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Causal IIR Audio Precompensator Filters Subject
to Quadratic Constraints

Simon Widmark , Student Member, IEEE

Abstract—Infinite impulse response (IIR) Wiener precompen-
sator design, with constraints on causality, is here also extended
to incorporate general quadratic constraints. A method for find-
ing a linear quadratic optimal, causal discrete-time multiple-input
multiple-output filter subject to a set of user defined constraints is
proposed and analyzed. A method for designing causal filters sub-
ject to constraints on the power gains in a large number of small
frequency intervals is also proposed. The resulting set of meth-
ods provide constrained stable IIR filters with optimal parame-
terization. Compared to finite impulse response Wiener filtering,
the computational complexity is much lower; and compared to
noncausal frequency domain designs, we gain control of the time-
domain properties of the compensated system. The design methods
are applied to a room compensation audio problem subject to fil-
ter power gain constraint(s) and are compared to a corresponding
noncausal per-frequency method. The results are presented with
audio filtering and sound field control as main motivating applica-
tions but the methods extend to other areas of linear feedforward
controller design and Wiener filtering.

Index Terms—Signal processing algorithms, optimization meth-
ods, acoustic signal processing, IIR filters.

I. INTRODUCTION

IN THIS paper, we present a method for incorporating
quadratic constraints into a pre-existing theoretical frame-

work that is capable of producing broadband causal filters with
reduced computational effort as compared to the traditional
Toeplitz structured solution. This provides the benefit that we
may compute causal filters in many instances where delayed
non-causal filters were previously the only numerically feasi-
ble option. That in turn enables greatly improved control over
temporal properties such as delays and pre-ringing in the com-
pensated system.

Linear digital precompensation filters can be used for several
purposes in audio systems: loudspeaker equalization, cross-talk
cancellation between audio channels, up-mixing of channels to
a set of loudspeakers, compensation of the room acoustics and
as a tool for sound field control.

The design of such filters has traditionally mostly been formu-
lated as a non-causal Wiener precompensator design problem.
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It is solved by mean square error minimization point-wise in
the frequency domain, as a regularized inverse of the matrix
of acoustic transfer functions that define the system. Unfortu-
nately, these solutions often have unsatisfactory time-domain
properties: The remaining errors of the compensated impulse
responses will have components before the start of a desired
impulse response (pre-ringing) and also after it (post-ringing).
While both effects are partially masked by auditory masking ef-
fects [1], pre-ringing is usually much more noticeable, and may
give the sound an undesirable quality. A non-causal frequency
domain Wiener design cannot control such effects.

Causal Wiener designs of pre-compensator filters, which are
in focus in the present paper, have the desirable property that
the duration of pre-ringing in compensated impulse responses
is limited by the causality constraint that is imposed on the
solution. Furthermore, design under a causality constraint will
provide tight control of the processing delay, which may be im-
portant in some applications such as e.g. duplex communication
or music recording and mixing.

It would be useful to be able to perform a causal audio pre-
compensator design subject to quadratic constraints. For ex-
ample, the power to loudspeakers should be within prescribed
bounds, the generated pressure in a spatial region should be lim-
ited, or the deviation from a target system response should have
limited magnitude. Methods for adding quadratic constraints
to Wiener pre-compensator designs are known for two special
cases discussed below:

1) When using finite impulse response (FIR) model and filter
structures, see e.g., [2, Sec. 4] and

2) When using non-causal Wiener filters [3].
A convex optimization formulation can be used in both cases.

However, no method exist to add quadratic constraints to causal
infinite impulse response (IIR) polynomial matrix Wiener fil-
ters and this problem is not trivial to formulate in the convex
optimization framework. The purpose of the present paper is to
solve this problem, using a Lagrangian approach, to illustrate
the properties of the solution and relate these to constrained
non-causal filtering.

Causal FIR pre-compensation filters for audio can be derived
subject to a host of different constraints using a block Toeplitz
structure for system modelling, (see e.g. [4]) along with e.g. con-
vex optimization theory (see e.g. [5]). An example where causal
FIR filters for personal audio are designed under filter power
gain constraints can be found in [2]. Unfortunately, design of
causal FIR filters based on system descriptions of FIR filtered
signals is normally associated with computationally taxing
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large matrix inverses. For example, FIR approximations of the
filter design examples in this paper would involve matrices with
more than 1.9 × 1010 elements, and cannot be handled with rea-
sonable memory requirements. Another problem related to the
commonly used causal FIR filter design methods is that of
choosing filter lengths. Longer filters typically generate better
low-frequency performance of the compensated system while
the dimensions of the matrix-to-be-inverted grows rapidly with
the filter length. This trade-off complicates the FIR design
problem.

In a non-causal Wiener solution, constraints such as those dis-
cussed in the present paper can be defined per frequency. The
resulting quadratic optimization problem with quadratic con-
straints can, similarly to the causal FIR filter problems discussed
above, be formulated and solved as a convex optimization prob-
lem, see [6], [3] by Betlehem and co-workers. Solving the filter
design problem point-wise in the frequency domain avoids the
problem of inverting unreasonably large matrices. This in turn
somewhat alleviates the problem of choosing motivated filter
lengths, but does not solve it completely.

The related problem of Wiener post-filtering under general
constraints has been discussed by Michaeli and Eldar [7], [8].

Filter generation for audio pre-compensation problems has
been extensively studied and has a long and rich history
(see e.g. [9]). In broad terms, the methods for audio pre-
compensation in the literature may be partitioned into two cat-
egories: analytical and numerical methods. In the former, we
sort methods which are based on mathematical models of e.g.
the sound field. Prominent examples drawn from the sound field
synthesis literature are Wave Field Synthesis (WFS) [10] and
Higher Order Ambisonics (HOA) [11], based on the Kirchoff-
Helmholtz integral and on a decomposition of the sound field
into a series of eigenfunctions, respectively. This class of meth-
ods often require highly specialized room and loudspeaker ge-
ometries due to their idealized nature. In the latter category,
we sort measurement based methods, such as the multipoint
mean square error minimization via least squares optimization
(MMSE-LS) method, see e.g. [12]. This class of methods re-
quire very few assumptions regarding the physical reality in
which it is implemented but may instead require a large number
of measurements in order to adequately model the sound field
at higher frequencies. These methods may also be susceptible
to over-fitting to noisy model estimates.

In parallel with, and preceding much of, the research on
audio pre-compensation filters, the rational matrix framework
was developed and applied to active control problems [13],
[14]. This particular parametrization, which is a measurement
driven MMSE-LS approach, represents a computationally effi-
cient and versatile design methodology when applied to audio
pre-compensation problems. Yet it has been under-utilized since
its first appearance in the audio research literature in the early
2000’s [15].

The existing body of work on the Linear Quadratic design
of causal and stable IIR filters for pre-compensation of lin-
ear systems reveals a powerful and versatile design framework
based on matrix fraction descriptions [16] of linear systems,
see e.g. [17]–[21]. This framework can be used for designing

causal discrete-time Wiener filters for various problems [22],
and also linear feed-forward pre-compensation filters designed
to minimize quadratic criteria [23]–[25]. The linear quadratic
feed-forward pre-compensator design problem can be shown to
be dual to a specific type of Wiener filtering problem, namely
deconvolution, or estimation of the input to a dynamic sys-
tem [26]. The solutions to these two problems are therefore
closely related [27].

This mathematical structure where matrices of polynomials
represent a system of discrete-time filters or transfer functions
(polynomial- and rational matrices), has proven to be both math-
ematically tractable and helpful for intuitive understanding of
the properties of the resulting filters. Additionally, the filter
parametrization is here not specified by the designer but is given
by the design method itself, resulting in an optimal IIR filter
parametrization. Although the polynomial matrix framework
has many advantages, it is not yet explored how to explicitly
incorporate quadratic constraints into the filter design.

In the present paper, the Lagrange multiplier method is uti-
lized to include quadratic constraints in the design of causal IIR
Wiener pre-compensation filters via the rational matrix frame-
work. Although this filter optimization problem does not fall into
the convex optimization framework (as will be made clear later),
the Lagrange duality gap is zero since we can find a global min-
imizer to the primal problem. Single and multiple constraints on
the filter power gain are derived as examples. A method for sat-
isfying a dense set of frequency domain constraints, correspond-
ing to the non-causal per-frequency constrained designs, is also
presented. With the resulting set of methods, optimisation of
causal filters subject to quadratic constraints is included into the
theoretical framework for rational matrix Wiener filter design.

A. Outline of the Paper

The paper is structured as follows: The theoretical back-
ground and a succinct but general presentation of the con-
strained, causal filter design methodology are given in Section II.
In Section III, the design method is elaborated and applied to
a set of example problems, which are analysed and compared
to each other: single constraint, multiple constraints, dense con-
straints in the frequency domain and the constrained non-causal
solution. The conclusions drawn in the paper are summarized
in Section IV. Derivations are found in Appendix A and B and
details of the experimental set-up in Appendix C.

II. CONSTRAINED CAUSAL IIR WIENER DESIGN OF MIMO
PRE-COMPENSATION FILTERS

A. Notation

Scalar quantities are, in this paper, denoted by lower case or
capital letters, a, A. The integer t is used as a discrete time
index. Polynomial matrices are denoted by capital, bold, italic
letters A(q−1). The polynomial matrix elements are FIR fil-
ters, which are polynomials in the delay operator, q−1 , so that
q−1y(t) = y(t − 1) which corresponds to z−1 or e−jω in the
frequency domain. The corresponding forward shift operator is
q, qy(t) = y(t + 1) which corresponds to z or ejω . Rational
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matrices (matrices of rational transfer functions) are denoted by
capital bold script letters, A(q−1). The rational matrix can be
seen as a matrix with IIR filters as elements.

Regular (constant) matrices and vectors are denoted by bold,
capital and lower case letters, A and a respectively.

Matrix inverses are denoted A−1 . Complex matrices can be
complex conjugated, A∗, transposed AT and both, AH . A poly-
nomial matrix subject to the conjugate operator, A∗(q), is com-
plex conjugate transposed and any delay operators are replaced
by their reciprocal: A∗(q) is found by substituting q for q−1 in
AH (q−1). Unless otherwise stated, polynomials are expressed
in the backward shift operator, q−1 . Conjugate polynomial- and
rational matrices therefore normally contain polynomials in the
forward shift operator, q. The arguments q−1 or q will be omitted
in some expressions where this can be done without introducing
ambiguity. Matrix dimensions are denoted, for a matrix with
R rows and C columns, as R|C. The degree of a polynomial
matrix A, i.e. the highest power of q or the lowest power of q−1

with a non-zero coefficient is denoted nA.
Definiteness and semi-definiteness of matrices is indicated by

the symbols � and � respectively, where A � B ⇐⇒ A −
B � 0, i.e., if A − B is a positive semi-definite matrix.

B. The Audio Pre-Compensation Problem

Assume that a linear electro-acoustical system with N loud-
speakers and M control points is described correctly and com-
pletely by a rational matrix H(q−1). Each column of the M |N
matrix H(q−1) contains stable transfer function models from
the input to one loudspeaker to the sound pressure at a set of
design positions. Every row thus contains the transfer function
models to one design point from all loudspeakers.

Before a signal is amplified and replayed by the loudspeakers,
it is pre-processed by an N |1 rational filter vector Rl(q−1). Each
element of the filter vector Rl(q−1) thus holds the IIR filter
which is used to pre-processes the signal that is later fed to the
corresponding amplifier-loudspeaker combination. We can use
the assumed linearity to generate a filter for a situation where we
have more than one input signal by adding the result of l signals
processed by l associated filters, the dimensions of the filter
matrix R(q−1) = [R1(q−1) · · ·Rl(q−1)] then becomes N |l.
We model the input signal to the filter matrix as a white1 noise
and will refer to it by the l|1 vector r(t), with zero mean and
covariance matrix E{r(t)rT (t)} = �P of full rank, where � >
0 is a scalar scaling factor. The notation E{·} here represents
the expectation operator with respect to the statistics of r(t).

The output from the filter-system combination is contained
in the M |l vector z(t). An M |l polynomial matrix, D(q−1),
is used to describe the desired (or target) behaviour of the pre-
compensated system. The desired transfer functions should in-
clude a common modelling delay, q−d , greater than the largest
path delay of H(q−1). Increasing the modelling delay increases
the achievable spectral fidelity of the solution, but also generally

1Coloured stochastic signals are also admissible inputs. The input signal r(t)
is then modelled as r(t) = M(q−1 )e(t) where M is an autoregressive moving
average (ARMA) model and e(t) is a white input noise vector. This approach
is e.g. utilized with an autoregressive model in [25].

Fig. 1. A pre-compensated electro-acoustical system with desired response
D(q−1 ), error vector ε(t), pre-compensator output vector u(t) and pre-
compensated system output vector z(t).

increases the amount of perceptible pre-ringing in the impulse
responses of the compensated system H(q−1)R(q−1).

We can now specify the deviation between the actual system
behaviour and the desired system behaviour as

ε(t) = V (q−1)
(
H(q−1)R(q−1) − D(q−1)

)
r(t). (1)

Above, we also introduce an M |M system reproduction error
weighting matrix, V (q−1) of full rank with which we can assign
more or less importance to the error at certain spectral bands and
control points. The audio pre-compensation problem at hand is
illustrated in Fig. 1.

In Fig. 1, we also introduce the variables u(t) representing
the output from the pre-compensator to be designed, u(t) =
R(q−1)r(t), and z(t) representing the output from the com-
pensated system z(t) = H(q−1)u(t).

There are many important aspects to the audio pre-
compensation problem where simple minimization of the ex-
pected value of ‖ε(t)‖2

2 is not sufficient. For instance, the loud-
speakers may have some constraints associated with them, e.g. in
that they are designed for a limited portion of the audible spectra
only. Other interesting constraints include those on the magni-
tude of the target error at a subset of the design points. These
constraints can be formulated using functions in which the pre-
compensator R(q−1) enters quadratically. Although important
to the audio pre-compensation problem, such constraints have
previously not been included in the set of known filter derivation
techniques using the rational matrix framework.

C. Rational Matrix Filter Optimization With Quadratic
Criteria and Power Spectral Density Constraints

In the following, a general presentation and motivation of the
filter derivation technique discussed in the paper is given. This
technique will be exemplified by more specific use cases in the
subsequent section.

Assume that an optimization problem is given on the form

min
R

. J (R) = E
{
xT (R, t) x (R, t)

}

s.t. C (R) = E
{
yT (R, t) y (R, t)

}− ec ≤ 0. (2)

The column vectors x(R, t) and y(R, t) above are instances of
time domain signals in discrete time, described by models of lin-
ear, stable and time invariant systems in the form of polynomial-
or rational matrices in the backward shift operator. They are as-
sumed to be driven by a stationary noise signal vector r(t).
Note that the expressions (2) in the optimization problem will
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be scalar. The constraint value ec is a scalar positive constant.
Included in our feed-forward signal paths is also a causal, ra-
tional and stable matrix, R(q−1), which we strive to optimize
according to (2). It is assumed that the rational matrix R affects
both x and y linearly and that the constraint can be attained
with inequality. Note that while the controller matrix R(q−1)
enters the problem in a linear-quadratic fashion, the individual
filter coefficients contained in R will generally not enter x nor
y linearly, as R describes a set of IIR filters. Further, the design
process itself defines the optimal number of coefficients needed
to solve the problem, and so the dimension and structure of the
parameter space is not defined by the user. Finally, also note
that the controller-to-be-designed is given as a matrix of ratio-
nal functions in the delay operator and does therefore not fall
into the convex optimization framework.

There is a crucial property that will provide a way forward
for the problem at hand. If we can find the global minimum
with respect to our controller for the Lagrange objective func-
tion associated to the problem, then the Lagrange multiplier
formulation can be utilized to solve (2). Further, as this would
also imply that no duality gap is present, we can then use the
Lagrange dual optimization to find a solution to our problem.
A general proof for this, generalized to multiple constraints, is
included in Appendix A-A.

The Lagrange objective function is constructed by adding the
constraint function C(R), multiplied by a scalar weight λ, to
the original objective function,

L (R, λ)

= E
{
xT (R, t)x(R, t) + λ

(
yT (R, t)y(R, t) − ec

)}
.
(3)

The weight λ is a penalty on the deviation between the square
Euclidian norm of the signal y(t) and the constraint level ec .

The optimal solution to the constrained problem (2) is then the
pair Ropt , λopt where Ropt (uniquely) minimizes the Lagrange
function (3) and λopt maximizes the dual function

G(λ) = min
R

. L (R, λ) . (4)

For a proof: see Appendix A-A.
Our method will therefore be to search for the multiplier λ that

maximizes (4) together with the pre-compensator R(q−1) that
minimizes (3). The Lagrange dual function is a concave function
in the Lagrange multiplier(s) and efficient numerical methods
exist for finding the optimal value for λ. A general method for de-
riving a causal and stable linear controller R(q−1) that uniquely
minimizes (3) for a given λ is outlined below. This problem is
thus solved repeatedly, while iteratively maximizing (4) w.r.t. λ.

Minimizing L by Imposing Orthogonality in the Frequency
Domain: We will now utilize the method proposed in [24] to
uniquely minimize L(R, λ) for a given λ. Much of the details
will here be suppressed in order to keep the discussion brief,
mathematical specifics can be found in [24] and also in the
examples in Section III and in Appendix A-B.

Add to the causal and stable controller, R(q−1), a causal
and stable variation (perturbation) transfer function, T (q−1).
This addition might be beneficial, i.e. reduce the value of the
Lagrange function, or detrimental, i.e. increase the value of

Fig. 2. Block diagram representation of the controller and variation. Dotted
lines represent so far unspecified linear transfer paths of the system.

the Lagrange function. Our goal in designing the controller R
is to choose it so that no addition T can be beneficial, thus
guaranteeing that our controller R is the optimal causal and
stable solution.

We use the assumed linear influence of R + T on x(t) and
y(t) in (3) to additively partition these signal vectors as

x(R + T , t) = x (R, t) + x (T , t)

y(R + T , t) = y (R, t) + y (T , t) , (5)

where x(T , t) and y(T , t) are the additive contributions to
x(t) and y(t) respectively, obtained by adding the output of the
perturbation filter T (q−1) to the output of R(q−1) (see Fig. 2).
We can now structure L(R + T , λ) (in which both x(R +
T , t) and y(R + T , t) are squared) based on all permutations
of R,RT ,T and T T ,

L (R + T , λ) = L1(RT ,R, λ) + L2(RT ,T , λ)

+ L3(T T ,R, λ) + L4(T T ,T , λ), (6)

where

L1
(
RT ,R, λ

)

= E
{
xT (R, t) x (R, t) + λyT (R, t) y (R, t) − λec

}

L2
(
RT ,T , λ

)
= L3

(
T T ,R, λ

)

L3
(
T T ,R, λ

)

= E
{
xT (T , t) x (R, t) + λyT (T , t) y (R, t)

}

L4
(
T T ,T , λ

)

= E
{
xT (T , t) x (T , t) + λyT (T , t) y (T , t)

}
. (7)

If we choose our filter R(q−1) such that L2(RT ,T , λ) =
L3(T T ,R, λ) = 0, then our candidate filter R(q−1) is optimal
since L4(T T ,T , λ) is quadratic in T (q−1) and thus, no T can
decrease the value of L(R + T , λ).

The condition L3(T T ,R, λ) = 0 corresponds to

E

{
(
xT (T , t) ,

√
λyT (T , t)

)
(

x (R, t)
√

λy (R, t)

)}

= 0. (8)

In other words, the joint signal vector represented by the x(t)
and y(t) generated by our candidate filter R(q−1) should be
orthogonal to any additive contributions that could be obtained
by admissible perturbations T (q−1) of the filter. This is the
well-known orthogonality condition for Wiener filters applied
to all signal components that affect (3).

The orthogonality condition can be used constructively by ex-
pressing it in the frequency domain, using Parseval’s formula.
The condition is that R(z−1) should be chosen such that no
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poles of the Parsevalian integrand of L3(T T ,R, λ) lie within
|z| ≤ 1, which guarantees thatL3(T T ,R, λ) = 0. Filter design
equations for uniquely specifying R(q−1) can be obtained from
this condition, see Example I below and Appendix A-B. The re-
sulting solution will take the form of a spectral factorization, one
or several Diophantine equation(s) and a few polynomial matrix
multiplications. The solution to the Diophantine equation can
be posed as a system of linear equations with the same number
of equations as unknowns for a specific set of polynomial ma-
trix degrees, which is in the present case given by the design
method, see Appendix A-B. A good overview over the spectral
factorization problem may be found in [28]. The resulting filter
R(q−1) is causal and stable and it will uniquely minimize (6)
for any given λ ≥ 0.

III. ILLUSTRATIVE EXAMPLES

The method description above was stripped of details for the
sake of generality. Its use will be clarified in a set of examples
below, where a few pre-compensation filters for audio applica-
tions are derived. The examples below are constructed in order
to highlight various aspects of the behaviour of the causal and
constrained filters that result from the proposed method and, in
some instances, in order to underscore differences to the existing
design methods that produce non-causal filters. The investiga-
tion is based on an implementation in a real room, corresponding
acoustically roughly to a normal living room, see Appendix C.
This set-up is chosen so as to stress the implementability of the
produced filters and to excite any problems that may be present
in a practical implementation that are perhaps easy to overlook
in a purely theory based simulation.

A. Example I. LQ Model Matching With Constrained
Filter Power

As previously mentioned, the power gain of the resulting
filter is an important aspect of audio filter design. In this exam-
ple, we shall illustrate how the method for deriving causal pre-
compensator filters under the quadratic constraints described in
Section II-C can be used to limit the average power gain of the
resulting filter.

Utilizing the system description of Section II-B and express-
ing the rational matrix system model as a pair of polynomial
matrices by a right matrix fraction description, H = BA−1 [16,
Ch. 6] yields z(t) = B(q−1)A−1(q−1)R(q−1)r(t).2 Here,
B(q−1) is a polynomial matrix of dimension M |N and A(q−1)
is N |N , with det(A(z−1)) having all zeros in |z| ≤ 1, since
H(q−1) is assumed stable.

2Consider the simple example
⎡

⎢
⎣

b111 + b112 q−1

1 + a112 q−1
b121 + b122 q−1

1 + a122 q−1

b211 + b212 q−1

1 + a112 q−1
b221 + b222 q−1

1 + a122 q−1

⎤

⎥
⎦ =

[
b111 + b112 q−1 b121 + b122 q−1

b211 + b212 q−1 b221 + b222 q−1

][
1 + a112 q−1 0

0 1 + a122 q−1

]−1

,

which by factorization of any non-common denominator roots can be extended
to arbitrary systems.

Our goal is now to find the stable and causal filter R(q−1)
that minimizes the reproduction error vector ε(t) subject to
constrained filter power gain,

min
R

. J = E
{
εT (t)ε(t)

}

s.t. C = E
{
uT (t)u(t)

}− eD � ≤ 0

↔
min

R
. J = E

{
tr
(
ε(t)εT (t)

)}

s.t. C = E
{
tr
(
u(t)uT (t)

)}− eD � ≤ 0. (9)

Here eD ≥ 0 is the maximum accepted filter power gain factor
and

u(t)=R(q−1)r(t),

ε(t)=V (q−1)
(
B(q−1)A−1(q−1)R(q−1)−D(q−1)

)
r(t),

�P=E
{
r(t)rT (t)

}
, (10)

so x(t) = ε(t) and y(t) = u(t) in (2). The problem thus rep-
resents a linear quadratic (LQ) model matching or stochastic
feed-forward controller design with a constraint on the average
power- (or variance) gain of the controller filter. The scaling
factor � is introduced to translate the signal power constraint
into a filter power gain constraint. This is done by increasing the
constraint value with increasing signal input power, so that only
the power gain, for which the filter is responsible, is considered
and not the absolute signal power level.

Note that the optimization problem is here always feasible,
as choosing R = 0 will always satisfy the constraint.

To solve the problem (9), we formulate the Lagrange objective
function (3), which in this case is given by

L (R, λ) = E
{
tr
(
ε(t)εT (t)

)
+ λtr

(
u(t)uT (t)

)− λeD �
}

.
(11)

The multiplier λ for which optimality of (9) is obtained
is found by iteratively changing λ until the value that max-
imizes (4) is found. The pair Ropt , λopt then constitute the
optimal solution to the original optimization problem.

It is shown in Appendix A-B that the filter, R, that mini-
mizes L(R, λ) for a given value of λ is uniquely given by the
expression

Ropt(q−1) = A(q−1)β−1(q−1)Q(q−1), (12)

where β(q−1) is a stably and causally invertible N |N polyno-
mial matrix given by the spectral factorization equation

β∗(q)β(q−1)=B∗(q)V ∗(q)V (q−1)B(q−1)+λA∗(q)A(q−1).
(13)

The matrix Q(q−1) in (12) is an N |l matrix of polynomi-
als which, together with the N |l matrix L∗(q) of non-causal
polynomials is given by the unique solution to the Diophantine
polynomial matrix equation

β∗(q)Q(q−1) − B∗(q)V ∗(q)V (q−1)D(q−1) = qL∗(q).
(14)
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The constraint on C(R) affects the pre-compensation filter
expression (12) via β(q−1), obtained from the spectral factor-
ization (13). Although the constraint is a scalar, it will affect the
filter differently in different frequency regions and for differ-
ent components of u(t). For example, consider the scalar case
(M = N = l = 1) with an FIR channel z(t) = B(q−1)u(t),
so A(q−1) = 1. By (13), the optimal scalar multiplier λ will
then affect the properties of β(e−jω ) significantly in frequency
regions where the magnitude of λ is significant compared
to the power gain B∗V ∗V B. The constraint will have in-
significant effect, as compared to the unconstrained solution
(eD → ∞ ⇒ λopt → 0) in other frequency regions.

It can be shown that the polynomial matrix spectral factoriza-
tion equation (13) will have a solution β(q−1) with stable and
causal inverse β−1(q−1), as required in (12), if and only if the
right hand side of (13) has full rank N on the unit circle, when
substituting z = ejω for q. For this to be true, at least one of the
two terms on the right hand side of (13) must have full rank N
on z = ejω , i.e. on |z| = 1.

This property cannot be guaranteed in general, so a small
additive input penalty regularization may have to be added
to the criterion (10), J = E{tr(ε(t)εT (t)) + γtr(u(t)uT (t))},
where γ > 0 is a real-valued scalar. This will result in a
third term, γA∗(q)A(q−1) on the right hand side of (13).
For the (asymptotically) stable systems we investigate here,
H(q−1) = B(q−1)A−1(q−1), det(A(z−1)) has full rank N on
|z| = 1, so this term will always guarantee full rank of (13) on
|z| = 1.

Let us also briefly discuss cases where the other terms may
secure full rank, making the regularization superfluous.

First, the term λA∗(z)A(z−1) in (13) will have full rank on
|z| = 1 whenever λ �= 0. As discussed in Appendix A-B, λ �= 0
whenever the constraint is active. However, the constraint may
be inactive, resulting in λ = 0, so we cannot rely on this term.
As an aside, we note that the regularization described above
can be interpreted as a lower bound on the addition of the here
utilized constraint function to the Lagrange function (11) by
(λ + γ)E{tr(u(t)uT (t))}.

Second, if V (q−1) is chosen to have full rank M on |z| = 1,
then the rank on |z| = 1 of the first right hand term of (13),
B∗(z)V ∗(z)B(z−1)V (z−1) equals the rank of the M |N sys-
tem matrix B(z−1) on |z| = 1. With fewer control points than
loudspeaker inputs, M < N , we can obviously not have rank
N . When M � N , the risk of B(z−1) having rank < N on
|z| = 1 decreases rapidly with an increasing number of con-
trol points M . In all experiments described below, M = 16 and
N = 9 was used, and a regularization was not required.

Finally, we stress again that the case λ = 0 is only special
when the rank of the right hand side of (13) depends on the
contribution of the constraint function. This situation must be
avoided in order to ensure solvability of the constrained problem.

A filter for 9 loudspeakers generated by the method de-
scribed above, based on measurements of a room as described in
Appendix C, was evaluated by means of transfer function mea-
surement based simulations.

In Fig. 3, we see the spectral properties of this filter. The
thick, black line shows the total filter power gain. The power
constraint we use states that the average power gain may not

Fig. 3. Power gains of the constrained causal filter described in Section III-A.
Total filter power in thick black and each individual filter for 9 loudspeakers in
thin gray. The loudspeaker that is directly aligned with the target propagation
pattern (loudspeaker six) is represented by the thick gray line. The overlapping
horizontal dotted (black) and dash-dotted (gray) lines indicate the achieved
mean power gain and the constraint level respectively.

exceed −22.5 dB. This choice is made in order to make sure the
constraints are invoked and is arrived at in conjunction with the
selection of the target bright zone pressure of the target matrix.
We choose the desired sound pressure in each design point
to be approximately what the system produces with a white
unit variance input signal. By choosing filter gains well below
0 dB, being the equivalent gain of the system without filters
in line as is the case in the initial measurements, we ensure
that the constraints are invoked in the design process. Note, by
the overlap of the horizontal dashed lines, that the constraint is
attained with equality. This will always be the case provided that
the constraint is not satisfied by λ = 0. The reason for this is
that the smallest multiplier λ that leads to constraint satisfaction
is optimal, while increasing λ reduces the constraint function
value, see Appendix A-A2.

We have here, by (10), constrained the square Euclidian norm
of the output E{uT (t)u(t)} =

∑N
i=1 |ui(t)|2 < eD �, relative

to the power scaling factor � of the driving noise r(t) while the
power distribution over the loudspeakers is free. This means,
as is apparent in Fig. 3, that the filter gain typically deviates
significantly from the constraint at each frequency. The gray
lines show the power spectra of each individual loudspeaker
filter. Notably, one such filter (indicated by a thicker line width
and darker color) has significantly higher gain than the others at
most frequencies. This filter drives loudspeaker six (see Fig. 10),
which is directly aligned with the target sound wave propagation
by design of D(q−1), see Appendix C-A. It makes intuitive
sense that the loudspeaker in the best position to recreate the
desired sound field is used more than the other loudspeakers that
may instead focus on e.g. cancelling reflections.

With a measurement based FIR system representation con-
taining 20000 taps, and a delayed unit impulse target matrix,
each of the optimizing pre-compensator elements in this case
have 1683 numerator taps and 20000 denominator taps, see
Appendix A-B.
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B. Example II. Multiple Power Gain Constraints

In the above example, a single constraint was employed for
the whole spectral band. This simple formulation may result in
a filter with unexpected and perhaps non desired spectral distri-
bution being preferred by the optimization. This is exemplified,
at least to some extent, in Fig. 3. We may also wish to con-
strain several different aspects of the filter simultaneously. It will
therefore be beneficial to have a method that allows for multiple
constraints. In this example, we derive such a filter by utilizing
K power gain constraints instead of one single power gain con-
straint. Here, each of the K constraints target different frequency
regions and/or different components of the control signal vector
u(t). Define filtered control signals uk (t) according to

uk (t) = φk (q−1)R(q−1)r(t), (15)

where φk (q−1) is a monic N |N polynomial matrix with FIR
band pass filters for coefficients. The matrix φ is used to
separate the frequency bands and/or loudspeakers for which
the mean power gain should be no greater than eDk . We then
use the problem formulation

min
R

. J = E
{
tr
(
ε(t)εT (t)

)}

s.t. C1 = E
{
tr
(
u1(t)uT

1 (t)
)}− eD1� ≤ 0

...

CK = E
{
tr
(
uK (t)uT

K (t)
)}− eDK � ≤ 0. (16)

Above, ε(t) is defined as in (10). Possible applications of this
problem formulation are e.g. to constrain each loudspeaker so
that it is active only within a specified frequency interval or to
limit the average power gain of each loudspeaker individually.
Different loudspeakers are addressed by the different rows of
the filter matrix under optimization, R(q−1).

The corresponding Lagrange function can now be defined,

Lmc (R, λ1 , . . . , λK )

= E

{

tr
(
ε(t)εT (t)

)
+

K∑

k=1

λk

(
tr
(
uk (t)uT

k (t)
)−eDk�

)
}

.

(17)

The only difference in the solution as compared to the single
power constraint formulation is in the resulting spectral factor-
ization equation that defines the matrix β(q−1) in (12), which
is now given by

β∗β = B∗V ∗V B +
K∑

k=1

λkA∗φk∗φkA. (18)

The above result is easily obtained by following the proof in A-B
but substituting (17) for (11) and (18) for (13)/(40).

Since we now have K constraints, we also have K multipliers
λk . These represent different dimensions of the now K− dimen-
sional search space, increasing the complexity and therefore the
computational time for obtaining the solution.

A filter is now constructed based on this method for the
same system as described in Section III-A and Appendix C.
The average filter gain is divided into six frequency bands, with

Fig. 4. Power gains of the multiply power constrained causal filter described in
Section III-B. Total filter gain in thick black and each individual filter gain in thin
gray. Borders of constraint frequency bands are marked by dashed vertical lines.
Overlapping horizontal dotted (black) and dash-dotted (gray) lines indicate the
attained mean PSD gains and the constraint level respectively.

associated maximally allowed power gain levels of −22.5 dB.
The spectral properties of this filter are shown in Fig. 4. The
borders of the frequency bands of the constraints are shown as
dashed vertical lines.

Compared to the singly power gain constrained filter, Fig. 3,
the spectral distribution of the filter power gain is now more
even, and the frequency by frequency adherence to the constraint
level is increased.

C. High Density Frequency Domain Constraints

It is often motivated to constrain the average over a frequency
band but there may arise situations where very detailed control
over a large portion of the frequency domain is required.

At a certain point, defining sufficiently many and sufficiently
narrow band pass filtering matrices (φk (q−1) in (15)) becomes
impractical. We will therefore investigate a method for increas-
ing the frequency domain precision of the constraints by using a
weighting matrix instead of a large number of band pass filters.

In the non-causal case, outlined in Section III-D below, the
constraint function is specified at each center frequency of the
spectral design resolution. In the present, causal, context this
can be expressed by

min
R

. E
{
xT (R, t) x (R, t)

}

s.t. F {E {yT (R, t) y (R, t)
}} ∣∣

f1
− e1� ≤ 0

...

s.t. F {E {yT (R, t) y (R, t)
}} ∣∣

fK
− eK � ≤ 0. (19)

Above,F{·}|fk
denotes the discrete Fourier transform evaluated

at frequency fk .
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The Lagrangian associated with (19) becomes

L (R, λ1 , . . . , λK ) = E
{
xT (R, t) x (R, t)

}

+
∑

k

λkF
{
E
{
yT (R, t) y (R, t)

}} ∣∣
fk

−
∑

k

λk ek� (20)

Introducing an ideal (thus also non-causal), diagonal band pass
filter matrix U k that allows frequency fk with gain 1 while
rejecting all other frequencies, we have

L (R, λ1 , . . . , λK )

= E
{
xT (R, t) x (R, t)

}

+
∑

k

E
{

λk (U ky (R, t))T U ky (R, t)
}
−
∑

k

λk ek�.

(21)

Since U kU j = 0, for k �= j, this can be expressed, defining

U =
∑

k

√
λkU k , (22)

as

L (R,U) = E
{
xT (R, t) x (R, t)

}

+ E
{

(Uy (R, t))T Uy (R, t)
}
−
∑

k

λk ek�. (23)

The minimizing controller R(q−1) is found by setting
(c.f. (39), (41) in Appendix A-B)

1
2πj

∮

|z |=1
tr
[
x∗ (T ∗, z) x

(
R, z−1)

+y∗ (T ∗, z) U ∗
(
z, z−1)U

(
z, z−1)y

(
R, z−1)] dz

z
= 0.

(24)

Similarly, using Parsevals’ formula, we can write G(λ) as

G (λ) =
1

2πj

∮

|z |=1
tr
[
x∗ (Ro

∗ , z) x
(
Ro , z−1)

+y∗ (Ro
∗ , z) U ∗

(
z, z−1)U

(
z, z−1)y

(
Ro , z−1)]dz

z

−
∑

k

λk ek� (25)

where Ro is the controller that solves (24).
The spectral factorization equation from which the unique

minimizer R can be constructed is found by substituting
U ∗U(q, q−1) for (

∑K
k=1 λkφk∗φk ) in (18), yielding

β∗β = B∗V ∗V B + A∗U ∗UA. (26)

Disregarding the constraints, the use of a weighting matrix to
balance the control signal penalty to the target adherence in the
objective function corresponds to the method employed in the
weighted criterion approach utilized in e.g. [17]–[21].

Fig. 5. Power gains of the per-frequency constrained causal filter described
in Section III-C. Thick black is total filter power gain and thin gray lines
indicates the gains of individual loudspeaker filters. Horizontal dash-dotted
(gray) indicates the constraint level.

Note that while we cannot design a set of ideal band pass
filters in practice, we can manipulate the per-frequency gain of
U ∗U until we satisfy the primal constraints.

The practical method for maximizing G(λ) will here be to
adjust the per-frequency gain of the matrix U ∗U at frequency
k, which corresponds to adjusting λk per (22).

One method for designing the weighting matrix U ∗U
is to start with an initial guess and iteratively update
the frequency domain version of U ∗U by F{U ∗U}|fk

⇐
F{U ∗U}|fk

× 10step×err , where err = F{E{yT y}}|fk
−

ek� and step is a step length. This method will reduce the per-
frequency gain of U ∗U where there is room in the constraint
and increase the gain where the constraint is not satisfied. Note
that the convergence of this algorithm cannot be guaranteed, as
interdependence between the gains at different frequencies is
not accounted for. This has not been a problem in the practical
filter computations in the example presented in the current pa-
per, probably due to the frequency domain smoothness of the
utilized constraint values. A safer route is to use an existing,
tried, convex optimization algorithm to find U ∗U .

The power spectrum of the resulting causal per-frequency
constrained filter is shown in Fig. 5, using 8038 per-frequency
power constraints. The constraint of −22.5 dB is fulfilled to
the tolerance of the search algorithm but with more variability
at lower frequencies. Compared to the two filters previously
described in Sections III-A and III-B, the present constraint is
considerably more strict, c.f. Figs. 3 and 4.

D. The Corresponding Frequency-Domain Design

A general method for finding the frequency domain non-
causal filter counterparts to the equations presented above is
described in [5, Appendix B]. The method utilized here will
produce an FIR filter, and so care must be taken that the pro-
duced filters are sufficiently long that any ill effects of truncation
are kept at a minimum. The version outlined below corresponds
to the case with constrained filter power spectral density gains.
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The frequency domain representation of the system described in
Section II-B is here utilized. The system matrix at angular fre-
quency ωi is therefore Hi = H(e−jωi ). All other matrices fol-
low the same pattern. We define the problem at frequency ωi as

min
R i

. Ji = ||Vi (HiRi − Di) ||22

s.t. Ci = ||Ri ||22 − eD i ≤ 0, (27)

for a scalar driving noise (l = 1). The dimensions of the
above complex-valued constant matrices are, at each frequency
bin, the same as the corresponding polynomial matrices.
Thus dim(Ri) = N |1, dim(Hi) = M |N , dim(Vi) = M |M ,
dim(Di) = M |1.

This problem can be solved for each frequency bin of the
discrete Fourier domain representation of the original system
by separating the real and imaginary parts and stacking them,
generating a convex problem. When a solution for each fre-
quency bin has been obtained, the total complex filter matrix
Rtot is assembled, and inverse transformed if the filtering is to
be executed in time domain.

The problem (27) is solved by computing the compensation
matrix at frequency ωi by solving the vectorized real valued
problem

Ri =
(
MT

R + λiI
)−1

MD , (28)

where

MD =

[
Re
(
HH VH VD

)

Im
(
HH VH VD

)

]

MR =

[
Re
(
HH VH VH

) − Im
(
HH VH VH

)

Im
(
HH VH VH

)
Re
(
HH VH VH

)

]

, (29)

See Appendix B. Above, λi is found by solving the concave
linear matrix inequality optimization problem

max . γi

s.t. λi ≥ 0
[
MT

R + λiI MD

MT
D −λieD i − γi

]
� 0. (30)

Implementing this filter in the model system, using an FIR
filter length of 16077 taps, yields the power distribution shown in
Fig. 6. The average power gain of the filter shows little deviation
from the target curve and the deviation that is present is not that
surprising, as it is a numerical method that requires a matrix
inversion in order to find the filter.

A causal IIR filter solution of (27) can be constructed using
the method described in III-C.

Comparing Figs. 6 to 5, the non-causal filters shown in Fig. 6
display much greater variations in power gains for individual
loudspeakers. In the causally constrained filter, a single loud-
speaker is dominant for the majority of frequencies. This in-
dicates an important robustness issue in the causally uncon-
strained design, where phase (or frequency) drift between the
loudspeaker filters would have more severe effects than in the
causally constrained case. This situation could e.g. arise where

Fig. 6. Power gains of the per-frequency constrained filter without constraints
on causality described in Section III-D. Thick black is total filter power gain and
thin gray lines indicate the gains of individual loudspeaker filters. Horizontal
dash-dotted (gray) indicates the constraint level.

the clocks of the different digital filter outputs are not prop-
erly synchronized. This behaviour may also lead to issues e.g.
in cases where the loudspeaker models are imperfect, e.g. due
to manufacturing variations or temperature related loudspeaker
phase response variations.

E. Target Reproduction

The objective of all designs investigated here is to minimize
the difference between the resulting compensated system output
and a target sound field, specified in the M |l FIR filter matrix D.
The largest difference between the novel causally constrained
filter and the frequency domain formulated filter is expected to
be evident in the target reproduction properties. The adherence
to the desired system behaviour of the system as compensated by
the causally unconstrained frequency domain formulated filter
described in Section III-D is therefore compared to that of a
causal per-frequency constrained design found by the method
of Section III-C. Both filters are thus constrained similarly at
each frequency but one is computed with a constraint on filter
causality, whereas the other is not.

The simulated average power spectral density of the electro-
acoustical system at the control points, compensated with the
two filters resulting from the design methods specified above,
HR, is shown in Fig. 7 along with the power spectral density of
the target vector D(q−1). The target gain is chosen large enough
that the filter power gain constraints would need to be violated
in order to achieve perfect reconstruction, therefore the target
can not be attained for all frequencies. This is a concious design
choice since a design that does not invoke the constraints is no
different from a design without constraints.

The causally unconstrained filter attains a better target repro-
duction, spectrally speaking, than the constrained filter does.
This is not a very surprising result, as adding constraints (in
this case on causality) cannot improve the criterion value. The
advantage of the non-causal method is more pronounced at the
lower frequencies whereas the methods seem more equal for
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Fig. 7. Average frequency response of compensated system for both the
causally constrained and unconstrained filters. Dot-dashed line shows the target
function gain, gray and black represent the causally unconstrained method and
the causally constrained method respectively.

Fig. 8. Taps of the impulse response of the compensated system to one control
point when using the causally constrained filter (gray) and the causally uncon-
strained filter (black). The impulse responses are truncated after 650 ms in order
to improve readability.

frequencies above (roughly) 500 Hz. The effect that the influ-
ence of causality is concentrated to the lower frequencies is in
agreement with previous findings [19].

Comparing the time-domain behaviour of the two methods
is more complicated than the frequency domain ditto since the
main peaks of the impulse responses of the two compensated
systems do not match in time. This is in turn due to the non-
causal nature of the frequency domain formulated filter. The
impulse responses of the compensated systems are shown in
Fig. 8 at a control point in the middle of the grid.

A notable difference, aside from the timing of the filter action,
is the time during which pre-ringings are present in the com-
pensated impulse response. Quantifying the audibility of the
pre-ringings is not very straight forward but previous studies
indicate that the effect of auditory pre-masking is only reliable
up to 20 ms before the main impulse [1]. This implies that the

Fig. 9. Accuracy of simulated compensated transfer functions. Sample-by-
sample average simulation error relative to the largest simulated sample. Top
figure: Time domain. Bottom figure: Frequency domain.

temporal properties of the causally unconstrained filter will be
more problematic from a psychoacoustics point of view. This
drawback in the time domain may be compensated for by the
better target adherence in the frequency domain (see Fig. 7) but
practical experience indicates that the temporal aspects play an
important role, at least when it comes to high fidelity audio.

The misalignment in time of the main impulse of the causally
unconstrained filter relative to the target impulse obviously gen-
erates a large temporal reconstruction error. This could be recti-
fied by simply truncating the filter, but that would cause signifi-
cant additional errors in the frequency domain instead. Another
method is to cyclically shift the time domain taps of the filter,
but this typically generates a non-negligible post-echo in the
compensated impulse response. A compromise of the two can
be achieved by shifting the filter taps and windowing the fre-
quency domain representation of the filter [29, Appendix C].
These are however post-optimization fixes and do not guarantee
an optimal filter, as the causally constrained methods do.

F. Filter Validity

Theoretical filter design is of little use if the produced filters
generate nonsensical or undesired output. In order to verify that
this is not the case with the present filters, an experiment is per-
formed to compare the simulations to real experimental results.
The same singly constrained filter described in Section III-A is
used for both the simulations and the validation measurements.
Differences of the compensated system response between the
simulation and a real life measurement should therefore reveal
the effect of any model errors. The difference between the sim-
ulated responses and validation measurements using the same
pre-compensation filter is shown in Fig. 9.

The errors shown are averaged over all measurement posi-
tions and are shown in both time and frequency domain. In
order not to average out the larger errors in the main peak, the
measurements have been time aligned so that the delays of the
main peaks of the impulse responses in all measurement posi-
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tions are the same. The same time shift that was used for the
validation measurements is then applied to the simulated im-
pulse responses. The errors shown in Fig. 9 (top) are relative
to the maximum peak of the simulated impulse responses. A
relative error of 1 would mean that the average error at the
corresponding delay (relative to the main peak of the impulse
response) is of the same magnitude as the largest main peak of
all simulated impulse responses. In the lower, frequency domain
figure, the average error power relative to the average power of
the simulated system per frequency is shown. This means that
a gain of 0 dB indicates that the error power is on average the
same as the power of the simulated compensated system at that
frequency.

As the filter in question is derived under a single constraint
covering the entire frequency band, loudspeakers may be active
in frequency bands for which they are not designed. There are
however no clear indications that this is the case in the present
investigation. We note a large error at the highest end of the
spectrum of Fig. 9, but further investigations reveal that the
source is background noise in the laboratory environment. In
the top figure, we see that the maximum relative error is about
two orders of magnitude smaller than the highest peak of the
simulated response. As we here look at the compensated system
response, as opposed to filter power gain, there may be large
modelling errors above 1200 Hz, see Appendix C. The valida-
tion measurement positions were approximately the same as the
design points, but some spatial deviations are to be expected,
thus the error above 1200 Hz may be influenced by over-fitting
to the design points. The problem of over-fitting should increase
with frequency, as diminishing wavelengths increase the rela-
tive error of small deviations and such a trend, albeit weak, is
indeed discernible in the validation measurement.

G. Computational Complexity, a Comparison to FIR
Matrix Solutions

The causal rational matrix approach that is utilized herein
provides control over both the pre-ringing and the delay of
the compensated system, as illustrated in Section III-E. Causal
(FIR) filters subject to quadratic constraints can also, however,
be computed using Toeplitz matrix system descriptions. The
main issue in designing filters using the Toeplitz approach is
memory constraints, which relate to the length of the filters
computed.

The resolving filter of a Toeplitz structured optimization will
be of length NI , where N , as above, represents the number
of loudspeakers and I the number of filter taps and will typi-
cally be structured as a column vector with all taps related to
one loudspeaker stacked on top of each other. We here assume
that all loudspeakers are driven by filters of the same length,
which is a simplification but not one that significantly alters the
conclusions.

The direct solution to the Toeplitz matrix optimization of
the problems exemplified herein will be structured according to
R = X−1Y where X is a square matrix and Y is post multiplied
with a column vector representing the desired system behaviour.
This, by the known dimension of the filter vector R, implies that

the matrix X must be of dimension NI|NI . There are methods
that avoid the inversion step (e.g. using the Schur complement,
see e.g., [30]) but the problem of the size of the matrix central
to the solution remains.

Comparing IIR filters to FIR filters in terms of filter length is
challenging but the filters produced in Section III herein may be
reasonably well approximated by FIR filters of 16000 taps. For a
system of 9 loudspeakers and in 64 bit (8 Byte) precision, the ma-
trix to-be-inverted thus requires (16000 × 9)2 × 8 ≈ 166 GB of
memory to be stored. Even if we halve both the numerical pre-
cision and the number of taps of the filters, we end up with
a (8000 × 9)2 × 4 ≈ 21 GB matrix to invert which will strain
most computers.

Conversely, the spectral factorization equation to be solved
for the rational matrix solutions of the examples discussed
herein requires N |N elements of FIR filters with (at most)
40001 taps. This follows from how the matrix β∗(q)β(q−1)
is constructed, see (40) and that the system matrix is here
modelled as a polynomial matrix with degree 19999, see
Appendix C. The matrix to-be-spectrally-factored is thus stored
using 9 × 9 × 40001 × 8 ≈ 26 MB of memory. Formulating
the Diophantine equation by a system of linear equations, this
matrix here attains a dimension of 21682|21682 elements. In
64 bit precision, this requires approximately 3.8 GB of storage
memory. This matrix is however largely comprised of blocks of
zeros and unit matrices. Disregarding (some of) these blocks,
which may be accounted for in other more memory efficient
ways, the remaining block is of dimension 21682|1683 elements
with an approximative memory footprint of 292 MB.

The relative computational time of the methods depends on
multiple factors. The most important are believed to be, in no
particular order, the choice of spectral factorization algorithm,
the system size and required length of parametrization and the
technique used to find the approximate inverse to the Toeplitz
system matrix. For systems with a large amount of loudspeaker
channels and long decay times that require a substantial number
of FIR filter taps to adequately model and compensate how-
ever, the proposed approach is the only computationally viable
method of the two.

H. Limitations

There are some limitations of the proposed method. These
may be split into two groups, the first of which are user-induced
limitations and the second of which are inherent limitations. In
the first group we find

� unattainable constraints,
� conflicting constraints and
� allowing too much freedom in the spectral domain
where the last point is perhaps the least self explanatory.

The behaviour of the singly constrained filter investigated in
Section III-A may be an example where the method is given too
much freedom in the frequency domain. The problem being that
the filter may behave in a non-desired way for some frequencies
so long as the average behaviour satisfies the constraint. All the
above limitations are limitations not in the method itself but
rather in the utilization of the method.
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The second group of limitations is smaller but more fun-
damental. The primary limitation here is that the spectral
factorization equation requires a valid spectrum in order to be
successfully solved. This means that the right-hand side of equa-
tion (13) must be positive definite at all frequencies on the unit
circle ejω . This can be assured by defining a filter power penalty
term in the objective function, so that J = E{εT (t)ε(t) +
uT (t)u(t)} where u(t) = W (q−1)R(q−1)r(t) and W (q−1)
is a penalty matrix that is positive definite for all frequencies.
This issue was discussed at greater depth in Section III-A.

IV. CONCLUSION

The design method presented and exemplified herein extends
the current knowledge of causal rational matrix Wiener filter and
feedforward regulator design to also include quadratic, variance
constraints. This is often useful when the square Euclidian norm
of some property influenced by the filter cannot, or should not,
exceed a pre-specified limit. The method also extends to in-
clude several constraints. A design method for problems with
a vast amount of constraints, corresponding to the non-causal
per-frequency constrained designs, is also proposed and inves-
tigated. The resulting filters from a set of examples have been
investigated by simulations and have been shown to behave in
a reasonable way. A simulation has also been compared to real
life measurements of compensated acoustic transfer functions,
with small deviations between the simulation and the measure-
ments. The causality constraint of the design method allows
for the designer to reduce pre-ringings of the resulting pre-
compensation filters. The causal filter with per-frequency con-
straints also shows improved robustness with respect to inter-
channel frequency drift as opposed to the non-causal filter. This
behaviour should be further investigated.

A polynomial approach to discrete-time LQ feedforward
compensator design is used in this paper, but the problem can
equivalently be posed, and solved, in a state-space setting.

A natural extension to this work is to incorporate the explicit
time-domain pre-ringing constraints of [31] and [32] into
the design method. The properties of transfer functions in
between measurement points can also be taken into account
in a statistical sense with methods outlined in [32], [33]. This
can be used to increase the robustness of the design and to
reduce over-adjustment to the properties of the sound field at
the control points.

APPENDIX A
DERIVATIONS OF DESIGN EQUATIONS

A. Proof of Dual Optimality

We here prove that the dual optimization problem also pro-
vides the solution to the primal optimization problem.

We will first show that a controller that minimizes the La-
grange function while providing a certain constraint value also
is optimal w.r.t. the constrained optimization problem for the
same constraint value. We will then move on to show that the
value of the constraint function C(R) decreases monotonically
with increasing values for the multiplier λ. We will then show

that increasing λ also increases the objective value J(R) mono-
tonically. If the above is true, then the optimal R(q−1) must be
found as the minimizer to (3), with λ being the smallest value
that results in constraint satisfaction. The Lagrangian (3) is here
generalized to multiple constraints as in (17) and (21).

1) A Minimizing Unconstrained Lagrange Controller that
Satisfies the Constraints is Optimal for the Constrained Prob-
lem: The controller R(q−1) that minimizes L(R, λ1 , . . . , λK )
w.r.t. R(q−1) while fulfilling Ck (R) = ek with equality will
also be an optimal solution to (2) subject to Ck (R) = ek . If
this were not true, we could find a controller S(q−1) for which
J(S) < J(R) while Ck (S) = Ck (R) = ek . But then, by (3),

L (R, λ1 , . . . , λK )

> E

{

xT (S, t) x (S, t)+
K∑

k=1

λk

(
yT

k (R, t) yk (R, t)−ek

)
}

= E

{

xT (S, t) x (S, t)+
K∑

k=1

λk

(
yT

k (S, t) yk (S, t) − ek

)
}

= L (S, λ1 , . . . , λK ) , (31)

which contradicts the assumption that R(q−1) minimizes
L(R, λ1 , . . . , λK ).

2) Increasing λk Must Reduce Ck (R): Assume, with
no loss of generality, that λ1 = λa = aη, a ∈ N, η > 0.
Now, note that if Ra is the minimizer of L(R, λa , λ2 , . . . ,
λK ) and Ra+1 the minimizer of L(R, λa+1 , λ2 , . . . ,
λK ) then L(Ra+1 , aη, λ2 , . . . , λK ) ≥ L(Ra , aη, λ2 , . . . , λK )
and L(Ra , (a + 1)η, λ2 , . . . , λK ) ≥ L(Ra+1 , (a + 1)η, λ2 ,
. . . , λK ), thus

L (Ra , (a + 1)η, λ2 , . . . , λK )

= L (Ra , aη, λ2 , . . . , λK ) + ηC1 (Ra)

≥ L (Ra+1 , (a + 1)η, λ2 , . . . , λK )

= L (Ra+1 , aη, λ2 , . . . , λK ) + ηC1 (Ra+1) . (32)

SinceL(Ra+1 , aη, λ2 , . . . , λK ) ≥ L(Ra , aη, λ2 , . . . , λK ), we
have

C1 (Ra+1) ≤ C1 (Ra) . (33)

Letting η → 0, and capitalizing on the fact that the order and
numbering of the constraint functions is arbitrary, we see that
Ck (R) decreases monotonically with increasing λk , for any
k = 1, . . . ,K.

3) The Smallest Values λk that Satisfy the Constraints
are Optimal: Assume that we have a set of multipliers
λ1 , . . . , λK , that leads to the controller Ra when the func-
tionL(R, λ1 , . . . , λK ) is minimized. Assume that the controller
Ra has the property that λ1C1(Ra) = · · · = λK CK (Ra) = 0
while Ck ≤ 0 for k = 1, . . . , K. Let us further assume that the
values of the multipliers λk are the smallest possible values that
achieve an R with the above properties.

The controller Ra+1 is now defined as the minimizer to
the function L(R, λ1 , . . . , λK−1 , λK + η). It constitutes a valid
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solution to the primal optimization problem, thus Ck (Ra+1) ≤
0 for k = 1, . . . ,K.

We also know that

J (Ra) +
K∑

k=1

λkCk (Ra) = L (Ra , λ1 , . . . , λK )

≤ L (Ra+1 , λ1 , . . . , λK ) = J (Ra+1) +
K∑

k=1

λkCk (Ra+1)

⇒ J (Ra+1) ≥ J (Ra) +
K∑

k=1

λk (Ck (Ra) − Ck (Ra+1))

= J (Ra) + γ2 . (34)

Above, γ2 indicates a non-negative number since increasing
any constraint function value would, by the assumption that Ra

provides λkCk (R) = 0, violate the corresponding constraint.
In the case where λk = 0 provides Ck (R) < 0, the choice of
λk = 0 ensures that λkCk (Ra) − λkCk (Ra+1) ≥ 0.

This means that we cannot find a valid solution to the primal
optimization problem that provides a smaller primal objective
function value than that which achieves λkCk (R) = 0, with λk

assuming the smallest value that provides the above equality
through the minimization of the Lagrange function. This opti-
mizing set of multipliers λ1 , . . . , λK is the set that is found by
maximizing (4), as we will show below.

4) Maximizing the Dual Function (4) Provides the Optimal
Value λ: Examining the multiply constrained (subjected to mul-
tiple constraints) version of (3), particularly in relation to the
sign of the last term,

G (λ) = min
R

E

{

xT (R, t) x (R, t)

+
K−1∑

k=1

λk

(
yT

k (R, t) yk (R, t) − ek

)

+ λK

(
yT

K (R, t) yK (R, t) − eK

)
}

, (35)

we note that given a λK that results in yT
K (R, t)yK (R, t) > eK

(an under-fulfilled constraint), a smaller λK must produce a
smaller value of G(λ) since reducing λK but not altering R
does produce a smaller value of L(R, λ), and G(λ) assumes the
smallest possible value of L(R, λ) for any R. Likewise, given a
λK for which yT

K (R, t)yK (R, t) < eK (an over-fulfilled con-
straint), the value of G(λ) must decrease with increasing λK .
The smallest value of λK for which constraint satisfaction is
attained (λK = 0 or CK (R) = eK ) is therefore the same as
the maximizing argument of G(λ). Since the constraint order is
arbitrary, the same result holds if we swap CK = Ck for any
k = 1, . . . ,K, and the result is thus valid for all constraints
individually. �

To summarize, we have shown that the solution to the dual
problem, maxλ .G(λ), also optimally solves the primal prob-

lem (2). This means that the duality gap is indeed zero for the
problem at hand.

B. Derivations of Design Equations (12)–(14) in Section III-A
Using Orthogonality in the Frequency Domain

To find the pre-compensation filter R by (10) that minimizes
the extended objective functionL(R, λ) by (11), we will use the
variational argument outlined in Section II-C and described in
e.g. [24]. The argument is that if we add a term to our controller
and then design the composite controller so that our Lagrange
function is minimized only if the added term is zero, then our
controller will be optimal. In the following, the dependence of
the Lagrange function will be omitted in order to keep the equa-
tions more succinct. L should however always be interpreted as
L(S, λ), where S is a generic filter which may be substituted
for R,R + T or T where relevant.

Starting with the Lagrange function, (11), we add to the con-
troller R(q−1) a causal and stable variation filter T (q−1). Sub-
stituting R + T for R, we have

ū(t) = u(t) + u′(t) = Rr(t) + T r(t),

ε̄(t) = ε(t) + ε′(t)

= V
(
BA−1R − D

)
r(t) + V BA−1T r(t). (36)

So the function to be minimized is now

L = E
{
tr
(
ε̄(t)ε̄T (t)

)
+ λtr

(
ū(t)ūT (t)

)− λeD �
}

, (37)

and can be organized into the four terms (7):

L = L1 + L2 + L3 + L4

L1 = E
{
tr
(
ε(t)εT (t)

)
+ λtr

(
u(t)uT (t)

)− λeD �
}

,

L2 = E
{
tr
(
ε′(t)εT (t

)
) + λtr

(
u′(t)uT (t)

)}
,

L3 = E
{
tr
(
ε(t)ε′T (t)

)
+ λtr

(
u(t)u′T (t)

)}
,

L4 = E
{
tr
(
ε′(t)ε′T (t)

)
+ λtr

(
u′(t)u′T (t)

)}
. (38)

If R(q−1) is chosen so that L2 = L3 equal zero, clearly the
T (q−1) that minimizes L is zero and R is optimal.

Using Parseval’s theorem, see e.g. [34, p. 395], the expres-
sions (36) and trace rotation, we write

L3 =E
{
tr
(
ε(t)ε′T (t)

)
+ λtr

(
u(t)u′T (t)

)}

=
1

2πj

∮

|z |=1
tr
(
λIR(z−1)�PT ∗(z)

+ A−1
∗ (z)B∗(z)V ∗(z)V (z−1)

× (B(z−1)A−1(z−1)R(z−1)−D(z−1)
)
�PT ∗(z)

)dz

z
(39)

where �P is the covariance matrix of r(t). The expression above
will equal zero if and only if the integrand has no poles on the
closed unit disc [35, Appendix B].

Define the spectral factorization equation

β∗(z)β(z−1) = λA∗A + B∗V ∗V B, (40)
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and combine this with equation (39) to obtain

L3 =
1

2πj

∮

|z |=1
tr
((

A−1
∗ (λA∗A) A−1R

+A−1
∗ B∗V ∗V BA−1R − A−1

∗ B∗V ∗V D
)
�PT ∗

) dz

z

=
1

2πj

∮

|z |=1
tr
(
A−1

∗
(
β∗βA−1R − B∗V ∗V D

)
�PT ∗

)dz

z
.

(41)

The equation (40) will have a stably and causally invertible so-
lution β(z−1) for any λ > 0, the case λ = 0 can, if needed,
be handled with a small regularization. Since A(z−1) is a sta-
bly invertible polynomial matrix, all zeros of det(A(z−1)) are
contained within |z| ≤ 1. The reciprocal, A−1

∗ (z) therefore has
no poles within the unit disc. The same goes for T ∗(z), since
T (z−1) is assumed stable. The covariance matrix P is indepen-
dent of z. The spectral factor β(z−1) is minimum phase and
hence stably invertible under general conditions. Choose the
pre-compensation filter

R = Aβ−1Q, (42)

and substitute (42) into (41). Setting the expression within the
innermost parenthesis in the integrand of (41) equal to zL∗(z),
where the factor z cancels the factor 1/z in (41) and L∗(z)
is a polynomial matrix in positive powers of z only, this will
guarantee that the integrand will have no poles in |z| ≤ 1. This
provides the Diophantine equation that guarantees an optimal
polynomial matrix Q(q−1) in (42). Substituting the time domain
operator q for z, we obtain

β∗(q)Q(q−1) − B∗(q)V ∗(q)V (q−1)D(q−1) = qL∗(q).
(43)

Here, L∗(q) contains polynomials in positive powers of q only.
When (43) is satisfied,

L3 =
1

2πj

∮

|z |=1
tr
(
A−1

∗ (z)L∗(z)�PT ∗(z)
)
dz = 0. (44)

Equation (42) therefore yields the minimizing controller
R(q−1). The solution above is unique [35, Appendix B]. The
equation (43) has a unique solution {Q(q−1),L∗(q)}, see [17].

The controller (12) has generic numerator degrees nnR =
nA + nQ where nQ = nV + nD. The degree of the non-
causal polynomial L∗ is nL = max(nB + nV , nβ) − 1. The
controller denominator degree is dnR = nβ. Finally, nβ =
max(nA, nV + nB).

APPENDIX B
DERIVATIONS OF (30) IN SECTION III-D

The solution to the problem (27) is found by tracing [5,
Appendix B.] and [3]. In the following, the frequency bin index
is omitted for the sake of brevity. The complex valued frequency
domain variables can be vectorized into real valued matrices and
vectors that fit the convex formalism.

Assuming a scalar r(t) and defining the vectorized variables

Rv =
[

Re (R)
Im (R)

]
MD =

[
Re
(
HH VH VD

)

Im
(
HH VH VD

)

]

MR =

[
Re
(
HH VH VH

) − Im
(
HH VH VH

)

Im
(
HH VH VH

)
Re
(
HH VH VH

)

]

, (45)

equation (27) can be posed as the convex optimization problem

min
Rv

. RT
v MRRv − 2MT

DRv

s.t. RT
v Rv − eD ≤ 0. (46)

Above, the term DH VH VD of (27) is omitted as it is indepen-
dent of both λ and R. The Lagrangian, L, becomes

L = RT
v MRRv − 2MT

DRv + λ
(
RT

v Rv − eD

)
, (47)

and the optimal controller can be found by solving

∂L
∂Rv

= 2RT
v MR − 2MT

D + 2λRT
v = 0. (48)

Provided MR + λI is invertible (which it is, if λ > 0) the opti-
mal Rv can now be found by solving

Ropt
v =

(
MT

R + λI
)−1

MD . (49)

The concave dual function G(λ) is thus

G (λ) = L|Ro p t
v

= −MT
D

(
MT

R + λI
)−1

MD − λeD . (50)

Using the Schur complement, we can avoid a matrix inversion
by expressing the maximization of (50) as

max . γ

s.t. λ ≥ 0
[
MT

R + λI MD

MT
D −λeD − γ

]
≥ 0. (51)

This can be efficiently solved using e.g. the CVX toolbox for
Matlab [36].

APPENDIX C
EXPERIMENTAL EVALUATION CONDITIONS

All measurements, both for the filter design, the simulation
models and the verification measurement were made in a room
of dimensions 2.6 by 4.5 by 5.8 meters. The main features of the
room, in relation to acoustics, were a diffuser covering one wall
and a thick curtain covering the opposite wall. Of the remaining
walls, one was covered by a set of wall mounted shelves whereas
the last wall was bare. The measurements were made above a
sofa which was placed, facing the curtain, in the middle of the
room, see Fig. 10.

Two sub woofers (speakers 2 and 7 in Fig. 10) and seven
full range speakers were positioned around the sofa. The sound
field was sampled in a 0.3 by 0.3 meters grid using microphones
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Fig. 10. The experimental setup. Shaded loudspeakers represent sub woofers.
The 16 measurements on the left side of the sofa define the area in which the
target sound field is to be reproduced.

spaced by dm = 0.1 meters. The lowest spatial aliasing fre-
quency on this grid is around 1200 Hz.3 This has the practical
implication that we cannot model the soundfield above 1200 Hz
using the current measurement microphone separation and so
results for the reproduced sound field above this frequency are
valid only at the precise measurement positions. The full range
speakers reliably reproduce sound between 60 Hz and 10 kHz
(see Fig. 11) while speaker 2 does so between 30 Hz and 400 Hz
and speaker 7 between 60 Hz and 200 Hz.

All measurements and experiments were performed with a
sampling frequency of 44.1 kHz.

A. Modelling and Filter Design Parameters

Throughout the experiments, it is assumed that the driving
noise, r(t), is scalar and white with zero mean and unit variance
i.e. l = 1 and � = 1.

The weighting filter V (q−1) for the error ε(t) of all inves-
tigated filter designs is here the unit matrix, assigning equal
importance to all measurement points at all frequencies.

The target matrix D(q−1), which specifies the desired im-
pulse responses at the measurement positions consists of ones,
representing an ideal impulse, at delays corresponding to that

3The spatial Nyquist frequency is fn = c/2dm = 344/0 .2 = 1720 Hz, for
the longest possible propagation distance between two adjacent microphones,
assuming a plane wave front. When using Kirkeby’s rule of thumb [37] to have
three measurement positions per wavelength to account for some near-field
phenomena, the frequency limit becomes 1147 Hz.

Fig. 11. The measured transfer function from one loudspeaker (number 6 in
Fig. 10) to one microphone in the middle of the measurement grid measured at
a sampling frequency of 44.1 kHz.

TABLE I
TIME AND FREQUENCY DOMAIN CONSTRAINTS OF THE EXPERIMENTALLY

INVESTIGATED FILTER DESIGNS

fn refers to the temporal Nyquist frequency of the filter (22050 Hz).

of the propagation from loudspeaker 6 plus a modelling delay d
of 0.01 s.

The step size of the search method described in Section III-C,
iterating the matrix U(q−1), is here set to 10.

The constraints used for the implemented methods are also
shown in Table I. In the case where different constraints are
used for different frequency intervals, the values shown in the
table are the maximally allowed average spectral density am-
plification, within the addressed frequency interval. The filters
φk (q−1) of Section III-B are, in the example, band pass filters
that select the frequency bands for which we don’t want the
filter power gain to be greater than eDk . The band pass filtering
will, however, mean that the constraint function with a narrow
pass band would contain less power than one with a broader
pass band if all other variables were the same. The pass band
width independent constraint level is in Table I denoted cG .
The corresponding constraint level used in the optimization is
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eD = cGif /itot , where if is the bandwidth of the filtered out
frequency interval of interest and itot is the width of the entire
frequency interval.
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