They have zero means 
and parameter covariances/i Api Ap/*, collected 
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in covariance matrices Pap. (The zero-mean 
property defines the nominal model.) These 
coefficients are constant in time, so they are 
independent of the time series e(t) and v(t). 
Except for first and second order moments, their 
distributions need not be known, since they will 
not affect the design. Decomposition of numera- 
tors P~ AP into known factors P1 and stochastic 
factors AP simplifies the uncertainty modelling. 
In the sequel, we utilize two mild assumptions. 
(A1) The coefficients of AC are independent of 

those of AB. 
(A2) The matrices Pac, PAB and P,,~, contain- 

ing covariances of the coefficients of 
AC, AB and AM, are Hermitian and 
positive semidefinite. 

It is necessary to assure (A2) when the 
covariance matrices are used pragmatically, as 
"robustness tuning knobs". Design equations 
may readily be derived for situations with 
correlations between AC and AB. Assumption 
(A1) does, however, simplify the solution, and 
seems reasonable. 

Model error covariances may be obtained 
from identification experiments, or from fre- 
quency domain data on system variability. If a 
fixed filter is to be designed for a large number 
of systems, the statistics may be obtained from a 
representative sample of systems. Probabilistic 
error models remain useful also when statistics is 
hard to obtain. Those who prefer a Bayesian 
view could then interprete error distributions as 
subjective probabilities. Others may just use 
them pragmatically, as robustness "tuning 
knobs". The covariances are then altered until 
satisfactory spectral properties of the filter are 
obtained. Let us now illustrate the versatility of 
the structure (3.1), and outline principles for 
tuning it. 

If only the signal to noise ratio is uncertain, 
we set A C =  AB = AM =0,  and use a higher 
equivalent noise variance. A model (3.1) with 
uncertain noise variance, but well-defined noise 
spectrum is given by M / N = Mo/ No + 
Mo Amo/No = (Mo/No)(1 + Am0), with a scalar 
stochastic Am0. It corresponds to regarding the 
noise as having variance p(1 +/~ IAmol2). 

Another special case is the use of FIR- or 
MA-filters (i.e. no denominators): 

u(t) = (Co + AC)e(t),  

y(t) = q-k(Bo + AB)u( t )  + (Mo + AM)v(t) .  

(3.3) 

In (3.3), degrees of stochastic polynomials may 
be set higher than those of the nominal 
polynomials, dic >nco, etc. This can be used to 
guard against under-parametrization. However, 

for systems with long or infinite impulse 
responses, error models with denominators are 
more appropriate than FIR-models. 

The structure (3.1) covers multiplicative as 
well as additive descriptions of model errors. A 
multiplicative error is obtained with, e.g. 
B1 = BoBm, A~ = AoAm, with B,,, A,,, arbitrary. 
It can be useful to extend (3.1) with several 
additive model error terms. For example, the 
total error of an identified model can be 
described by a variance part and a bias part. 
When the model error is estimated from data, 
using the algorithm described in Goodwin et al. 
(1992), the result is a sum of two expressions of 
type 

/~(A ~(q-1)A~di,(q)) 

1 
- A,l(q_~)A,l ,(q ) (Bib(q-i) 

[ B,,,(q) ~ 
" '" Bin(q- ))Pi t i / '  

\ B , n , ( q ) ]  

which describe the bias (i = 1) and the variance 
(i = 2) contribution to the total error. Above, P~ 
are positive semidefinite matrices. (See (42) in 
Goodwin et al. (1992).) Such expressions can 
always be substituted by scalar models for the 
bias and variance, respectively. They can also be 
multiplied together, to obtain one scalar 
expression for the second order properties 

G(q, q - l )  

A l (q -~)A l , (q )  " 

In our framework, this corresponds to a single 
scalar error model B~ AB/A1 with 
BIB1 ,E(AB  A B , ) =  G. We can thus, without 
restrictions, confine the discussion to models 
with single error terms. 

3.2. Time-domain determination o f  error models 

Example 1: an uncertain time constant. Assume 
that a signal u(t) is known to be generated by a 
low order system, with a white input e(t). Its 
impulse response is known to start at 1.0, but 
then becomes uncertain, because the dominant 
pole location is uncertain. With 95% probability, 
the pole is believed to be in the range 
[0.75.. .0.95], with an average around 0.9. 
From a first order model of this signal 

1 
u(t) = ~e(t)  = 1 _pq-------~t e(t), (3.4) 

nominal model u( t )=  we might choose the 
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~oe(t), with 

Co 1 
°~°= D0 1 -  0.9q - t "  (3.5) 

An additive error model could be derived by a 
first order series expansion of o ~ in the uncertain 
coefficient p 

/O,~l \ _ q-~ Ap 
A ~ =  ~--~p p=o9)AP (1 --O.9--q-l) 2" (3.6) 

Here,  Ap is seen as a zero mean stochastic 
variable. However,  the fit of  the impulse 
responses of ,~ = ,~0 + A,~ to the expected range 
of impulse responses of the system (3.4) is not 
good, see Fig. 2. They tend to spread widely in 
the beginning and are too narrow for large t. A 
better approach is to keep the structure of (3.6), 
but with free user choices of denominator  
coefficients. Thus, we consider the error  model 

Cl AC q - l  Ac 
A o ~ - - -  

DI l + dlq -1 + d~q -2 ' 

with Ac being a scalar stochastic variable. Its 
variance, and the coefficients of D~, should be 
tailored to the actual amount  of uncertainty. 
Better centering of the nominal model will also 
improve the fit. A solution which exactly fits the 
+95%-bounds can be found in this example. It is 
given by 

1 - 0.85q -I 

(1 - 0.95q-1)(1 - 0.75q -~) 

q-~ Ac 
+ (1 - 0.95q-1)(1 - 0.75q-~) ' (3.7) 

with /~(Ac) 2=0.0025,  if Ac is assumed 
Gaussian. See Fig. 2. The model (3.7) reduces to 
o ~ = 1 / ( 1 - 0 . 9 5 q  -I)  when A c = 0 . 1 0  (2a-limit) 

1.4 
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. . . .  . . . . . . . . . . . .  ".'_4.-- ~ ~-- 

10 20 30 40 50 60 70 80 

FIG. 2. Impulse responses of (3.4) in Example 1, for 
p = 0.75, 0.9 and 0.95 (solid). The 5:95% probability limits 
of the extended design model $; = ~o + A ~  are indicated for 
the model (3.7) (dashed) as well as for a series-expansion 
based Gaussian model (3.5), (3.6), with /~(Ap)2=0.010 

(dotted). 

and to f f  = 1/(1 - 0.75q - t )  when Ac = -0 .  10. A 
systematic algorithm for fitting error models to 
time-domain data is a topic of current research. 

For a system with measurable inputs, another 
way of obtaining extended design models of the 
type (3.1) is from identification experiments 
based on functional series expansions 
M 

Pill(q-I). Here,  ~i, i = 1 • - • M represent a 
i = 1  

set of predetermined rational basis functions, 
such as, e.g. discrete Laguerre functions. This 
model structure is linear in the parameters {p;}. 
It has received increasing interest as a tool for 
system identification, see Wahlberg (1991) or 
Goodwin et al. (1991). If an identification 
experiment provides parameter  estimates (/~o;} 
and covariances for zero mean errors {A/~i}, we 
obtain the extended design model 

M M 

i = 1  i = 1  

If bias-errors are small, the covariance matrix 
provides acceptable estimates of the modelling 
errors. Writing A ~  in common denominator  
form and use of the covariance matrix for {Ap;} 
g ives /~(A~ A ~ . ) ,  needed in the robust design. 

3.3. Frequency domain specifications 
Probabilistic error  models can be specified in 

the frequency domain, as parametrized distribu- 
tions. If the input is measurable, the parameters 
of such models can be estimated from data, 
using a maximum likelihood method. See 
Goodwin et al. (1992). Let us briefly recapitulate 
the stochastic embedding concept, proposed by 
Goodwin and Salgado (1989). An additive 
transfer function e r r o r  AC~(e i~°) is viewed as a 
realization of a stochastic process in the 
frequency domain, with zero mean and 

l~{Ar~(eico~)Ac~.(ei~OO} A F(eiO),, ei,O2) >_ O. 

For stationary processes, F(ei~,, #o,2)= 
Fs(#(°)'-~'2)). The shape of Fs is a measure of the 
assumed frequency domain smoothness of 
particular realizations of the model error. The 
variance ( to1 -  ~02 = 0) is a scale factor for the 
uncertainty. 

The frequency domain stochastic process 
Aq3(# ~) corresponds to a time-domain filter with 
stochastic, zero mean, impulse response 
coefficients 

AC~(q - ' )  = ~ &q-J; E(gj, ge) = Y(J, £). (3.8) 
j=0 

Here,  y(j, ~) can be calculated from the inverse 
two-dimensional discrete Fourier transform of 
F(e i'°', #'° 0. For stationary stochastic processes 
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in the frequency domain, the corresponding 
time-domain stochastic process will be nonsta- 
tionary and white, with 

E(g/, ge) = Y~ 6/.e. (3.9) 

For example, consider a frequency domain 
stochastic process ~°(eiC°), with a zero mean 
Gaussian distribution and covariance function 

0~ei(~-~2)  
/~{~ ' ( e i~ ' ) f f (* (e i~2)}  --  e i(m'-m2) --  X" (3.10) 

It corresponds to the nonstationary time domain 
model (3.8), (3.9), with a Gaussian distribution 
of independent parameters, and variances 
y/=a:~/. See Goodwin et al. (1992). By 
truncating at some j = M for which Z M is small, 
we obtain ff((q-1) ~ .  ho + • • • + hMq -M, with 
 (hy= aZ/. 

A priori information may be available about 
the frequency domain distribution of the 
unmodelled dynamics. It can be incorporated by 
using 

A~d(q-') = ~(q-~)N'a(q-~) .  (3.11) 

Here, dg(q -t) is a known frequency shaping 
filter, and W~(q -a) is a stationary process in the 
frequency domain, with covariance function 
1"-, (ei(,,,,-,o2)). 

Example 2: a frequency-shaped error model. 
Suppose that the mean magnitude of the model 
error in the frequency domain can be described 
by a magnitude response of a first order filter. 
Then, we may use (3.11), with 

1 + r/q -1  (3.12) 
~t(q-1) = 1 + allq -1" 

Also, assume that the parameter ~ in (3.10) can 
be tuned to give a reasonable description of the 
degree of smoothness (in the frequency domain) 
of the most probable model errors. The process 
in (3.10) can then be used to represent the 
stationary part F'(e i(°''-'°2)) of the frequency- 
domain process. Truncation of its corresponding 
time-domain impulse response gives a model 
(3.11), with the structure (3.1) 

l + r / q  -1 ( h o + h l q - l + . . . + h M q _ M )  A ~C~(q-1) = 1 +al lq  -1 

_ n l ( q  -1 )  A n ( q  -a  ) 
- A ~ ( q _ ~ )  (3.13) 

The covariance matrix of {h/} is P a n =  
diag(a:~.J). Note that this model is fully 
determined by only five parameters, re, ~., all, r/ 
and the truncation length M. 

4. DESIGN OF ROBUST FILTERS 

We proceed from the model (2.1), (2.2), (2.3) 
and (3.1). The coefficients of AC, AB and AM 
are random variables. They cause the polyno- 
mials C, B and M to be random variables as 
well. The expectation operator /~ in (2.6) will 
provide an ensemble average, yielding one 
estimator to be used on all systems. 

4.1. The averaged spectral factorization 
An averaged spectral factor f l (q- t )  is defined 

as the numerator polynomial of an averaged 
innovations model of the utilized measurement. 
In the present case, it is given by the stable and 
monic solution to 

rflfl, A_ E { C C ,  B B , N N ,  + p M M , A A , D D , } ,  

(4.1) 

with scalar r. Define double-sided polynomials 

CC, ~- : . (CC. ) ,  

B B ,  ~ ~. (BB,) ,  

i~zl lVl , A E ( M M , ). 

Then, use of (3.1) gives 

CC, = CoCo,DIDt ,  + DoDo, Cl CI,/~(AC AC,),  

B B ,  = BoBo,A~A~, + AoAo, B~B1 ,E(AB AB,),  

g g ,  = MoMo,N~N~, 

+ NoNo,M~M~,E(AM AM, ) .  (4.2) 

We can now simplify (4.1). 

Lemma 1. Let Assumption (A1) hold. Then, 
(4.1) can be expressed as 

rflfl, = C C , B B , N N ,  + p i f4 i f t ,AA ,DD, .  (4.3) 

Proof. The coefficients of a polynomial AP are 
zero mean stochastic variables. Therefore, the 
coefficients of AP AP, will also be stochastic 
variables, having expected values given by (4.5) 
below. The coefficients of (AB, AC), are 
independent, and so are the coefficients of 
AB AB,, AC AC,. Using independence for 
complex parameters (see e.g. Lo6ve (1963)), the 
right-hand side of (4.1) becomes 

I E ( C C . ) E ( B B , ) N N .  + pF_. (MM.)AA.DD. .  

The averaged factors in (4.2) can be evaluated 
as follows. For a stochastic error model 
numerator AP(q-1), as in (3.2), let the 
Hermitian parameter covariance matrix be 

P A p  = " " " : . 

L/~(Ap~ v Ap~) . . .  /~ [APap[ 2 l 

(4.4) 
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Denote the sum of the diagonal elements go, the 
sum of the elements in the ith super-diagonal gi, 
the sum of elements in the ith sub-diagonal g_i. 
Note that g-i  = g*. Then it becomes evident, by 
direct multiplication of A P ( q - 1 ) A P , ( q ) ,  and 
taking expectations, that 

/~(AP AP,) =g~pq-dp + . . .  + g,~q-1 

+ go + glq + " " + gopq ap. (4.5) 

Thus, the averaged factors in (4.2) are readily 
obtained. Above, dp <-6p, with dp = 0 if the 
coefficients are uncorrelated. For example, the 
coefficients h/ are uncorrelated in the model 
(3.13). The resulting polynomial /~(ABAB,)  
would then simply be a scalar, regardless of the 
degree of AB. 

In (4.2), (~(~, will contain powers up to q±ne, 
where n~ = max {nCo+ ndl,  ndo + ncl + dc}, 
with analogous expressions for n/~, nrh. Since 
N = NON1, etc. the averaged spectral factor in 
(4.3) has degree 

nfl = max {n~ + n b  + nno + nnl,  nrh 

+ nao + na~ + ndo + ndl}. 

The factorization (4.3) is solvable with respect to 
a unique stable fl(z -1) if and only if its 
right-hand side is positive on Izl = 1. Introduce 
the assumptions 
(A3) Co, Clff.(AC AC, ) ,  pMo and p M I E ( A M  

AM,) have no common zeros on Izl  = 1. 

(A4) Bo, B~E(AB AB,),  pMo and pM~E,(AM 
AM,) have no common zeros on Izl = 1. 

Lemma 2. Let D, A and N be stable and (A2) 
hold. Then, a unique stable spectral factor fl, 
satisfying (4.3), exists, if and only if both of (A3) 
and (A4) are true. 

Proof. See Appendix A. 

The conditions (A3) and (A4) are mild. They 
will almost always be fulfilled, even if Co, Bo and 
M0 have zeros on the unit circle. In fact, the 
conditions are more relaxed than for the nominal 
case, due to the presence of averaged factors 

4.2. The cautious Wiener filter 

Theorem 1. Assume an extended design model 
(2.1), (2.2), (2.3) and (3.1) to be given, with 
known covariances of the stochastic polynomial 
coefficients. Assume (A1)-(A4) to hold. An 
estimator o f f ( t )  then minimizes (2.6), among all 
linear time-invariant estimators based on y( t  + 
m), if and only if it has the same coprime factors 

as 
f ( t  t + m)  = Q l N ° N l A ° A t y ( t  + m).  (4.6) 

rfl 
Here, fl(q-1) is obtained from (4.3), while 
Q~(q-l) ,  together with L , ( q ) ,  is the unique 
solution to 

q-m+k sCC,Bo ,A1 ,No ,N1 ,  

= r f l ,Q,  + qDoD~ TL , ,  (4.7) 

with generict polynomial degrees 

nQm = max (ns + n6 - k + m, ndo + ndl + nt - 1), 

nL = max (ng+ nbo + na~ + nno + nn~ 

+ k - m, nil) - 1. (4.8) 

For the ensemble of systems, the minimal 
criterion value becomes 

1 ~ L L ,  + P SS,  CC,i(12(I ,AA, 
EE lz-t-12mi"=2~ri( ) ~ rflfl, TT,  rflfl, 

SS, CC, CC,/~(Aqd A ~ , ) A A , N N ,  dz 
+ (4.9) 

TT,  DD,r f l f l ,  z 

Proof. See Appendix B. 

Remarks. For minimizing (2.6), the design 
equations are (4.3), (4.5) and (4.7). The only 
new type of computation, as compared to a 
nominal solution, is trivial: summation of 
covariance matrix elements, diagonalwise. There 
will, of course, exist a filter giving superior MSE 
for any particular system, namely the (unknown) 
Wiener filter for that system. There may also 
exist superior nonlinear filters. 

Note that N~ and A1 affect the filter (4.6) 
directly. If 1/N~ or 1/A~ in the error models have 
resonance peaks, indicating large uncertainty, 
the filter (4.6) will have low gain at those 
frequencies. Stable common factors might exist 
in (4.6). (Thus, the formulation about coprime 
factors.) Equation (4.7) will have a unique 
solution, with degrees (4.8). Note that fl,(z) 
(unstable) and Do(z-1)Dl (z -1)T(z  -1) (stable) 
have no common factors. Almost common 
factors close to Izl = 1 tend to make Diophantine 
equations numerically sensitive. The risk for this 
is less in (4.7) than in (2.9), because zeros of fl 
are in general more distant from unit circle than 
zeros of rio. The filter (4.6) tends to have lower 
resonance peaks than (2.7). 

It is easy to show that if the block S / T  would 
contain an uncertainty, S / T = So~To + S~ AS / TI , 
this would not affect the resulting filter. In (4.6) 
and (4.7), the nominal polynomials So and T0 
would be substituted for S and T. 

t For special polynomials, the solution may have lower 
degrees. 
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If the variance of broad-band measurement 
noise is increased, the gains of both the nominal 
and the robust filters decrease. If the noise level 
is high, performance differences between nomi- 
nal and robust solutions tend to be small. 

It is shown in Appendix B that if no 
uncertainty is assumed, (4.3), (4.6)-(4.9) reduce 
to the nominal solution. Also, with uncertainty, 
the structure of the design equations remains 
very similar to the nominal case. In fact, if the 
transducer B/A is known, i.e. A ~ =  0, we can 
substitute (~C,, AI/~,, D, N for CoCo,, MoMo,, 
Do, No in (2.7)-(2.10), which then become 
identical to (4.3), (4.6)-(4.9). Robust and 
nominal filter design are then merged together 
into one pair of design equations, namely (2.8) 
and (2.9). (The reasoning in Grimble (1984) is 
based on similar substitutions.) This analogy 
cannot be generalized to uncertain transducers 
B/A, because of the presence of /~/~, in (4.3) 
and of Bo,A1, in (4.7). The criterion expressions 
(2.10) and (4.9) will also differ for A~d~0, due 
to the additional third term in (4.9). 

Note that (4.9) consists of three terms. Term 1 
represents the effect of finite smoothing lag m. 
As in Carlsson et al. (1991), it can be shown that 
L,(q)-->O when m---~o0. The second term 
mainly represents the effect of noise. It vanishes 
for p =0.  Finally, the third term represents 
degradation caused by errors A~d in the 
transducer model. It vanishes only when A ~ = 0. 
Note that if both p and A~  are zero, the impact 
of A ~  diminishes as m ~ ~, because LL, --+ O. 

In situations with little noise and sufficiently 
large smoothing lag m, term 3 in (4.9) will 
dominate the error. This is not surprising; a 
deconvolution smoother then essentially in- 
verts ~d. This operation is sensitive to model 
errors there. Let S = T =  1, /9 = 0  and m ~ .  
Term 3 of (4.9) will then be CC/~(A~gA~,)/ 
E ( ~ , ) D D , .  It is proportional to the relative 
error in the spectrum of (g. 

4.3. Analytical expressions for performance 
evaluation 

Theorem 2. Let a nominal estimator Qo/Ro = 
Q~oNoAo/Tflo be designed by (2.7)-(2.9). 
Applying it, instead of (4.6), on an ensemble of 
systems results in an increase, compared to 
(4.9), of the mean MSE/~E [z(t)[ 2. The increase 
is given by 

J~E [z(t)[ 2 - / ~ E  Iz(t)l~i. 
r 

r ,~ Qlofl-QiNiAlflO 2dz 
=2:ri )o ~ - o D ~ A - - ~ ' 0  -~--, (4.10) 

where r, fl is defined by (4.1)-(4.3) and Q/R is 
the optimal robust filter (4.6). 

Proof. To obtain (4.10), the nominal filter 
Qo/Ro is expressed as Q/R + (Qo/Ro- Q/R). 
The optimality of Q/R implies that any 
modification of it gives an orthogonal contribu- 
tion to the criterion. This, and the use of (4.1) 
gives the first equality of (4.10). Mixed terms 
vanish, due to the orthogonality. The second 
equality follows from (2.7) and (4.6). 

Theorem 3. Let a robust estimator Q/R be 
designed by (4.3)-(4.7). When applying it on the 
nominal system, the increased MSE, compared 
to the minimum (2.10) is 

E [z(t)l 2 - E Iz(t)l 2 

ro ,l~ flo 2 Q Q0 2 dz 

2~ri 

ro ~ QlflomlN1- Qlofl 2 ~ 
= 2:t---i D00Tfl . (4.11) 

Proof. Analogous to Theorem 2, by expressing 
Q/R as Qo/Ro + (Q/R - Qo/Ro). 

Remarks. The middle expression in (4.10) can 
be used for arbitrary linear estimators Qo/Ro, for 
example minimax-designs. Thus we do not have 
to evaluate the mean performance of alternative 
designs by Monte-Carlo simulation. The aver- 
aged innovations model fl/DAN in (4.10), and 
the nominal innovations model flo/DoAoNo in 
(4.11) can be seen as weighting functions. In 
frequency regions where their magnitude is 
large, differences between the two estimators 
will have a large impact on the performance. 

4.4. A numerical example. 

Example 3: calculation and comparison of robust 
and nominal designs. Consider an extended 
design model (3.3), with a FIR nominal model 
given by 

Co(q -1) = 1 - 0.95q-1; Bo(q -~) = 0.5 - 0.4q-~; 

Mo(q -1)  = 1 - 0 .8q  -1 ,  k = 1, p = 0.001. 

(4.12) 

The covariance matrices of AC, AB and AM are 

p a c = [ ~  0 [00"0025 0 
0.040]; P a n =  0.0225]; 

paM__[~ 0 
0.010]" 

The assumed standard deviations are thus 0.20 
for cl, 0.05 for bo, 0.15 for b I and 0.10 for ml. 
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We would like to obtain a robust filter 
a( t  I t ) - -  (Q/R)y(t). This est imator  should, es- 
sentially, perform a one step prediction to obtain 
u(t),  since the transducer q-~B(q -~) has a one 
step delay. Using (4.5), we obtain 

/~(AC A C , )  = 0.040, 

/~(AB A B , )  = 0.0250, (4.13) 

/~(AM AM,)  = 0.010. 

Inserting (4.13) into (4.3) gives 

rflfl, = (1.9425 - 0.95(q + q - ' ) )  

× (0.435 - 0.2(q + q-~)) 

+ 0.001(1.65 - 0.8(q + q - ' ) ) .  

By solving for the stable monic fl(q-l) and r, we 
obtain 

fl(q-l) = 1 - 1.4659q -a + 0.5315q -2, 

r = 0.3575. 

Proceed to calculate the filter polynomial  
Qt(q -1) from (4.7), in which S = A  1 -----No = NI = 

Do = DI = T = 1. With degrees nQ1 = O, nL = 2, 
we obtain, with Ql(q -1) = c, 

q(1.9425 - 0.95(q + q-~))(0.5 - 0.4q) 

= 0.3575(1 - 1.4659q + 0.5315q2)c 

+ q(~,  + elq + ~2q2). 

Equating for different powers of q gives 

Ql(q -l) = -1.3288,  

L.(q) = 0.6549 - 0.9995q + 0.380q 2. 

The robust est imator (4.6) is t~(t l t  ) =  
(Q1/fl)y(t), or 

- 1.3288 
t~(t [ t) 

1 - 1.4659q -1 +0.5315q -2y(t)" (4.14) 

It has poles in z = 0.8086 and z = 0.6573. The 

nominal filter polynomials are 

Q m(q - l) = _ 1.8413, 

flo(q -~) = 1 - 1.7206q-~ + 0.7365q -2, (4.15) 

with estimator poles in z = 0.9206 and z - - 0 . 8 0 .  
The robust est imator has decreased the gain and 
moved the poles inward. It has become more 
cautious. 

The performance of nominal and robust 
estimators is exemplified in Fig. 3. The MSE is 
much lower for the robust filter, for most 
parameter  values. For a wide range of pa ramete r  
variations, the performance of the robust 
estimator is close to that which could be 
obtained if the true parameters  were known. 

In Fig. 4, the mean performance (2.6) was 
calculated, for nominal and robust estimators,  as 
a function of the standard deviations of some of 
the parameters .  As expected, the mean perfor- 
mance is much better  for the robust filter for 
large parameter  deviations. In situations with 
small model errors, we might just as well use the 
nominal estimator.  This is also true when the 
noise level is high; when Ev(t)2>-O.1, the 
difference between robust and nominal filters is 
very small. 

In Fig. 5, we compare  with minimax-designs, 
assuming two distributions, both with variances 
as above. (1) Rectangular  (hard bound V ~ x  
standard deviations) and (2) five-point distribu- 
tions of each paramete r  (bound :t:0.5 for 
cl, bl ,  ml ,  -t-0.2 for b0). Figure 5 clearly reveals 
the weaknesses of minimax designs: for wide 
model error distributions, with unlikely remote  
values, the filter performance for the nominal 
case deteriorates.  More  reasonable filters are 
obtained when the most  remote  value is close to 
the standard deviation of the distribution. 
However ,  even the assumption of a rectangular 
distribution results in a more conservative design 
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than our cautious Wiener filter. Additional 
details and comments are found in Appendix D. 

The simplest way of robustifying an estimator 
is to just increase the noise variance p used in a 
nominal design. The performance of this 
technique is also illustrated in Fig. 5. The result 
around the nominal case is not as good as for our 
robust filter. The difference can be expected to 
be even larger in more high-order examples. The 
use of just one single robustification parameter  
mostly provides insufficient degrees of freedom. 
It can only vary fl along a single root- locus  
trajectory. 

4.5. A veraging over systems vs averaging over 
models 

Conceptually, two types of "averaged MSE"  
could be defined. 

Case 1. One filter is to be used on a class of 
different systems. The averaged performance 
/~syst('), with respect to the systems, is then to be 
minimized. 

Case 2. A set of filters, based on different design 
models, are all to be used on one (unknown) 
true system. The average performance /~mod('), 
with respect to these models, is then of interest. 

Our criterion (1.2) has been formulated with 
Case 1 in mind. Situations corresponding to Case 
2 are, however, also encountered.  An example is 
equalizer design for the pan-European digital 
mobile radio standard GSM. There,  channel 
models of FIR type are estimated during 
repeated short training sequences, in which the 
input u(t) is known. Estimated models are then 
used to reconstruct unknown symbols during 
other times. If neither transmitter nor receiver 
moves, the channel will be time-invariant during 
many training events, but the estimated channels 
will differ due to noise. Robustness of equalizer 
performance according to the criterion of Case 2 
is then a reasonable design objective. 

An attempt to design filters directly by 
minimizing J~mod(E Iz(t)[ 2) does lead to intrac- 
table nonlinearities. We could, as a substitute, 
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minimax-design assuming rectangular distributions (dashed-dotted), a minimax-design based on five-point 

distributions (crosses) and a nominal filter, designed using p = 0.1 (dotted). 
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use our cautious Wiener filter (designed for Case 
1) also in Case 2. For any nominal model, a filter 
would then be designed by minimizing 
Esyst(E Iz(t)] 2) with respect to a (non-existing) 
set of systems around that particular model. Use 
of this procedure for all models would mostly, 
but not always, improve /~mod(E ]Z(t)IZ), com- 
pared to the use of nominal design. Exceptions 
exist, as illustrated by the following counter- 
example, suggested by Ari Kangas. 

Example 3 (continued). The true system is 
assumed given by (4.12). One hundred different 
design models were generated, by adding 
random numbers Ac, • At(0, 0.040), Ab0 • 
N(0, 0.0025), A b l • N ( 0 ,  0.0225) and A m , •  
N(0, 0.010) to the corresponding system 
coefficients. For each of the 100 models, robust 
and nominal filters were designed, as in 
Example 3. On average, nominal designs 
outperformed robust filtering! We obtained 
/~mo0(g Izl 2) = 1.22 for the robust filters and 1.11 
for the nominal ones. 

Fortunately, this kind of situation turns out to 
be a rather rare exception. The following 
Monte-Carlo simulation indicates that the 
cautious Wiener filter, on average, improves the 
performance similarly in Case 1 and Case 2. 

Example 4: performance for sets of  randomly 
chosen models and systems. We generated 500 
different systems, with the structure 

y(t) = (bo + b ,q - '  + b2q -2 + b3q -3 + baq -4) 

x u(t - 1) + (1 - 0.8q-')v(t),  

1 (4.16) 
u(t) = 1 - 1.4q- '  + 0.65q -2 e(t), 

Ee(t) 2 = 1, Ev(t) z = 0.001, 

by using independent random numbers bi • 
X(0, 1). The performance of filter estimators 
( m = 0 )  of u(t) was investigated. In robust 
design, Pan = diag (0.04), PAM = 0 and PAc"= 0 
were used. 

First, in an Experiment 1 illustrating Case 1, 
the 500 systems (4.16) represented different 
nominal design models. Around each of these 
500 models, ensembles of true systems, with 

B-polynomials B o + A B ;  V~-(Abi)2=0.2, were 
assumed to exist. Using (4.9) and (4.10), the 
mean performances, over each ensemble of true 
systems, were calculated for robust and nominal 
filters. We also calculated the minimal MSEs, 
achievable for known systems. The minimal 
MSEs varied between ~1.0 and ~6.0, 
depending on how well a particular transmission 
channel B(q- ' )  could be inverted. Their 
average, over 500 cases, was 3.33. The average 
mean MSEs for robust and nominal design were 

5001 50o rob i_~/~systE Iz(t)l 2 = 3.72, 

1 50o nora 500 ~,/~srs, E Iz(t)l 2 = 6.25. 

The improvement resulting from a robust design 
was rather small in ~400 of the 500 cases, but 
could be very large in the other ones. This is 
illustrated by the left-hand histogram of Fig. 6. 
Models for which a nominal design is sensitive 
have zeros of Bo(z -~) close to the unit circle in 
the low-frequency range, where u(t) has 
significant energy (see Fig. 7). 

Next, an Experiment 2 was performed to 
investigate Case 2. The 500 systems (4.16) here 
represented different true systems. For each of 
them, 100 design models were generated, by 
adding independent random coefficients A b  i • 

380 
i, 

[ADDITIONAL CASES AT 77, 84, 95,140 AND 556 ] =:~ 

I g . l k . . .  | 
~o ~o ~'o ~ ~ ' 

190 

t 

30ft" 20 [ADDITIONAL CASES AT53 AND 187 ] => 

10 

0 0 10 20 30 40 

Emod( M S E).om - Emod( M S E)~ob 

FIG. 6. Distribution of the reduction in mean MSE with robust, as compared to nominal, design in Example 
4. In Experiment 1 (left), averages are taken over ensembles of systems, for each of 500 different nominal 
models of type (4.16). In Experiment 2 (right), we average over 100 models, for each of 500 true systems. 

50 
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FIo. 7. Magnitude spectra in one particular case in Example 
4, Expcrimcnt  1. Upper  solid curve: input u. Lower solid 
curve: channel Bo(e'°'). Upper  dashed: nominal  filter. Lower 
dashed: robust filter. Dashed-do t ted :  frequency distribution 
of the mean RMS performance loss (square root of the 
integrand in (4.10)) with nominal  filtering, if the system is 

uncertain. 

~(0,  0.04) to the B-coefficients of (4.16). Based 
on these models, robust and nominal filters were 
designed. For each system, estimates of their 
average performance over the model distribu- 
tion,/~mod(E [z(t)12), were calculated.t The total 
averages, over the 500 different systems, were 

1 500 I 
- -  ~/;~modE [z(t)l 2 = 3.76, 
500 i= t rob 

1 500 [ 
/:SmodE Iz(t)l~ -- 6.01. 

500 i=1 nora 

There were 18 cases out of 500 in which nominal 
designs, on average over 100 models, 
out-performed the robust ones. The perfor- 
mance difference was then small, in the range 

0.01 -< Emod(MSE)rob --/~mo~(MSE),om -< 0.22. 

Typically, a robust design out-performed a 
nominal one. As in Experiment 1, the difference 
was mostly rather small, but was very large for a 
significant minority of systems. See Fig. 6. A 
detailed investigation of the experiments re- 
vealed a very reliable behavior of the robust 
filters, with mean MSEs seldomly more than 
20% above MSEs obtainable with a known 
system. When a nominal design was sensitive, 
robust design eliminated the sensitivity, resulting 
in a greatly improved mean performance. No 
evidence of bad behaviour of robust filters was 
detected. No case of a large superiority of 
nominal design, as compared to robust design, 
were found in Experiment 2. To conclude, in 

t For each of the 100 design models, a robust  and a 
nominal filter was obtained.  Calculation of the MSE for each 
of those filters, and averaging over the results based on 100 
models, gave estimates of Em,~E Iz(t)l 2 [rob and 
'Emod E Iz(/)12 J . . . .  respectively. 

situations described by either of Case 1 or Case 
2, much could be gained, and little was lost, by 
using the cautious Wiener filter. 

5.. R O B U S T  STATE E S T I M A T I O N  

Using the principles discussed in the previous 
sections, a polynomial equations approach to 
robust state estimation can be developed. 
Consider a stable stochastic model in state-space 
form. It has n states, a scalar output s(t) and an 
/-vector f(t),  to be estimated: 

x(t + 1) = Fx(t) + ev(t), (5.1) 

s(t) = Hsx(t); f( t)  = n,x(t). (5.2) 

Here, ev(t) is white, with covariance matrix 
R ~ -  0. If ~e = n and Hf = I,, full state estimation 
is desired. Measurements y(t) of s(t) are 
corrupted by coloured noise 

y(t) = s(t) 4 M(q-1) v(t), (5.3) 
N(q-') 

with E Iv(t)l  2 ~ ,o. Now, express (5.1) as 

1 
x(t) = D(q_~) C(q-1)e~(t), (5.4) 

where D ( q - 1 ) = d e t ( 1 - q - l F )  is the charac- 
teristic polynomial and C(q -1) = adj (I - 
q-lF)q-I  is a n ]n polynomial matrix. The 
• e ln-matrix H I is known. Other parts of the 
model (5.2)-(5.4) may be uncertain. We will 
consider an extended design model with the 
following structure. 

ns = no + An,  (5.5) 

g ( q  -t) Mo(q -t) M t ( q - t ) A g ( q  -~) 
N(q_t) No(q_t) -~ Nl(q_X) , (5.6) 

1 1 
O(q-1) C(q -t) = Do(q-i) Co(q -t) 

1 
~ Dl(q-t) Ct(q- l )AC(q- t )  • 

(5.7) 

In (5.5), AH is a 1 In-vector containing zero 
mean stochastic elements, with 

/~(AH* AH) ___a PH -> 0. 

The noise model (5 .0 ,  with covariance matrix 
PAM->0 and No, N1 stable, is of the type 
introduced in Section 3. In (5.7), Do and DI are 
stable. The elements of AC(q -1) are zero mean 
stochastic polynomials, defined as in (3.2). 
Different elements of AC may be correlated, but 
AC and AH are mutually uncorrelated. If 
elements of F in (5.1) are uncertain, series 
expansion gives a model of type (5.7). However, 

AUTO 29:3-G 
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as was discussed in Example 1, a better 
description may be obtained for large uncer- 
tainties if Dl(q-1), Cl(q -1) and AC(q -1) are 
tuned to the uncertainty directly. Introduce the 
polynomial matrix 

f, ___a/~(CR¢C,) = D,D,,CoReCo, 

+ DoDo,C ,E(ACR¢AC, )CI , .  (5.8) 

Elements of /~(ACR¢ AC,)  are linear combina- 
tions of polynomials of type (4.5). 

Let H:  denote the ith row of H t .  Introduce 
the following polynomials 

fi~ a= E,(HnCR¢C,H*) = HfiPH~, (5.9) 

p~ a__ P~(H~CR~C,H*~ ) = tr [P/~(H:H0] 

= tr [P(HJH0 + PH)]. (5.10) 

Introduce the stable and monic average spectral 
factor fl(q-~), and a scalar r, from 

rflfl, a= JE{H~CR~C,H*NN, + p D D , M M , }  

= ['~NN, + pDD,IQI('I,, (5.11) 

where N = NON1, D = DoDI and where M)~,  is 
defined as in_(4_2). A stable fl exists if and only 
if /5 and p M M ,  have no common factors on 
Iz l  = 1. 

Theorem 4. If a stable fl from (5.11) exists, a 
stable causal estimator, which minimizes 

e 

/~E tr [z(t)z(t)*] = EE ~ If(t) - ~ ( t  I t + ml)l 2, 
i=1 

is 

,,, r NoN1 
~ ( t ) = ( q m , Q l " . q  "ae) - - - -~y( t ) ,  (5.12) 

where the polynomials Q;(q-l) ,  together with 
L~,(q), are unique solutions to 

q-m'f)~No,N,, = rfl,Q, + qOoOlL,, ,  

i = l - . - e ,  (5.13) 

with generic degrees 

nQi = max {n/5~ + mi, ndo + nd, - 1}, 

nLi = max {nno + nnl - mi, nil} - 1. 

Proof. See Appendix C. 

Remarks. Note that the lags m; may differ. After 
calculating (5.8)-(5.10), the design equations 
consist of the scalar spectral factorization (5.11) 
and of the e uncoupled scalar Diophantine 
equations (5.13). (Since only the left-hand sides 
of (5.13) differ, they can be solved as a single 
system of linear equations.) For models without 
uncertainty, (5.12) is a transfer function 
formulation of a stationary Kalman estimator. 

For the nominal case with scalar f ( t ) ,  see 
Carlsson et al. (1991). 

6. ROBUST F E E D F O R W A R D  C O N T R O L  

It is easy to utilize the proposed technique in 
order to improve the performance robustness of 
the LQG feedforward controllers discussed, for 
example, by Sternad and S6derstr6m (1988) or 
Hunt (1989). Consider a stable system with 
scalar output to be controlled y(t), input u(t) 
and a measurable signal w(t). With a similar 
notation as in (2.1)-(2.3), it is described by 

B(q-1) u(t - k) + D(q-~) w(t - d), 
y(t) =A(q_~) 

(6.1) 
w(t) = G(q-l-------~) v(t). 

H(q -1) 

Here, v(t) is white, with unit variance. As in 
Section 3, we use the structure 

B Bo B1 AB 

A Ao Al 

D Do D1 AD 
4 - - -  

F Fo /:1 ' 

G Go G1 AG 
4 - - -  

H Ho H1 ' 

(6.2) 

where AB, AD and AG are stochastic 
polynomials. They have zero means and known 
positive semidefinite autocovariance matrices 
PAn, etc. All denominators are stable. 

A stable and causal feedforward filter, 
operating on w(t), is to be designed in order to 
minimize an infinite horizon quadratic criterion, 
with input penalty p -> 0 

J = P~E(ly(t)l 2 + p lu(t)lz). (6.3) 

In a disturbance measurement feedforward 
problem, w(t) represents the disturbance. In a 
command feedforward problem, w(t) is a 
command signal and (G/H)v( t )  is a stochastic 
model, describing its second order properties. A 
servo filter is then to be designed, so that 
( B / A ) u ( t - k )  optimally follows a response 
model - (D/F)w( t  - d). The solution to both of 
these problems is presented below. First, 
calculate a stable and monic spectral factor 
(~(q-1) and a scalar s from 

sGG,  = E ( G G , )  = GoGo,H1H1, 

+ HoHo,G,G, ,F.(AG AG,) .  (6.4) 

It exists if and only if {Go, G~E(AG AG,)} have 
no common zeros on Jz[ =1 .  Then, calculate 
another stable and monic spectral factor fl(q-~), 
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FIG. 8. Pole location (left) and Bode magnitude plot of the system B/A in Example 5. Four comer points 
(r, p)= (0.9, 0.2), (0.4, 0.2) (dashed-dotted), (0.9,0.4), (0.4,0.4) (dashed) are compared to 10 systems 
chosen randomly, using a rectangular distribution, from the set defined by the adjusted error model (solid). 

and a scalar f,  from 

fflfl, = BoBo,A,A, ,  +/~(AB AB,)  

x BIB1,AoAo, + pAoAo,AIAI, .  (6.5) 

It exists if either p > 0 or if {Bo, BI/~(AB AB,)} 
lack common zeros on Iz] = 1. 

Theorem 5. A stable and causal feedforward 
filter minimizing (6.3) is given by 

Q a AoA1 
u ( t ) =  flFoG w(t), (6.6) 

where Ql(q-l) ,  together with L, (q ) ,  is the 
unique solution to 

q-d÷kBo,Ai,DoG = f f l , a l  + qFoHoH~L,, (6.7) 

with generic degrees 

nQI =max(ndo + n~, + d - k, nfo + nho + nhl - 1), 

nL = max (nbo +nal - d + k, nil) - 1. 

A direct proof closely follows the reasoning in 
Appendix B and is omitted here. The duality 
discussed in Bernhardsson and Sternad (1993) 
can also be used. The various transfer function 
uncertainties affect the design equations 
differently. 
• The uncertainty AG of the disturbance or 

reference enters via (6.4). It affects the design 
in a similar way as would a measurement noise 
o n  w(t). 

• The uncertainty AB of the system enters via 
(6.5), in a similar way as does the input 
penalty p . t  Also, note the presence of Al in 
(6.6). If IB~/All is large at frequency tol, 

t In fact, the effects of/9 and of/~(AB.) are identical if 
A t = I and B I = q-C, when PaB is diagonal. (E(AB AB,) is 
then a scalar, cf. (4.5).) 

indicating large uncertainty, the filters has low 
gain at o91. 

• Perhaps somewhat surprisingly, uncertainty in 
D / F  has no effect at all on the regulator 
design. By duality (see Bernhardsson and 
Sternad, 1993), this corresponds to uncertainty 
in S / T  having no effect in Section 4. 

The intuitive notion that assumption of measu- 
rement noise on w(t) and increase of the input 
penalty p would improve the performance 
robustness of a nominal design, is thus 
supported. With the above equations, the 
robustness can be tailored more exactly to the 
expected type and amount of uncertainty. 

Example 5: frequency domain adjustment of  an 
error model and robustness improvement of  a 
disturbance measurement feedforward regulator. 
Assume the disturbance w(t) in (6.1) to be 
white. The disturbance transfer function is 
D / F = I / ( 1 - O . 5 q - 1 ) ,  with delay d = 2 .  No 
uncertainty in G / H  or D / F  is assumed, for 
simplicity. The transfer function 

k B q-2b0(1 + 0.8q -1) 

q -  A = (1 - zlq-~)(1 - zzq-1) ' 

has uncertain complex-conjugated poles 

zL2 = 1 - rp + i0.67p; r e [0.4, 0.9], 

p e [0.2, 0.41. 

The static gain is assumed to be exactly --1, so 
we normalize to bo=(r2+O.672)p2/1.8. At 
higher frequencies, the uncertainty increases. 
Both the bandwith and the damping can vary 
significantly (see Fig. 8). Information about the 
exact distribution of r and p is not assumed to be 
available. (This is often the case in practice.) 
Still, a multiplicative error model 

B B0.l B1 AB B1 Bo Bm 

A Ao A1 A1 AoAm'  
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FIG. 9. Criterion value in Example 5 for well damped systems, r = 0.9 (left) and lightly damped systems, 
r = 0.4 (right). Use of the nominal controller (solid) is compared to use of the robust one (dashed), when the 
parameter p of the system is varied. Compare to the LQG criterion value achievable for a known system 

(lower dotted) and to the output variance without control (upper dotted). 

can approximate the set of systems. Its 
properties are straightforward to adjust by 
inspection in the frequency domain, to roughly 
cover the expected range of variations in the 
dynamics. As nominal model, we select the 
model for r=0 .5 ,  p =0.3, which is in the 
central part of the area of pole locations: 

B0 0.035(1 + 0.8q -1) 

A0 1 -  1.70q -~ + 0.7617q -2" 

Since the relative uncertainty is low at low 
frequencies, we select a high-pass filter as fixed 
multiplicative error gain. A good fit is obtained 
with 

Bm 0.80(1-0"95q-1) 2 
A m (1 - 0 . 8 0 q - 1 )  2" 

The covariance matrix PaB of the coefficients of 
AB is selected as diag (o~.i), as in Example 2, 
Section 3.2. Use of o: = 0.5 and 2. =0.5 gives a 
reasonable fit to the expected range of variations 
in the dynamics (see Fig. 8). Based on this 
model, nominal and robust feedforward filters 
were designed for the input penalty p = 0.0001. 
The robust filter was calculated from (6.4)-(6.7), 
with result s = 1, (~ = 1, ~ = 0.00334, a l (q  -1) = 
12.78 and 

fl(q-1) = A0(q-~)(1 _ 1.2490q-~ + 0.0146q-2 

+ 0.2634q -3 + 0.0146q-a). 

As is evident from Fig. 9, the sensitivity of a 
robust design is reduced significantly, as 
compared to the nominal regulator. In contrast, 
an attempt to perform a minimax design 
revealed that no saddle point solution exists in 
this example. Under such conditions, a minimax 
approach is extremely impractical. 

7. CONCLUSIONS 

Estimation and feedforward control, based on 
imperfectly known linear discrete-time models, 
has been considered. Model errors were 

represented as additive transfer functions with 
random numerators. A robust design was 
obtained by minimizing the squared estimation 
error, averaged both with respect to model 
errors and noise. This allows large but unlikely 
model errors to be taken into account, without 
dominating the design. The resulting filter 
becomes cautious, but not conservative. 

With the presented polynomial equations 
approach, the robust filter design becomes 
simple and straightforward: just sum elements 
along diagonals of covariance matrices. Then, 
solve somewhat modified, "averaged", spectral 
factorizations and Diophantine equations. Appl- 
ication to related problems such as decision 
feedback equalization, discussed in Sternad and 
Ahl6n (1990), is straightforward. See Sternad 
and Ahl6n (1993). Nonsingular continuous-time 
problems can be solved, with obvious modifica- 
tions of the equations. Multivariable design is 
under investigation. 

In the open-loop problems considered here, 
filter stability could easily be assured. The use of 
stochastic error models in robust feedback 
design is more problematic. An interesting 
conceptual shift is that the notion of guaranteed 
robust stability mostly has to be abandoned, for 
unbounded (e.g. Gaussian) error distributions. 
Only stability with a certain probability can then 
be ascertained. See e.g. Stengel and Ray (1991). 
This may seem unappealing from a theoretical 
standpoint. However, it is the price to be paid 
for allowing infinite tail model error distribu- 
tions. 

There is a need for further work on systematic 
ways to estimate error models, both in the time 
domain and in the frequency domain. The 
method of Goodwin et al. (1991) requires known 
inputs. Parameter set identification for ARMA- 
models needs to be developed. A method for 
transforming an ordinary ARMA-model Co~Do, 
with covariance data on C~ and Do, into a well 
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approximating extended design model of type 
Co~Do + C1 AC/DI is under development. 

With very large system variations, the 
performance of even a robust linear filter will be 
unsatisfactory. An approach analogous to gain 
scheduling in feedback control can then be of 
use. A bank of filters is designed, with each filter 
attuned to a subset of the total system class. By 
using the output or auxiliary information, the 
most likely subset is selected, and the cor- 
responding filter is used. See e.g. Lainiotis 
(1976) or Padilla and Haddad (1976). Robust 
design is a complement to this approach. By 
utilizing robust filters, which give acceptable 
behaviour for large model subsets, the number 
of filters in the filter bank may be reduced. 

Robust design could also complement adapta- 
tion. Adaptive robust filtering/control, based on 
on-line estimation of nominal models and also of 
error model parameters, is a challenging subject. 
It is a main goal motivating our present research. 
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APPENDIX A. PROOF OF LEMMA 2 
Introduce a vector 

/( to)  =a (1 e i . . . . .  ei,Oap)r. 
Then, 

f*( to)Paef( to)  = g$p e-i'°d'' + " "  + g~-i,,, 
+ go + gl el'° + " " " + grip ei"~clp" 

This real-valued scalar is the polynomial /~(AP AP,)  from 
(4.5), evaluated on z = e i°'. Thus, since Pac,  Pan and Pt, M 
are all assumed positive semidefinite, the corresponding 
polynomials from (4.5) will be non-negative on the unit 
circle. This is a sufficient condition for the expressions (4.2) 
to be non-negative on the unit circle. If M~E(AM AM,) has 
no zeros on the unit circle, the same will then be true for 
/~/~: it can only have zeros on [zl = 1 which are common to 
MoMo, and__ M~MI,E(AM AM,). Such zeros are zeros also of 
CC, or BB,  in (4.3) only if either of A3 or A4 are violated. 
This holds for the special case p = 0 as well. 

APPENDIX B. PROOF OF THEOREM 1 
In Ahlrn and Sternad (1991), a novel technique for simple 

constructive derivation of polynomial design equations for 
Wiener filters is presented. It is based on the evaluation of 
orthogonality in the frequency domain. This technique will 
be utilized here, and be shown to be applicable to the 
criterion (2.6). If there is no model uncertainty, this 
derivation reduces to the derivation of (2.7)-(2.10). 

With (2.1)-(2.3), the estimation error is 

[S , , _ k a B ~  C roOM . .  
z ( t ) = ~ - T - q  ~ ) - ~ e ( t ) - q  ---~v(t). (B.1) 

All admissible alternatives to a proposed estimate f ( t l t  + 
m), given by (2.4), can be described by 

d(t) = (Q/R)y(t  + m) + n(t), 

n(t) = Jdy(t + m). 

Here, ~ ( q - i )  is a causal, stable but otherwise arbitrary 
rational transfer function. Optimality of (2.4) is obtained if 
no perturbation n(t) can improve the mean estimator 
performance. This occurs if and only if the corresponding 
error z(t) isorthogonal to any admissible estimator variation 
n(t), i.e. EEz(t)n*(t)=EEz(t)*n(t)=O. Then, the per- 
turbed criterion value reduces to 

/~E If(t) - ¢l(t)[ 2 = EE(lz(t)l z - z(t)n*(t) 

- z *(On(t) + [n(t)l 2) 

= ~E(Iz(t)l 2 + In(t)12), (B.2) 

which is obviously minimized by n(t)= 0. Since all systems 
included in the extended design model (2.1)-(2.3) are 
assumed stable, both z(t) and n(t) will be _stationary. 
Parseval's formula can then be used, to express EEz(t)n*(t) 
a s  

~ ( [ S  ., kOB~ C . .  mQM 
t z ~ - q  ~ A l ~ e ( t ) - q  ~ v(t)} 

* 1 × ~qm-l'J.,~nCe(t) + qm*j.~ M U(t)~ = E =  q~ 
( AD N ) 2Jti 31zl=l 

T ~ A , D , - p ~  ) , ~ -  (B.3) 

We arc allowed to move the expectation E inside the 

integration, since, for any particular realization of AC, AB 
and AM, the integrand is Riemann integrable on the unit 
circle. See e.g. Jazwinski (1970). The expectation/~ operates 
on the numerators, since stochastic variables are present 
there only. Using the spectral factorization (4.1), and the fact 
that none of S, N, A, R, T or Q contain stochastic variables, 
(B.3) can be expressed as 

k--m - B 1 (Z SNN, ARE(CC,  , ) -  T Q r f f , )  dz 
DTNARN,  A , D ,  ~ *  -Z" (a.4) 

Now, EEz(t)n*(t) = 0 is fulfilled if all poles in Iz[ < 1 of the 
integrand are cancelled by zeros. Since ~ and NAD are 
stable, ( 1 / N , A , D , ) ~ ,  will have poles only in Izl > 1. All 
other poles are in Izl < 1. Thus, we require 

zk-mSNN, ARF,(CC,B ,) - T Q r f f  , = zL ,DTNAR,  

for some polynomial L,(z)  or, equivalently, 

( zk - ' SN ,  E(CC ,B  , ) -  z L , D T ) N A R  = a r f  , f T .  (B.5) 

The right-hand side of (B.5) must contain R as a factor. 
Since R must be stable, its factors cannot include factors of 
f , .  Thus, fiT = RH for some stable H(z-l) .  Now, cancel R 
in (B.5). Observe that NA must be factor of QH, i.e. 
QH = Q~NA. The filter Q/R = ( Q , N A / H ) / ( f T / H )  is (4.6). 
Cancel NA and substitute q for z in (B.5) to obtain 

qk mSN,~(CC,B,  ) = r f , a~  + qDTL,.  (B.6) 

This is (4.7), since by using independence 

F.(CC,B ,) = E(CC ,)E(BoA, + AoB, AB),  

= Ct~,Bo,A,,. (B.7) 

The "only if" part of the result follows because choices of 
Q/R other than (4.6) correspond to n(t)~O, which, 
according to (B.2), increase the criterion value. 

Remark on the degrees (4.8). Diophantine equations in 
general have an infinite number of solutions. In (4.7), 
however, causality requires Qt to be a polynomial only in 
q - l ,  while optimality requires L ,  to be a polynomial in q.? 
Their generic degrees (4.8) are then uniquely determined by 
the requirement that the highest occuring powers of q - I  and 
q, respectively, must be covered by the variables in (4.7). 
This gives an equal number of equations and unknowns. The 
linear system of equations is nonsingular, since ft, and DT 
have no common factors. 

The expression (4.9). The minimal mean MSE is derived by 
inserting (B.1), (4.2), (4.6) and (B.6), in this order, into 
(2.6). This gives, after some calculations, the expression 

- . ..2 1 [ SS, E,(CC,)rflfl, + DD, TT, L L ,  
EE z(t)lmi . = ~ ~ rflfl, TT, DD, 

_ SS,NN, E(CC,B, )E(CC,  B) dz 

rflfl, TT, DD , z 

1 ~ L L ,  
-2-~i rf f l ,  

SS, CC , { rflfl, - CC, BB , NN , 

+ CC,(BB,  - BoBo,A iA l , )NN,  } dz 
+ - - -  ( a . 8 )  

rff l ,  D D , TT, z 

In the last equality of (B.8), we used £z(CC,B,)= 
_ ~  

CC,Bo,A1, and exchanged 

BoBo,AiAi ,  for BoBo,AiAi ,  + BIB, - BB ,. 

t If L ,  were allowed to have negative powers of z as 
arguments, poles at the origin would be introduced in the 
integrand of (B.4). The path integral would then not vanish. 

A more general discussion of these points can be found 
in Section IV of Ahlrn and Sternad (1991, 1993), in Ahirn 
and Sternad (1993) and in Ku~ra  (1979, 1991). 
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Now, utilizing (4.3) and, from (4.2), 

BB , - BoBo,A,AI,  = AoAo,B,Bt ,P.(AB AB,) ,  

we obtain (4.9) by using B 1 AB = A~dAr 

The case without uncertainty. With AC = AB = AM = 0, the 
spectral factorization (4.3) gives r = r  o and f l= floDtAlN 1. 
Equation (4.7) then becomes 

q --m + k S C  0 Co * Dt D1 * Bo,A 1 ,No, NI, 

= roflo,Dl,A I,N1,Q1 + qDoD 1 TL,. 

It is evident that D~ must be a factor of Q~ and D1,A~,N~, a 
factor of L , .  With Qt = QloD1 and L ,  = Lo,DI,A1,N1, and 
common factors cancelled, the above equation reduces to 
(2.9). The filter (4.6) equals (2.7). 

APPENDIX C. P R O O F  OF T H E O R E M  4 
The derivation follows the reasoning in the proof of 

Theorem 1 closely. Consider estimation of a single 
component fi(t) of f ( t ) ,  with a scalar fii(t) = (Q/R)y(t  + mi). 
Use the orthogonality relation 

#.Ez(t)n(t)* = EE(fii(t) - (Q/R)y(t  - mi))(.d~y(t + mi))* = O. 

Use of  (5.2)-(5.4) and of (5.8)-(5.11) gives 

- [RH~C - - q " , Q - ~  v(t) } EEz(t)n(t)* = E E [  -R-D ev(t) 

(die m/HsC . g . . \ ] *  /~ 1 
X~ q i~ - - f f - ev ( t )+~v( t ) )  ~ = 2:ri~ 

x fRH~CReC,H*z-ml QHsCReC,H* Q M M ,  
ROO, ROO, -~ NN, P) 

x .~ dz = 1_~ (R#az -m,ss ,  - Qrflfl,) dz 
* z 2~ri ~ RDD,NN,  de, --Z" (C.1) 

All poles inside Izl = 1 of the integrand of (C.1) are cancelled 
by zeros if and only if 

RPaz-'SNN , - Qrflfl, = zRDNL ,, 

for some polynomial L,(q)  or, with z ,~,q, 

R(#lf q -" ,N ,  - q L , D ) N  = Qrflfl,. (C.2) 

We see that ,8 must have R as a factor, i.e. RH = fl for some 
stable H(q- ' ) .  Furthermore,  N must be a factor of  QH, i.e. 
QH = QiN. The scalar filter qm~Q/R = (qmiQiN/H)/(fl/H) 
can now be seen as row i of  (5.12). Cancelling of  NR in (C.2) 
reduces it to the ith of the equations (5.13). Estimation of  
component i of f ( t )  does not affect the estimate of 
other components.  The total estimator of f ( t )  can be 
obtained as t parallel scalar estimators of  fi(t), derived as 
above. Thus, we obtain (5.12). 

APPENDIX D. A D D I T I O N A L  COMMENTS ON 
E X A M P L E  3 

In Fig. 3, it is interesting to note that the robust filter 
attains its minimal estimation error for parameter  values 
other than the nominal. The asymmetry of  the ideal 
performance surface in parameter space (the dotted curves in 
Fig. 3) seems to be a main cause of the displacement. 

In the minimax design, filters were constructed for the 
worst case (giving highest MSE). When these filters were 
applied to other systems in the class, the MSE was never 
higher than in the design case. Thus, the minimax solution 
had been found. The worst case for the rectangular 
distribution was 

C(q -1) = 1 - 1.3q -1, B(q -~) = 0.41 - 0.66q -1, 

M(q -1) = 1 - 0.63q -1. 

The worst case for the five-point distribution was 

C(q - ~ ) = 1 - 1 . 4 5 q  -~, B(q - ~ ) = 0 . 3 - 0 . 9 q  -~, 

M(q -1) = 1 - 0.3q -1. 

We feel that the comparison with minimax design is 
reasonably fair; both distributions, in particular the 
rectangular one, have considerable weights far from their 
mean values. One could easily have chosen other,  more 
extreme, distributions, for which parameter  values close to 
the worst case are much more unlikely. 


