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Abstract 
Continuous System Simulation (CSS) is a powerful way to study the beha-
viour of differential-algebraic equation models. Differential-algebraic equa-
tion modelling goes back to Newton and works well for models of e.g. physical 
systems where stochasticity plays almost no role, and where only a single 
attribute of an object is studied over time. However, when results from a de-
terministic CSS model are compared with results from a Discrete Event Si-
mulation (DES) model, they are often inconsistent. The reasons behind this 
CSS-DES inconsistency are nowadays well understood. In this paper, we 
demonstrate that a CSS model can contain both continuous state variables 
(compartments) that change continuously over time and discrete state va-
riables (also compartments) that model discrete entities and change by integer 
amounts. In both cases, the time-slicing method is used to advance time. Fur-
thermore, stochasticity can and should play the same role in CSS as it does in 
DES. This paper first explains how a well-defined conceptual model can be 
stepwise transformed in a consistent way into a CSS model. These transfor-
mation steps provide insights into how to construct a consistent CSS model. 
In short, this is about preserving uncertainties, attributes and dynamic prop-
erties. An additional benefit of this approach is that continuous and discrete 
sub-models can interact within the same model, without having to combine 
different types of simulation languages, types of time handling and incongru-
ent concepts. To facilitate the use and understanding of stochastic CSS, this 
paper is also intended to serve as a guide to performing consistent CSS model-
ling and simulation. Furthermore, an open source tool for collecting and ana-
lyzing the outputs from a stochastic CSS model and analyzing and presenting 
the results in statistical form is also developed and made available to the read-
er. 
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1. Introduction 

When Continuous System Simulation (CSS) and Discrete Event Simulation 
(DES) became established methods in the 1960s, it was soon noted that the re-
sults from these modelling methods often differed. The reasons behind this in-
consistency and the problem of what type of model to use under different cir-
cumstances have been discussed since then [1]-[6].  

In a series of papers [7]-[12], we have compared different simulation methods 
and analysed conditions for these methods to produce consistent results. In 
these studies we have also analysed and compared the model size and complexity 
when using these methods under different conditions. In this paper, we demon-
strated how CSS can be constructed in a way that eliminates all types of bias and 
artifacts so that CSS and DES produce results that are fully consistent. In brief, 
the underlying problems originate from the conventional way of performing CSS 
modelling. By taking account of the following four fundamental issues that have 
been neglected in the past, full consistency can be obtained: 

1) Discrete quantities and discrete information-bearing signals should usually 
be modelled as discrete, while continuous matter and continuous informa-
tion-bearing signals should be modelled as continuous. 

2) Relevant properties of real objects have to be considered as model 
attributes. 

3) The dynamic properties of a stage have to be preserved. (The concepts of 
stage and compartment should not be confused. A stage usually has to be mod-
elled by a structure of compartments.) 

4) Uncertainties of different kinds must be correctly represented in the model, 
often leading to a stochastic model.  

Based on the papers [7]-[12], a comprehensive theory for how this is per-
formed is presented in this paper. All four issues can be handled smoothly with-
in the CSS concept, as is demonstrated in this paper. Furthermore, a stochastic 
model generates stochastic output. Therefore, a device to obtain statistical results 
from multiple simulations is required. For this reason, we provide an open 
source tool (embedded in a simple CSS language) for collecting and analyzing 
the outputs from a stochastic CSS model and analyzing and presenting the re-
sults in statistical form. 

The purpose of this paper is to demonstrate how to take the four aspects listed 
above into account, in order to give CSS modelling its full potential while main-
taining the consistency with a given conceptual model. The paper is also in-
tended to serve as a guide to performing consistent CSS modelling and simula-
tion. 

Although a CSS model can include both continuous and discrete quantities, 
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we focus more on the latter because the former can be assumed to be well 
known. 

In Section 2, we introduce how continuous and discrete quantities can be 
handled in a CSS model and outline some problems with continuous modelling 
of discrete objects. In Section 3, we show how a well-defined conceptual model 
can be stepwise transformed into a consistent CSS model. Appropriate handling 
of the attributes and the dynamic properties of a stage then appears as a natural 
consequence. In Sections 4 and 5, we discuss these aspects further and show the 
consequences of neglecting correct handling of attributes and of confusing stages 
with compartments. In Section 6, we show that both continuous and discrete 
quantities can be combined within the same CSS model, while in Section 7, we 
discuss the different types of uncertainties and how these can be implemented in 
a CSS model, often as stochasticities. A stochastic model produces stochastic 
variations both within a replication (simulation run) and between replications 
that usually have to be analysed in statistical terms, an issue discussed in Section 
8. Then discussion and conclusions follow in Section 9: we also include Appen-
dix A containing six illustrative examples that are referred to from many points 
in the text. These models can be downloaded and explored using the software 
referred to in Appendix B.  

2. Continuous and Discrete Modelling in CSS 

Conventional CSS usually treats all compartments (state variables) as conti-
nuous, and the time handling is based on time-slicing that transfers fractions of 
the content in a compartment during a time-step. However, in many situations, 
some quantities of interest to be modelled are, by their nature, discrete. There is 
then nothing to prevent us from modelling the contents in compartments as in-
tegers (of discrete tokens) that transition the model [7] [13]. Preserving dis-
creteness and continuousness in the model will remove bias and artifacts of dif-
ferent kinds. The practice of modelling everything as continuous in CSS is a 
main reason for inconsistent behaviours and results. 

In the continuous case, a fraction of the continuous matter in a compart-
ment is transferred during a small time-step. The transitions to/from/between 
compartments are often deterministic, but may vary stochastically because of 
unpredictable changes in the environment (parameter stochasticity, see Sec-
tion 7.6). 

In the discrete case, discrete quantities (tokens) are transferred to/from/between 
the compartments during a time-step. The transitions can be deterministic, e.g. 
described by a pulse train or according to a time table, or observed behaviour 
described by a table look-up function. However, the transitions often have to be 
described in stochastic terms. The uncertainties in the discrete case may origi-
nate from knowing only the average rate of a transition (transition stochasticity 
to be treated in Section 7.4) and from unpredictable changes in the environment 
(parameter stochasticity, see Section 7.6) that affect the average rate. 
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2.1. Continuous Modelling 

Continuous modelling is closely related to differential-algebraic equation mod-
els. A continuous (matter) model can be constructed from observations or 
translated from known differential and algebraic equations. If the differential 
equation is of the nth order, it can always be rewritten as n coupled first-order 
equations, each describing the rate of change of one state variable (compart-
ment).  

Below a continuous first-order difference equation (written in Euler’s form) 
based on the compartment X is initiated and updated by inflows and outflows 
for each (sufficiently small) time-step Δt by: 

( )0 rational numberX =  (called real in computer jargon)              (1a) 

( ) ( ) ( ) ( )in outX t t X t t F t t F t+ ∆ = + ∆ ⋅ − ∆ ⋅                           (1b) 

( ) ( )int F t t tλ∆ ⋅ = ∆ ⋅  (where λ is the inflow intensity)                (1c) 

( ) ( )outt F t t tµ∆ ⋅ = ∆ ⋅  (where μ is the outflow intensity)              (1d) 

In a programme, this would be coded: ( ) ( )inF t tλ=  and ( ) ( )outF t tµ= , 
since the product, t F∆ ⋅ , is not allowed on the left-hand side of an assignment 
statement. The form in (1c) and (1d) is used here to display the similarity with 
the discrete case below. 

2.2. Discrete Modelling 

In a discrete model or sub-model, the compartments must be initiated by integer 
values (of tokens), and the transitions must preserve the discreteness. 

To initiate a discrete number of tokens, just let the content of each compart-
ment be an integer: 

( )0 integer numberX =                     (2a) 

Because discreteness cannot be preserved by transferring fractions, it becomes 
necessary to either transfer zero or an integer number of tokens at each Δt.  

The transitions can be deterministic or stochastic. In the deterministic case, 
the difference equation model (1) applies with the extra condition that 

( )int F t∆ ⋅  and ( )outt F t∆ ⋅  must be integers. For example, transitions may fol-
low a regular pattern or be described by a table look-up function. 

However, in most cases the detailed information to model the instants when 
the tokens will transit is not available. For example, there is no exact information 
on when an atom will decay, an individual will cross the street, a customer will 
arrive etc. Then it is only possible to describe the probability distribution of the 
number of transitions per time unit and draw integer random numbers from this 
distribution, which makes the model stochastic. 

Furthermore, if the intensities are random and independent, we have a Pois-
son process. Then the number of transitions during a time period (here Δt) be-
comes Poisson distributed, symbolically denoted [ ]Po t λ∆ ⋅  and [ ]Po t µ∆ ⋅ , 
with expected values t λ∆ ⋅  and t µ∆ ⋅ , respectively [14]. The Poisson process 
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may also be time varying. However, during a small time-step the intensities, λ(t) 
and μ(t), can be regarded as constant, see [7]. 

In the stochastic case, the state Equation (2b) of a discrete model is then the 
same as for the continuous Equation (1b), but the flow equations get the Po[ ] 
clause: 

( ) ( ) ( ) ( )in outX t t X t t F t t F t+ ∆ = + ∆ ⋅ − ∆ ⋅               (2b) 

( ) ( )int F t Po t tλ∆ ⋅ = ∆ ⋅                       (2c) 

( ) ( )outt F t Po t tµ∆ ⋅ = ∆ ⋅                      (2d) 

In a programme, this is coded: ( ) ( )inF t Po t t tλ= ∆ ⋅ ∆    and  
( ) ( )outF t Po t t tµ= ∆ ⋅ ∆   , since the product, Δt·F, is not allowed on the 

left-hand side. 
Handling the uncertainty of the number of transitions per time-step is called 

transition stochasticity and is further discussed in Section 7.4. (In addition, the 
intensities λ(t) and μ(t) may also vary stochastically to describe uncertainties in 
the environment.) 

Discrete and continuous processes can be freely combined in a CSS model 
(see Section 6 and the discrete/continuous Volterra model in Example A6 in 
Appendix A). 

Equation (1) is said to be embedded in Equation (2). It is obtained by remov-
ing the Po[ ]-clauses in (2c) and (2d). The embedded continuous dynamic model 
(1) can be seen as an approximation of the discrete dynamic model (2), which 
may or may not distort the model behaviours. In the next subsection, we briefly 
discuss some consequences of describing discrete objects as continuous. 

2.3. Consequences of Continuous Modelling of Discrete Objects 

CSS is often used to model both continuous matter and discrete objects by a 
continuous equation system like (1) above.  

However, modelling all physical or information-bearing quantities as conti-
nuous is not acceptable in most situations, because a discrete and a continuous 
process, ceteris paribus, are profoundly different and will usually produce dif-
ferent results and even show qualitatively different behaviours. Furthermore, the 
transitions of discrete objects are often irregular and dependent on so many un-
known factors that they have to be described as stochastic. Transition stochastic-
ity has no counterpart in a continuous flow. For a more complete discussion, see 
[11]. Deterministic and stochastic modelling approaches are also compared for 
specific studies in many papers, e.g. [15]. 

Below, we briefly mention some important aspects of replacing equation sys-
tem (2) with its embedded equation system (1). This is also demonstrated by a  
number of recurrent examples collected in Appendix A1. 
• Some models, e.g. queuing models, require transition stochasticity to be 

 

 

1For full understanding, it may be practical to study these examples after a full reading. The exam-
ples A1 to A6 are also available as executable models on the net, see Appendix B. 
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meaningful (see Example A5). For example, an M/M/1 queue with the inten-
sity of 9 arrivals per time unit and a capacity to serve 10 individuals per time 
unit will produce long queues and waiting times in the discrete and stochastic 
setting, but erroneously no queues or waiting times in the deterministic set-
ting.  

• A continuous model may hide behaviours and models with very different 
model structures may falsely produce the same behaviour when discrete ob-
jects are approximated as continuous matter (see Example A2).  

• A continuous model used to describe discrete objects prevents ‘stochastic 
jumps’ to solutions that are possible to reach in a discrete model for a given 
set of initial values. For example, in a continuous Volterra model, a species 
cannot become extinct (see Example A6) and in a continuous Lanchester’s 
model of warfare, a weaker force can never defeat a stronger one (see Exam-
ple 2 in [11]). 

• A continuous model used to describe discrete objects can erroneously reach a 
stationary equilibrium, while the stochastic transitions between compart-
ments of a discrete model may continually excite the model (see the Volterra 
model in Example A6 and the logistic model in Example A2-1). 

• A continuous model used to describe discrete objects will in general produce 
results that differ from those of the expected values from a discrete model, 
e.g. because of nonlinearity in equations or output functions. For example, in 
a (bilinear) SIR model (see Example A4), the results may differ by many 
hundred percent. Even for a trivial linear model of radioactive decay, the 
time to the last decay is finite for the discrete model, but infinite for the em-
bedded continuous model (see Example A1.) Also for the linear Lanchester 
model, the expected outcome and the time of the combat will also differ from 
the results of an embedded continuous model (see Example 2 in [11]). 

• Even when a continuous model used to describe discrete objects produces 
unbiased estimates (see [11] for such cases), stochastic variations are re-
moved or reduced. In the latter case, confidence intervals around estimates 
will be erroneously small because of the eliminated transition stochasticity. 

Replacing the system of Equation (2) by its embedded system of Equation (1) 
entails two simplifications. One is replacing discreteness with continuousness 
and the other is removal of (possible) transition irregularities.  

Experienced irregularity because of lack of exact and very detailed informa-
tion is often unavoidable in modelling. We do not understand e.g. the processes 
in the nucleus causing the decay of a radioactive atom, when the next person will 
be infected by a disease or when the next traffic accident will occur and which 
vehicles will be involved etc. However, in some cases discrete objects behave in a 
pattern regular enough to be deterministically described. For example, new ob-
jects may be manufactured at regular intervals. In other cases, the rate of decay 
of radioactive atoms or the rate of H2O molecules flowing in a river is so large 
that a continuous approximation is adequate. Transition stochasticity is then 
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almost removed because of the law of large numbers.  
Whether a continuous simplification is appropriate may also depend on the 

question to be answered. For example, for a radioactive decay of N atoms with 
the time constant D, the (expected) time until the last decay is the same whether 
the discrete process is stochastic or deterministic (i.e. regular with N(t)/D decays 
per time unit). However, if it is modelled as continuous, the time until the last 
decay will become infinite. So here it is the continuousness that generates the 
error. However, in e.g. the queuing example listed above, it is the removal of 
transition irregularities that erroneously eliminates the queue.  

In special cases where the number of objects is so large that they can be re-
garded as a continuous matter and for many but not all linear systems, a discrete 
and an embedded continuous model will have the same, or almost the same, be-
haviour. The continuous model may then be preferred. In particular, parameter 
estimation and optimization are considerably easier to perform with a conti-
nuous model, see [11]. 

The conclusion from this is that discrete quantities should usually be mod-
elled as discrete, while continuous matter should be modelled as continuous. 
Furthermore, it is important to describe the transition pattern, regular or irre-
gular, in a proper way. 

2.4. Finding a Proper Integration Method and Time-Step 
2.4.1. Systems of Ordinary Differential Equations 

1) Integration methods 
For deterministic modelling of continuous matter, there exist a large number 

of integration routines for systems of ordinary differential equations that have 
different qualities. If the model develops smoothly, higher-order routines can 
produce very accurate results with a reasonable or even self-adjusting time-step. 
Because many CSS models include discontinuities requiring restarting of the al-
gorithm, many CSS languages contain single-step routines, such as the 
Runge-Kutta routines of different orders that are fairly robust and fast. There is 
a vast body of literature on numerical integration methods for ordinary differen-
tial equations, e.g. [16] [17]. 

2) Time-step 
After the choice of integration method, the size of the time-step, here denoted 

DT, has to be adjusted. Often DT = 1/6 or 1/10 of the shortest time-constant in 
the model is recommended (which of course also depends on the required accu-
racy of the result). The step-length is a compromise between accuracy and ex-
ecution speed. A practical way to find an appropriate DT is to double or halve 
DT until a time-step is reached where the difference in results is negligible.  

2.4.2. Systems in the Stochastic Case 
1) Integration methods 
High-order routines are not suitable for stochastic systems with discrete to-

kens, because such methods presuppose continuity in trajectories and their de-
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rivatives. In particular, transition stochasticity creates discontinuities in each 
time-step. Although Euler’s method with a proper DT works well, the issue of 
the best integration method for different types of stochastic models with discrete 
tokens has not been sufficiently studied. Gillespie discusses both Euler and 
second-order Runge-Kutta algorithms for stochastic simulation of chemical 
reaction systems [13]. A number of studies of efficient methods for stochastic 
simulation have been published since then, e.g. [18] [19] [20] [21]. 

2) Time-step 
In the stochastic case, finding a proper DT is still more important than in the 

deterministic case because of the many replications that are always required to 
build probability distributions of the results. However, here it is also more com-
plicated to find the proper DT. 

A complicating difficulty with a stochastic model compared with a corres-
ponding deterministic model is that DT cannot simply be adjusted until the dif-
ference in results becomes negligible, not even with seeds to every random 
number generator, because when DT is changed a different number of random 
numbers is used and the random numbers will not enter at the same places and 
points in time. Instead, it is necessary to make many replications with one DT 
and then with a time-step of half (or double) the size and to compare the gener-
ated distributions of the quantities of interest, or at least compare the averages 
(and e.g. variances) from these distributions. 

It is our impression that for many stochastic models, Euler’s method can be 
used with a time-step about the size (or half the size) of the time-step used in the 
corresponding deterministic and continuous model. However, this rule-of-thumb 
should be tested in each actual case. 

3. Insights from Stepwise Transformation of a Conceptual  
Model into a CSS Model 

Modelling (for analysis or simulation) means creating a simplified model in ac-
cordance with a specific and well-defined purpose in order to understand a sys-
tem under study. It is “never” possible to obtain a true model. The best one can 
hope for is to obtain a model that truly realises a well-specified conceptual mod-
el (CM). We denote such a model CM-consistent, which means that an executa-
ble model should be fully consistent with a well-specified conceptual model.  

CSS modelling is a more abstract representation than is usually noted in the 
literature and practice. To illustrate this, here we exemplify how a conceptual 
model (CM) that describes discrete entities can be stepwise transformed into a CSS 
model (a system of difference and algebraic equations) that is CM-consistent. 
These steps go via two types of DES models, called agent-based model (ABM) 
and entity-based model (EBM). Since this analysis is presented in detail in [12], 
in this section we keep the term “compartment-based model” (CBM) that 
was used there. When time is updated by time-slicing, CBM is the same as 
CSS. 
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To be more concrete, we specify a simple conceptual SIR model, i.e. an epi-
demic model based on the three stages S = Susceptible, I = Infectious and R = 
Recovered. (This type of epidemic model was first formulated by W. O. Kermack 
and A. G. McKendrick [22].) We then let the transformations demonstrate what 
is necessary for constructing a consistent CBM/CSS model. 

Example 1: Realization of a conceptual SIR model as a consistent 
CBM/CSS model  

First, we define a conceptual SIR model as an epidemic model of a popula-
tion of 11 discrete subjects, of which six are males and five are females. 

Attributes: Each subject has a unique Identity = {1, 2, ···, 11}, a Sex = {Male, 
Female}, and is in one of three Stages = {S, I, R}.  

Process: Each of the subjects meets everybody else. A susceptible subject may 
then become infected by an infectious subject with a specified probability, p, per 
time unit. An infectious subject recovers after a sojourn time D in the I-stage 
(assumed to be 3-Erlang(3/D) distributed) and thereafter becomes immune to 
the disease.  

Finally, the purpose of the model study is: To estimate the size and duration 
of a possible epidemic. 

In Figure 1, the conceptual SIR model (CM) is stepwise transformed into an 
ABM, EBM and CBM (i.e. CSS model).  

The stepwise transformations T1-T5 from the conceptual model to a 
CM-consistent compartment-based model are discussed below: 

Conceptual Model 
The formal structure of the conceptual model is:  
 

 
Figure 1. The stepwise transformations from conceptual model via ABM and EBM into a CBM/CSS model. (A stage is denoted by 
a double frame and a compartment by a single frame.) 
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Subjects{Attributes[Id, Sex, Stage], Procedure S → I(sjtd) → R};  
where “sjtd” denotes the sojourn-time distribution. Hierarchically, the subject 
containing attributes and procedures is here the primary unit of the conceptual 
model. 

T1: An agent-based model is a 1:1 mapping of the conceptual model in terms 
of agents with intrinsic, subordinated attributes and procedures.  

Agent-based model 
Because of the 1:1 mapping, the formal structure of the CM is preserved by 

the ABM: 
Agents{Attributes[Id, Sex, Stage], Procedure S → I(sjtd) → R}. 
Thus, the ABM is an executable version of the well-defined CM, so it is 

CM-consistent. The agents can interact with each other and with the environ-
ment.  

T2: The transformation from an agent-based to an entity-based model is 
based on an inside-out transformation, where the intrinsic procedure of a for-
mer agent becomes superior and the agent is reduced to a subordinate entity 
(only containing attributes) that traverses the procedure. Figuratively, the entity 
traverses a flowchart of stages defined by the process. 

T3: In the next transformation, all procedures (flowcharts) are superposed 
into a common overall procedure where the entities travel between stages. On 
arrival in a stage, attributes of the entity, other entities and global attributes may 
be changed. Then the entity will reside in the stage during a specified or random 
sojourn time: 

Entity-based model 
Procedure: S → I(sjtd) → R with {Entities[Attribute(Id, Sex, Stages)]}. 
Further transforming an EBM into a CBM requires two modifications: 
T4: The attributes connected to the entities must now instead be connected to 

the stages. This transformation, T4, is denoted attribute expansion. Taking the 
attribute “sex” in our example into account requires the expansion from three to 
six stages, namely S, I, R for males and S, I, R for females. Thus, a stage can only 
take the value of a single attribute combination (e.g. “Disease stage” and “Sex”), 
which means that every attribute taken into account will multiply the model size. 

The stage could also preserve the attribute “Identity” of the entities, but that 
would make the model N = 11 times larger. Dropping the identity information 
makes the transformation T4 irreversible (denoted by a one-directional arrow), 
but it is still consistent (contradiction-free). In this example, the purpose is “to 
estimate the size and duration of a possible epidemic”, so there is no need to 
preserve identity. 

T5: The sojourn time in a stage may have any distribution, but the distribution 
for a single compartment is exponential here2. As discussed in Section 5, a  
stage with a given sojourn-time distribution can be approximated arbitrarily well 

 

 

2When the continuous output rate from a compartment (X) is proportional (1/D) to its content, we 
get dX/dt = −X/D, resulting in an exponential sojourn-time distribution. In the discrete and stochas-
tic case we get dX/dt = −Poisson[dt·X/D]/dt, also producing an exponentially distributed sojourn 
time with expected value D. 
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by a linear system of compartments in series and/or parallel. This is called 
stage-to-compartment expansion. The 3-Erlang (D/3) infectious I-stage can, 
however, be exactly represented by three serially connected compartments I1, I2 
and I3 in a CBM [23].  

Compartment-based model (i.e. a CSS model when time-slicing is used) 
Procedure: SM → I1M → I2M → I3M → RM & SF → I1F → I2F → I3F → RF; 

where M stands for male and F for female.  
In the CBM representation, only the procedure now remains. It has the form 

of a structure of compartments, where a compartment only contains a number 
of tokens. Attributes (Sex, Disease stage and possibly Id) and sojourn-time dis-
tributions are here structural parts of the procedure. Each stage then represents 
an attribute combination, and by replacing the stage by a number of compart-
ments (state variables) in series and/or parallel, the prescribed sojourn-time dis-
tribution is approximately obtained. ■ 

This is only a simple example, but it provides the fundamental principles and 
insights for CSS modelling of discrete subjects. The principles are the same even 
when e.g. queues are involved or when position in space is an important 
attribute. This is further discussed in [12].  

The approximation of a continuously varying attribute into discrete intervals 
and the approximation of a sojourn-time distribution of a stage can both be 
made sufficiently accurate, but at the expense of model size. 

The shortcut, shown in Figure 1, of directly mapping the conceptual model 
into a CSS model is natural and efficient, provided that the modeller under-
stands how to perform it in a consistent way. 

In the following sections, we systematically discuss attribute expansion, 
stage-to-compartment expansion and how to include different types of uncer-
tainties about the system under study. We also demonstrate the consequences of 
neglecting to perform these tasks properly. 

4. Attribute Expansion 

In agent-based and entity-based modelling, the cost of including an attribute is 
almost negligible, but for CSS modelling the cost grows combinationally with the 
number of values each attribute can take.  

In Example 1 above, the conceptual model (besides the stage attribute) has the 
attributes Identity = {1, 2, ···, 11} and Sex = {Male, Female}. Because the purpose 
to estimate the size and duration of an epidemic does not require identity, this 
attribute could be dropped. Then the SIR model size was only doubled because 
of the attribute Sex = {Male, Female}. However, if the conceptual model were to 
require e.g. the attributes Identity = {1, 2, ···, 11}, Sex = {males, females}, Age 
groups = {0 - 4, 5 - 9, 90 - 94, 95+} and Smokers = {no, passive, yes}, then the 
CSS model would become 11 × 2 × 20 × 3 = 1320 times larger in terms of num-
ber of compartments/state variables in the CSS model. In such a situation, it be-
comes tempting to drop identity and use average values of, say, sexes and age 
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groups. However, CM-consistency may then not be achieved, and comparisons 
with ABM or EBM results will show differences because of over-simplification of 
the CSS model. The loss of identity also means that e.g. maximal or minimal 
through-times can usually not be measured because the individual token cannot 
be followed.  

Furthermore, before the expansion, attributes that can take a continuous 
spectrum of attribute values must be discretised into a finite number of values, 
with an approximation accuracy that is sufficient for the purpose of the study. 
Space, therefore, is a very costly attribute in CSS modelling. The book Modelling 
Biological Populations in Space and Time [24] includes a good presentation on 
describing space in compartment-based models.  

In [12], the best choice of model type (ABM, EBM or CBM/CSS) in different 
cases is discussed.  

5. Stage-to-Compartment Expansion 
5.1. Stage, Sojourn Time and Sojourn-Time Distribution 

To understand and describe a system under study, we need a number of con-
cepts. In the study of dynamic systems, stage is a crucial concept. After specify-
ing what defines a stage, we can describe how continuous matter or discrete ent-
ities arrive in or leave the stage. Often the actual amount of content in a stage 
has a profound impact on how the system/model develops over time, but this 
amount depends on how long the matter or entities stay (sojourn) in the stage. 
Therefore, the sojourn time in a stage is often a crucial factor behind the dy-
namic development of a system under study that must be depicted in the model. 
For example, the duration of a pregnancy, the time as a pupa in an insect life 
cycle, the lifetime of a light bulb, the survival time in a disease or the time of a 
radioactive atom before decay can be important to describe in a dynamic model. 

Furthermore, not all pregnancies, light bulbs and radioactive atoms have the 
same sojourn time. Therefore, average or expected values of the sojourn time in 
a stage are often used. However, averages are not always sufficient and it is often 
necessary to include the distributions of the sojourn time in a model to achieve  
proper results. Thus the sojourn-time distribution or distributions3 is an impor-
tant characteristic of a stage. The sojourn-time distributions describe how long a 
stage holds the matter or tokens (in deterministic or stochastic terms).  

An example of the importance of a realistic description of the distribution of 
sojourn times is a SIR model with the stages: susceptible, infectious and recov-
ered. Here the sojourn-time distribution of the infectious stage has a significant 
impact on the risk of an epidemic and its expected size.  

Modelling the sojourn-time distribution may be necessary for some stages, but 
not for others. For example, the susceptible stage S of a SIR model is just a 

 

 

3If there are several possible exits from a stage (e.g. progression, regression, death due to other cause 
etc.), then several sojourn-time distributions are defined for the stage, see [12]. 
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source of individuals that may be infected, and the recovered stage R is just a 
container to count the cases that have had the disease. There is no need to de-
scribe the sojourn times for these stages. However, for the infectious stage I, the 
sojourn-time distribution is critical for the behaviour of the model, see Example 
A4. 

It is also important to understand that a sojourn time is virtually never a 
physical constant and its distribution is rarely invariable. For example, in a study 
of productivity, the citizen in a society can e.g. be classified according to the 
stages: young, productive and retired. Then the productivity depends on the so-
journ time in the productive stage. However, the sojourn time and its distribu-
tion in the productive stage depend on the length of education and the retire-
ment age in the society at a particular time. It also depends on health, motiva-
tion, tax policy, competition, family policy and many other factors.  

Even for a simple physical system under study, the sojourn time is not always 
a universal constant. For example, uranium-235 has a “natural” half-life of 704 
million years, but in a reactor with plenty of neutrons the half-life is much 
shorter. In general, the sojourn time usually varies over time because of changes 
in the environment, and it may also vary because of e.g. cooperation or competi-
tion between studied objects. For example in a logistic model (Δx/Δt = a·x − 
b·x2), the expected sojourn time varies with the nonlinear competition (the 
x2-term). For a queuing system, the sojourn time in a queue will vary with a 
number of factors such as the arrival of customers, the number of service sta-
tions and the service time, which in turn may vary depending on the time of day 
and day of the week. By including these factors, we can still produce a realistic 
model. 

Although the complexity of nature may seem overwhelming, an actual study is 
usually limited to describing the system under study under a set of specific con-
ditions in order to fulfil a specific purpose. In short, the model should describe 
the structure, relations and quantitative values observed from the system under 
study in order to be able to reproduce the behaviour of this system. The variabil-
ity of the world is not a problem for modelling a specific situation, but it means 
that generalization of the results of a model study is a complex task. 

Regardless of whether the model is linear or non-linear, or affected by a vary-
ing environment or not, it is important that the model preserves the sojourn 
time and its distribution in the system under study for a well-defined situation 
or time period. This is equally true for all types of model studies, and CSS mod-
elling is no exception. 

5.2. Stage versus Compartment 

Proper representation of the sojourn time and its distribution in a stage is an 
important task in all kinds of modelling. However, unlike a conceptual model or 
a DES model where a stage can be a building block with a specified sojourn-time 
distribution, CSS lacks the stage concept. Here a stage is not a component, so we 
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have to reconstruct or approximate a stage by a structure of compartments and 
transitions.  

In CSS modelling, the compartment (state variable) is a box in which to place 
all matter or tokens with exactly the same set of attribute values, but the com-
partment will, in general, not produce the prescribed sojourn-time distribution 
of a stage. Therefore, the prescribed distribution must be generated by the 
building blocks available for a CSS model. 

In order to limit the stage-to-compartment discussion, we now focus on some 
simple cases where the sojourn-time distribution is only a property of the matter 
or token. Some possible sojourn-time distributions are shown in Figure 2. 

The single compartment, on the other hand, is not a flexible device to generate 
different types of sojourn-time distributions. In its simplest form, where the so-
journ-time distribution is only a property of the matter or tokens  
( )–x t x D∆ ∆ = , we obtain an exponential sojourn-time distribution, see Figure 
3. For the discrete and stochastic case [ ]( )–x t Poisson t x D t∆ ∆ = ∆ ⋅ ∆  we ex-
pect the corresponding sojourn-time distribution. 

Thus the use of a single compartment is generally insufficient for generating a 
prescribed sojourn-time distribution. 

However, the compartment (state variable) is the fundamental “building 
block” of a CSS model. A compartment holds matter or tokens with exactly the  
 

 
Figure 2. Some sojourn-time distributions of a stage. In the discrete and stochastic case these diagrams show the expected distri-
butions. 

 
Figure 3. Sojourn-time distribution of a 
compartment where Δx/Δt = −x/D. In the 
discrete and stochastic case, this diagram 
shows the expected distribution. 
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same set of attribute values, except for identity and arrival time. The underlying 
idea of sacrificing identity is to be able to treat all matter or tokens in the com-
partment exactly the same and independently of how long they already have re-
sided in the compartment. However, the sojourn after arrival must at least be 
approximately preserved by including an additional (local to the stage) sojourn 
attribute. In a simple case this can be approximately obtained by, say, three 
consecutive compartments with the local attribute values: newly-arrived, 
stayed-a-while, and soon-to-leave. 

There are different ways to model a stage with a prescribed sojourn-time dis-
tribution by multiple compartments. For example: 
- A shift register where the content is shifted one step for each time-step could 

be used. (Technically, this can be implemented as a circular buffer, and it is 
then enough to just shift the points of entry and exit.) This implementation 
has the disadvantage that the sojourn time will change when the size of the 
time-step is adjusted. (However, it would be possible to modify the imple-
mentation so that the sojourn time is independent on the time-step used.) 
See [8] for the stochastic case. 

- A sub-model of compartments in series and/or parallel that generates or ap-
proximately generates the sojourn-time distribution of the stage can be con-
structed. This usually seems to be the best solution since it is general, in line 
with the CSS philosophy and can be directly applied in a CSS language. In 
this approach the number of compartments becomes independent of the size 
of a (sufficiently small) time-step. 

Below we use the second approach, although we believe that implementation 
of a time-step independent shift register would be a convenient complement in 
some situations.  

5.3. Realization of a Sojourn-Time Distribution in a CSS Model 

In CSS modelling, the sojourn-time distribution of a stage can be generated from 
an adequate linear structure of compartments in series or parallel (or even using 
feedback). It is always possible to approximately generate any given sojourn-time 
distribution within a specified accuracy in this way.  

Note that the same sojourn-time distribution of a stage is generated by a 
structure of compartments in both the continuous and the discrete cases. In the 
continuous case the structure generates the fraction of the content that will leave 
the stage at each time-step. In the discrete and stochastic case, the structure ge-
nerates the probability of tokens leaving the stage at each time-step. 

5.3.1. The Erlang Distributions (Compartments in a Series) 
A common and often useful description of a stage is obtained by arranging k 
compartments (with the same (expected) exponential sojourn time D/k) in a se-
ries. This constitutes a “dynamic delay of order k” and is used so frequently in 
modelling that many CSS languages provide it as a building block where only the 
shape parameter k and the scale parameter (average/expected sojourn time) D 
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have to be specified.  
Thus the sojourn-time distribution of a stage obtained from k serial com-

partments, each with an exponential sojourn-time distribution Exp(D/k), is de-
noted k-Erlang(D/k) distribution4. In Figure 4, the k-Erlang(D/k) distribution is  
shown for different values of k . Specifically, the 1-Erlang(D) is the exp(D) dis-
tribution. 

A serious but common error in CSS modelling is to represent a stage by a sin-
gle compartment. A medical example of the disastrous consequences of confus-
ing stage and compartment is given in Example A3, which describes the proba-
bility of a lesion developing into cancer. Using a single compartment to 
represent the lesion stage (called cancer in situ) in that case led to the wrong 
conclusion that cancer in situ of the cervix uteri is not a pre-stage of cancer that 
has to be treated. When this conclusion was applied in clinical practice, it led to 
the death of a number of women. 

Another example is the SIR model of Example 1, above. Whether the infec-
tious stage of this model (with a given average sojourn time D) is represented by 
a single or several compartments will drastically affect the expected size of an 
epidemic (see Example A4).  

5.3.2. Compartments in Series and Parallel 
With compartments in series and parallel, any sojourn-time distribution can be 
approximated. Figure 5 gives one example. 

Roughly speaking, more compartments in series will concentrate the distribu-
tion around the sojourn-time average, while compartments in parallel will create  
 

 
Figure 4. Left: A stage with an average sojourn time of D time units can be modelled by one or several compartments in series 
producing different sojourn-time distributions of the Erlang family. Right: The k-Erlang (D/k) family with an average sojourn 
time D and a shape parameter k for k = 1, 2, 3, 5, 10, and infinity. The sojourn-time distribution approaches a fixed time delay of 
duration D time units when k approaches infinity. 

 

 

4For a positive integer k, the Γ(k, β) distribution is called the k-Erlang (β) distribution, see [25] or a 
statistics textbook. 
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Figure 5. With structures of compartments in series and parallel, more complicated sojourn-time distributions can be created. 
(Here the input is divided into two parallel flows that produce the output. The parameter values Da = 1, Db = 7 and b_to_a = 8 are 
used in the plot.) 

 
a hyper-exponential distribution. 

5.3.3. The Impulse Response 
A practical way to generate and to measure the sojourn-time distribution that 
works in the linear time-invariant case is to send an impulse into an empty stage 
(modelled by a sub-system of compartments). Then the outcome, called the im-
pulse response, describes the sojourn-time distribution. However, in a non-linear 
case the outcome is dependent on e.g. the size of the impulse used, and in a 
time-variable case the outcome is what the environment imposes. For such cases, 
one can only talk about the actual sojourn time and its distribution in a specific 
situation. 

6. Combined Simulation within CSS  

The conventional way to include both discrete and continuous matter in the 
same model is to use combined DES and CSS. The theory behind this is tho-
roughly discussed by Zeigler et al. in their book Theory of Modelling and Simu-
lation: Integrating Discrete Event and Continuous Complex Dynamic Systems 
[26].  

However, the concepts presented in this paper can be used to correctly handle 
both continuous and discrete parts in the same CSS model. Thereby, several ad-
vantages are obtained. First, a theoretically sound foundation is achieved. 
Second, combined problems can, in principle, be coded and studied exclusively 
in a CSS language, which is often considerably simpler than including DES. 
Third, the computational complexity is reduced when a large number of discrete 
objects can be modelled as transitions into and out of a relatively small number 
of compartments/state variables. Fourth, it also constitutes a flexible and execu-
tion-efficient way to model problems that would otherwise require a combined 
DES/CSS approach to preserve both the discreteness and the stochastics. Fifth, 
only one time-handling method (time-slicing) is involved, which is simple, safe 
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and fast. 
In Example A6, an ecological model of a prey-predator system demonstrates 

how discrete predators feed on continuously varying biomass. Here, the discrete 
and continuous parts interact within the CSS concept. 

However, there are special cases where the conventional CSS/DES approach is 
superior. In particular, the CSS/DES setting may be preferred to avoid large 
attribute expansions or complicated stage-to-compartment expansions. Moreo-
ver, when spatial attributes (x, y and z) are central properties of the studied ob-
jects, it is simpler and more exact to use DES for this than to expand the position 
attributes into a two- or three-dimensional grid of sub-models in CSS.  

Another reason to use the combined CSS/DES approach is when the identity 
of the studied objects must be preserved, e.g. because the aim is to calculate mi-
nimal or maximal through times of the subjects in a queuing or a production 
system. Preserving the identity of the objects of a large population by attribute 
expansion would make the model huge and inefficient.  

7. Handling Uncertainties  

A model is always a simplified and incomplete description of a system under 
study because only the main components and relations that are important for 
the purpose of the study are included. Full and exact information about the 
structure and components of the system under study and about the system’s be-
haviour is never available. We call this lack of information uncertainty. 

With a deterministic model, we can describe the causal relations between dif-
ferent components of the system under study as we understand it. However, 
there is always irregular behaviour of the system under study that will not be re-
flected by such a model. Leaving out such irregularities may falsely remove a 
number of phenomena and may bias the results. This problem is partly de-
scribed in Section 2.3, where modelling of discrete objects by a continuous mod-
el eliminates transition irregularities. 

The irregularities of the system’s behaviour contain information, although 
they may be far too complex to understand and model in detail. However, these 
irregularities can be at least partly reproduced by including random number ge-
nerators for appropriate statistical distributions in the model. The resulting sto-
chastic model will then behave more similarly to the system under study and the 
statistical estimates from the model will be more relevant. 

7.1. Different Types of Uncertainty 

How uncertainties are modelled can strongly affect the results and conclusions 
of a model study, and it will certainly affect the confidence intervals for the 
results. 

We start by discussing where uncertainty can appear in a CSS model. Then in 
the following subsections, we discuss how these types of uncertainty can be han-
dled.  
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Of course, there can be uncertainty about the overall structure of the model, 
so-called structural uncertainty. We can also focus on the components of a CSS 
model that (graphically) are composed of compartments, physical transitions, 
information transitions and parameters. Each of these types of components can 
be related to an uncertainty.  

Figure 6 demonstrates the locations of the uncertainties in a CSS model, 
graphically represented by a Forrester diagram [27]. Here an oversimplified SIR 
model, similar to that in Figure 1, is used to make the example more concrete. 
To include all types of uncertainty into this example, we add an authority that 
collects information about the number of infectious individuals and issues rec-
ommendations about avoiding contact and using sanitation measures in order to 
reduce the infection rate.  

The epidemic system under study in Figure 6(a) is represented by the dy-
namic model inside the dashed rectangle in Figure 6(b). In this core part of the 
model, dynamic relations of interest are described. However, every transition of 
the infection because of who meets whom, how they then behave etc. will not be 
known. We then have to describe the uncertainties about the transitions in sto-
chastic terms. Similar uncertainties are associated with the information col-
lected, analysed and issued to the population. 

A system under study is almost never self-contained. The spread of the epi-
demic and the time to recover are affected by people’s behaviour, which in turn 
depends on the weather, season of the year, recommendations etc. All such factors,  

 

 
Figure 6. (a) An infectious system under study; (b) Alternative epidemic models, the first of which is a SIR 
model based on the stages S, I and R (initiated to S0, I0 and R0), transitions F1 and F2, and parameters p and 
D. An “Authority” collects information about the number of infectious individuals and issues recommenda-
tions, which affect the infection rate. Dice show where different types of stochasticities can be included. (The 
different types of information links are described in Section 7.5.) 
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too complicated to understand and model in sufficient detail, lie outside the sys-
tem boundaries and thus belong to the environment of the system under study. 
The environmental impact on the system can, however, be measured and de-
scribed in statistical terms.  

These unexplained influences of the environment on the system under study 
are introduced in the model as parameters. Furthermore, the conditions at time 
zero, depending on an unexplained prehistory, are described in terms of initial 
values, if necessary in stochastic terms. Therefore, we locate the parameters and 
initial values in the outer part of the model in Figure 6(b). 

Now we comment on the five types of uncertainty of the model: 
1) Structural uncertainty about the system under study can be handled by al-

ternative models. The uncertainty is then reflected by the difference in behaviour 
of these models. 

A CSS model is composed of compartments, transitions, information links 
and parameters. Each of these constituent elements can have its own type of un-
certainty: 

2) Approximate information about the number of objects in the stages at time 
zero can motivate initial value stochasticities for S(0), I(0) and R(0).  

3) There is almost never enough information to decide the exact event times  
for transitions of tokens. Therefore, transition stochasticity5 in the flows F1 and 
F2 is used to complement the dynamic description with available statistical in-
formation about the transitions.  

4) Uncertainty about the delay of information can be described by informa-
tion stochasticity.  

5) Unexplained irregularly varying values of the parameters p and D motivate 
the use of parameter stochasticity5 to generate realistic inputs from these para-
meters. (If it is uncertain e.g. how the information will affect the Authority’s 
recommendations, we could also include a stochastic parameter linked to the 
Authority.) 

The locations of the stochasticities are symbolised by dice in Figure 6(b). ■ 
We now proceed with a discussion of the five types of uncertainty and how 

they can be handled in CSS modelling. 

7.2. Structural Uncertainty 

“Structure 1” of the SIR model in Figure 6(b) is just one possibility. In particu-
lar, the sojourn time in the infectious stage is here modelled by a single com-
partment, implicitly assuming its sojourn-time distribution to be exponential. 
Other assumptions about this distribution can be realised by using several com-
partments in parallel and/or series, as discussed in Section 5.  

Another structural possibility is that an infected individual does not imme-
diately become infectious. The exposed individual may require a latent period 

 

 

5Transition stochasticity is often called demographic stochasticity and parameter stochasticity is of-
ten called environmental stochasticity in biological and ecological population models, see e.g. [28] 
[29]. 
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before entering the infectious stage. This can be accomplished by including an 
Exposed (E) stage between the Susceptible and the Infectious stages (giving a 
so-called SEIR model [30]). 

By studying the outcomes (size of the epidemic, time until the epidemic is 
over etc.) for the alternative models (after parameter estimation), it is possible to 
choose the model structure that best agrees with observations of the real system’s 
behaviour. 

7.3. Initial Value Uncertainty  

Uncertainty about initial values of the compartments can be handled by gene-
rating variability of the initial conditions in repeated simulation runs (replica-
tions). Initial value stochasticity operates before the start of the execution and 
does not intervene during the replication.  

Consideration of initial value stochasticity may be important when the initial 
situation of a studied process is unclear because of inaccurate information. For 
example: How many in a studied population were initially susceptible, infectious 
and recovered (i.e. immune)? Or will the next epidemic start from a single infec-
tious individual or from a batch of infectious individuals returning from abroad?  

7.4. Transition Uncertainty (Exists only in the Discrete Case) 

The transitions of tokens in a discrete model may be regularly scheduled over 
time or may take place when some condition is satisfied. However, often the 
transitions must be regarded as irregular, i.e. treated as random with a specified 
intensity. In this section, we discuss only the latter case. 

With time-slicing the number of transferred tokens is updated for each (suffi-
ciently small) time-step Δt. In the general case, we have a time-varying Poisson 
process implying that the number of transiting tokens during Δt is Poisson dis-
tributed according to: ( )Po t tλ∆ ⋅   , where the intensity λ(t) can be any func-
tion of time, including e.g. stochastic parameters and state variables. The ratio-
nale behind this is treated in Section 2.2, while Examples A1 to A6 illustrate be-
haviours of models with transition stochasticity.  

Technically, the number of tokens transferred ( )( )Po t tλ∆ ⋅    during a short 
time-step ∆t is obtained by drawing a random number from a Poisson distribu-
tion with ( )t tλ∆ ⋅  as argument. (When a stage is expanded into a structure of 
compartments, there will also be internal stochastic transitions between the 
compartments representing the stage.) 

Transition stochasticity has a nice property inherited from the Poisson distribu-  

tion: [ ] 1 1
2 2

Po t Po t Po tλ λ λ   ∆ ⋅ = ∆ ⋅ + ∆ ⋅      
, which means that the expected  

outcome is independent of the size of the time-step used. 
Note that the transition stochasticity generates both the dynamics and the 

stochastic development of a discrete model in an inseparable way. This insepa-
rability is important. There are many awkward examples of trying to separate 
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dynamics and stochastics by e.g. adding stochastic noise to a deterministic mod-
el, which creates a number of artifacts (see Example A1).  

As discussed in Section 2, the Po[ ] clause will vanish in the embedded conti-
nuous model, leaving only the argument ( )t tλ∆ ⋅ , which has no transition sto-
chasticity. However, a continuous flow can still be stochastic because of unex-
plained variations in the parameters, e.g. ( ) ( ) ( )t p t X tλ = ⋅ , where p(t) is a 
stochastic parameter and X is the content of a compartment/state variable. This 
is treated in Section 7.6. 

7.5. Information Uncertainty 

Information uncertainty is similar to transition uncertainty, but here continuous 
or discrete information-bearing signals, instead of physical matter, are trans-
ferred. However, before discussing this we must clarify that “information” is an 
ambiguous concept in CSS modelling.  

In addition to “real information”, where an information bearer transfers in-
formation, there is also “artificial information” that connects artificially sepa-
rated building blocks of the model. 

For example, when a radioactive atom decays, there is just one radioactive 
atom less in the system under study. However, in a CSS model this is described 
by both a compartment and a physical outflow (and more generally in CSS, by 
both a state equation and a flow equation). An artificial information link from 
the compartment to the valve regulating the outflow then has to be included. Its 
only function is to transfer logical information from the compartment equation 
to the flow equation. The “artificial information” is immediate, intrinsic, cannot 
be delayed, distorted or associated with uncertainty, and it has no counterpart in 
the system under study. In Figure 6(b), we intentionally denoted the artificial 
information links as dashed links (- - ->). Such links are the connections from 
parameters p and D to the flows F1 and F2, the links from the initial values S0, I0 
and R0 to the compartments, the links from the compartments S and I to the 
flow F1, and the link from compartment I to flow F2. 

Real information, on the other hand, is information that is physically com-
municated in the system under study. It may contain information about objects 
or situations or about changing external conditions. The information can affect 
other parts of the system (e.g. a stop signal, or a signal as part of a control sys-
tem). In Figure 6(b), we modelled real information by solid links (>). Such 
information has an information bearer that can be continuous or discrete.  

In Figure 6(b), an “Authority” collects information on the number of infec-
tious individuals and issues recommendations in order to reduce the infection 
rate. Here information from the Infectious compartment to “Authority” and 
from “Authority” to the transition flow, F1, describes real information flows in 
the system under study. The transfer of this information requires time that may 
vary in an unpredictable way. (If the information is sent by post, it may not be 
delivered during the weekend, while recommendations sent to the media are 
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consumed at different times by the individuals.) The information may also be 
distorted for various reasons (imperfect information, typing error, distortion of 
the message, misinterpretation, not reaching all subjects).  

Thus information bearers can be delayed and the message may be distorted. 
An information delay can be modelled in CSS in a very similar way to a material 
delay, where a structure of compartments and transition flows creates a so-
journ-time distribution, but here an information bearer is delayed. If uncertainty 
in the delay time is involved here, we can include information stochasticity in 
exactly the same way as for transition stochasticity. Information may also be de-
liberately or randomly distorted. For example, the “Authority” in Figure 6(b) 
may distort the information in a way we cannot model but describe statistically. 
Then we can include a parameter that uses this statistical information and affects 
the “Authority”. 

7.6. Parameter Uncertainty 

Parameter uncertainty is discussed in Section 4.3.5 of [12]. The relevant part of 
that discussion is reproduced below.  

Uncertainty about parameter values can be handled by parameter stochastici-
ty. Unlike transition stochasticity, which is intrinsic in the time-handling me-
thod and is statistically completely specified to its form, parameter stochasticity 
is used to describe the lack of knowledge about how the environment affects the 
system under study. This lack of knowledge may be about unknown constants or 
about unexplained variations that we perceive as irregularities. Such irregulari-
ties may be variations in temperature, wind, precipitation, food supply, pollu-
tion, fertility, noise or disturbances of any kind. To include such external irregu-
larities, these either have to be generated by an adequate sub-model (which is 
often not possible) or the unexplained irregularities have to be described by ap-
propriate, often empirical, statistical distributions. 

Parameter stochasticities are introduced in the parameters by making them 
stochastic. This is shown in the SIR model example in Figure 6(b) by placing the 
risk parameter, p, and the sojourn time parameter, D, in the outer part of the 
model as parameter inputs to the model. Thus, for the SIR model, parameter 
stochasticity will affect the development indirectly, via parameters that in turn 
influence the transition probabilities. 

Technically, the values of a parameter describing e.g. morbidity, mortality, 
fertility, risk, or sojourn time have to be drawn from an appropriate statistical 
distribution during the replication. When a parameter is constant but unknown, 
it resembles the initial value case, requiring only one random sample from a sta-
tistical distribution before the onset of a replication. However, when the para-
meter changes irregularly over time (e.g. temperature or precipitation) there are 
two stochastic aspects involved: “When to change the parameter?” and “What is 
the new value?”. Samples from two random number generators, in general with 
different distributions, are then required. 
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This illustrates a specific problem involved in parameter stochasticity. Its ef-
fect depends on the time-step used if you don’t control it. Therefore, you have to 
regulate “when to change the parameter values”. Otherwise a new random sam-
ple is drawn for the parameter at each time-step. 

7.7. Correlations in Parameters and Initial Values 

Various measured quantities are often correlated because of the way objects in-
teract with each other. Correlation between A and B can emerge for different 
reasons: causally because A may affect B, B may affect A, or A and B may affect 
each other. However, there may also be a C affecting both A and B without any 
causal connection between A and B. Finally, an observed correlation may occur 
by chance.  

Correlation between A(t) and A(t − T) is called auto-correlation, while corre-
lation between A(t) and B(t) is called cross-correlation. For example, the weather 
on one day may be strongly auto-correlated to that on the previous day, and the 
amount of sunshine and the amount of precipitation may have a negative 
cross-correlation during daytime. In principle, both types of correlation can be 
positive or negative.  

In statistics, correlations often play an important role in describing a system 
under study. 

In modelling, on the other hand, we strive to describe the processes in the 
form of causally interacting components, which generate correlations in ob-
served model quantities. A model where the structure of the system under study 
is preserved will recreate the proper dynamics, including correlations. However, 
this is only the case for the core part of the model describing the processes with-
in the system borders. The model must usually also include a description of how 
environmental quantities affect the core part of the model. (Note here that the 
system borders not only define what is included in space and time, but also de-
fine the level of detail described in the model.) 

In the SIR model shown in Figure 6(b), the parameters p and D could be 
cross-correlated e.g. because of the weather (e.g. if the weather is bad, people 
may meet indoors where the risk p is higher and the sojourn time D in the infec-
tious stage may be longer). Further, the initial values of the sub-populations S0, 
I0 and R0 must add up to the total population N. If there is uncertainty about 
the initial number of susceptible individuals, we can use initial value stochastici-
ty to initiate the SIR model with different values of S0 for different replications, 
but then S0 becomes negatively cross-correlated to I0 and R0 so that the total 
population is preserved. 

Correlation between stochastic parameters or initial values can be created in 
different ways: 

1) Using statistical time series from real observations. 
2) Drawing random numbers from a joint (multivariate) distribution to ob-

tain cross-correlation. 
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3) Weighting together a new random sample with previous random samples, 
to obtain auto-correlated parameter values. 

4) Modelling the process that generates the correlation (which means also 
changing the system boundaries). 

7.8. Random Number Generators  

To perform stochastic modelling and simulation, high quality random number 
generators (RNGs) for various distributions must be available in the CSS lan-
guage used.  

The RNGs should have good statistical qualities, a long period and be fast. 
Furthermore, it is valuable if a seed can be set to obtain reproducibility of the 
replication. A seed also enables the use of variance reduction based on e.g. 
Common Random Numbers. Other variance reduction techniques, e.g. Anti-
thetic sampling, can sometimes also be a good asset if supported by the RNGs 
(see [16] [25] [31]). 

Most CSS languages contain a set of RNGs such as Uniform, Poisson, Binomi-
al, Normal, Exponential etc. In some languages an RNG for empirical distribu-
tions that the user specifies is also provided. This makes it technically simple to 
implement the different types of stochasticity described above in a CSS model. 

8. Statistical Output Analysis  

The very essence of a stochastic model is that the outcome of a replication is un-
predictable, so the results differ between replications. Therefore, a large number 
of replications must be performed and the results from these collated, statistical-
ly analysed and presented. Another way to put it is that the result from a deter-
ministic model is a number, while the corresponding result from a stochastic 
model is a distribution. So several results from a deterministic model form a 
vector of numbers, while the corresponding results from a stochastic model 
make up a joint distribution. 

A consequence of this is that even when the time to execute a stochastic model 
is only slightly longer than that for executing the corresponding (embedded) de-
terministic model, the requirement of 100 to 10,000 replications of the stochastic 
model to obtain statistical estimates makes a substantial difference. 

Before discussing how a stochastic outcome can be analysed and presented in 
statistical terms, we must distinguish two kinds of statistics from a simulation 
study based on a stochastic model.  

The first kind of statistics we denote internal, because it concerns the stochas-
tic variations within a replication. Then data must be collected during the repli-
cation. These data are used to calculate various statistical estimates (average, 
standard variations, min, max etc.). It is often convenient to make these statis-
tical calculations during the replication by counting events, summing up quanti-
ties X and their squares X2, testing if X is the largest or smallest value so far etc. 

The second kind of statistics we denote external, because it concerns the sto-
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chastic variations over many replications. Then data collection from many rep-
lications, followed by a statistical analysis and presentation, has to be done.  

Observe that there is one principal difference in the calculation of a statistic 
measure within a replication and over N replications. Within a replication, the 
conditions change dynamically so the samples are not independent and not 
drawn from an identical distribution, whereas a number of repeated replications 
(of the same model under the same experimental conditions) are independent 
experiments. In statistical terms, we obtain results from independent and iden-
tically distributed (iid) stochastic variables in the external case. Except for cases 
when this is important, the statistical formulae remain the same.  

These types of statistics can be nested; for example, one can calculate the 
maximum within each of N replications and then calculate the average of max-
ima over these N replications. 

In CSS modelling and simulation, a CSS language can be used. However, this 
type of language is generally used for deterministic modelling and simulation, so 
statistical devices are usually lacking. Therefore, methods and devices, both for 
internal statistics within and external statistics over many replications, are re-
quired.  

In this section, we first focus on the types of statistical estimates that can be of 
interest in a stochastic simulation study. We then discuss how to obtain the sta-
tistics within a replication and over many replications in stochastic CSS model-
ling. 

8.1. Statistical Estimates 

In a stochastic modelling study, one is typically interested in estimates of differ-
ent kinds of quantities. Such quantities can be amount of matter or number of 
tokens in a stage, or number of events of a certain kind that can be accumulated 
by counters. It can also be the min, max or average of a quantity. One may also 
be interested in estimating a risk or the average sojourn time of a stage.  

Queuing for resources may also be studied with a stochastic CSS model. Then 
queuing estimates such as number of tokens waiting for a resource, their waiting 
times, the utilization of resources such as taxi cabs, doctors etc. may be of inter-
est, as well as economic aspects. 

8.1.1. Probability Distribution/Density Function (p.d.f.) 
Assume that we have recorded N observations of m different quantities 

1 2, , , mX X X . The total information collected can then be expressed in the 
form of a joint probability function (joint p.d.f.). 

The p.d.f. of a single quantity Xi is the marginal distribution of the joint dis-
tribution. This p.d.f. can be presented as a histogram or used to calculate aver-
age, standard deviation, confidence interval, minimum, maximum etc. of Xi.  

A joint distribution can also be used to study e.g. covariance or coefficient of 
correlation between quantities.  

Depending on the purpose of the study, there can be many different types of 
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performance measures to be estimated. These estimates can be expressed as 
point estimates or interval estimates. Testing of hypotheses can also be done. 

8.1.2. Point Estimates 
Point estimates are obtained from sampled data to calculate a single value of a 
studied quantity. Such estimates are average value, median value, standard devi-
ation, final value at the end of the simulation, correlation, min or max value etc.  

A direct way to calculate many point estimates of quantities X and Y is based 
on simple formulae that are updated for each new value. For example, one can 
sample values for the quantities X and Y and accumulate ΣX, ΣY, ΣX2, ΣY2 and 
ΣX·Y. This is sufficient for calculating averages, variances (and standard devia-
tions), correlation between X and Y etc. Minimum and maximum values are also 
easily obtained by checking if the current X is the smallest/largest value so far.  

8.1.3. Interval Estimates 
Interval estimates are obtained from recorded data of a quantity to calculate an 
interval of probable values, in contrast to a point estimate, which is a single 
number. Examples of interval estimates are confidence interval and tolerance 
interval. 

An interval IX (written (Il, Iu) for lower and upper limits) that with probability 
1 − α (e.g. 95%) will cover the outcome of a quantity X is a confidence interval 
(C.I.) of X at the confidence level 1 − α. If the interval is a 1-sided interval, e.g. 
(0, Iu), the probability of X being above the interval is α. For a 2-sided interval (Il, 
Iu), the interval is usually located so that the probability of X being below Il is α/2 
and of being above Iu is also α/2.  

It is important to carefully distinguish between two cases of confidence inter-
vals: It may be used for an estimate of how much X varies, or it may be used to 
estimate how precise the average of X is. 

In the first case, a confidence interval of X can easily be obtained from the 
p.d.f. from e.g. 10,000 observations. At e.g. 95% confidence level, we search for 
the lower and the upper limits given by the 250th and the 9750th observations of 
X (sorted by size), respectively. In this case, the number of observations will not 
affect the (expected) size of the confidence interval. 

In the second case we want a confidence interval around the estimated average 
of X, av iX X N=∑ , obtained from, say, N = 10,000 observations. When the N 
observations are independent and identically distributed (iid), then the Central 
Limit Theorem applies, and the sum of N iid random variables will approach a 
Normal (Xav, σ) distribution as N increases (even when the distribution of X is 
very different from Normal). A 2-sided confidence interval around Xav at a con-
fidence level of 1 − α can then, for large N (say > 20), be approximated by: 

( )2 2,av av avIx X d X dα αλ λ= − ⋅ + ⋅ ; where λα/2 = 1.96 for a confidence level of 
95%, and d Nσ=  (or d s N= , when σ is approximated by the obtained 
estimate s of the standard deviation).  

Note that d decreases as 1 N , which means that the confidence interval 
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around Xav can take any small width provided that the number of observations, 
N, is sufficiently large. In fact, this is true for the model, but not for the system 
under study. The model is a simplified description of the system under study 
and will always deviate from the real system in a number of ways. Simulating the 
model for more observations will produce more exact estimates of the model’s 
behaviour, but this should not be confused with the behaviour of the system un-
der study.  

Another treacherous property of confidence intervals is that the fewer uncer-
tainties that are recognised and included in the model, the smaller (sic!) the con-
fidence intervals obtained, which once again may give a false impression about 
the precision of the estimates from the model. 

8.1.4. Test of Hypotheses 
A hypothesis can be tested in the following way: Make a null-hypothesis H0 that 
states something you hope to be able to reject. The alternative hypothesis H1 is 
the complementary statement to H0. The null hypothesis will be rejected only if 
the observations suggest that H0 is false with a probability of at least (say) 95%. 
(H0 is then rejected at a confidence level 1 − α = 0.95.) 

There is a close relationship between testing of a hypothesis and a confidence 
interval. A test of a hypothesis according to the “confidence interval” method 
proceeds in two steps:  

1) First calculate a confidence interval on the desired confidence level 1 − α.  
2) If the tested quantity is outside the interval, H0 is rejected at confidence lev-

el 1 − α. 

8.2. Internal Statistics 

Estimates within a replication are based on sampling of quantities during the 
replication. Since the observations come from a dynamic and stochastic process, 
there is usually a dependence between X(t) and X(t + Δt) etc. as well as be-
tween X(t) and another variable Y(t). In other words, the iid property is not 
fulfilled. 

Average, standard deviation, covariance and correlation coefficient can be 
calculated after the replication, but it is usually more convenient and efficient to 
update the estimates of averages, standard deviations, co-variances, minima and 
maxima etc. for each new sample. For this, X, Y, X2, Y2 and X·Y can be accumu-
lated. Figure 7 demonstrates how averages, variances, standard deviations, 
co-variance and correlation can be calculated during a replication. The key me-
chanism here is to update ΣX, ΣY, ΣX2, ΣY2 and ΣX·Y over time by using the 
standard compartment and transition elements of a CSS language. 

The formulae behind Figure 7 are straight-forward (where Z denotes X, X2, Y, 
Y2 or XY): 

CUM_Z : CUM_Z DT * Z= +        (with CUM_Z initialised to zero) (3a) 

E_Z : CUM_Z Time=             (Time average)                  (3b) 
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Figure 7. Calculation of averages, variances, standard deviations, covariance and coeffi-
cient of correlation within a replication. This can be accomplished by the building blocks 
in your CSS package. 
 

Var_Z : E_Z2 E_Z*E_Z= −           (Variance)                  (4a) 

( )Std_Z : SQRT Var_Z=              (Standard deviation)          (4b) 

Cov_XY : E_XY E_X *E_Y= −        (Covariance)                (5a) 

( )rho_XY : Cov_XY Std_X *Std_Y=    (Coefficient of correlation)    (5b) 

These calculations can be coded as a macro if the CSS language has this facili-
ty. 

Devices for finding the smallest or largest value of a quantity X during a rep-
lication are often available as library functions in the CSS language. Otherwise, 
they can easily be constructed by checking for a new smallest or largest value of 
X at each time-step, in which case the new value becomes the candidate to be 
compared with future samples.  

Example A5 shows how a queuing system can be modelled. It also demon-
strates how to include devices for queuing measures, such as averages for queue 
length, waiting time and utilization of a resource. 

8.3. External Statistics 

CSS languages give no support for estimates over many replications, since they 
are mainly intended for deterministic modelling. Manually performing hun-
dreds or thousands of replications, collecting the results from each replication, 
performing statistical analyses of the results and presenting the statistical results 
would be extremely tedious and time consuming.  

CSS languages often provide the possibility to export results after execution. 
Then the results can be exported to e.g. a spreadsheet and the statistical facilities 
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of this spreadsheet can be used. 
However, to work efficiently, a powerful tool to order a series of N replica-

tions, collect results from each replication, perform statistical analyses of the re-
sults and present the statistical results is required.  

8.3.1. Philosophy behind a Tool for External Statistics 
Before constructing a tool to produce external statistics from a series of replica-
tions of a CSS model, it is important to have a clear philosophy of what to handle 
by this “tool” and what to handle in the CSS model. 

The tool should be a programme that controls the execution of the CSS model 
and performs the following functions:  
- Specify and connect to a certain model file. 
- Specify the variables to be analysed. 
- Order a number of N replications of the model. 
- If desired, make the study reproducible by controlling the sequence of seeds 

for the N replications. 
- Retrieve the results of the specified variables for each replication. 
- Make statistical analyses of the results from the N replications. 
- Present the statistical results in appropriate ways. 

No intervention by the tool should be made during the replications. The 
communication between the tool and the model should be restricted to before 
and after full replications. The mechanisms in the tool should be few and simple. 

8.3.2. A Tool for External Statistics 
A tool for handling, analyzing and presenting statistics from multiple simula-
tions of a stochastic CSS model [32] was constructed for the CSS language In-
sight Maker [33]. Because Insight Maker is not fully open source, we constructed 
a rudimentary CSS language, StochSD (Stochastic System Dynamics), based on 
the open source part of Insight Maker where we included the statistical tool, 
called StatRes.  

StatRes (Statistical Results) connects to the current model file, orders N rep-
lications, collects results of specified quantities and calculates statistics on aver-
ages, standard deviations, confidence intervals, min & max values and percen-
tiles. It can also present the statistics in the form of histograms, box plots and 
scatter plots (X-Y plots) with coefficient of correlation between X and Y calcu-
lated, etc.  

StatRes can also control the seeds used for the replications. This feature can 
be used for reproducibility and for variance reduction with e.g. Common Ran-
dom Numbers. 

For using StochSD (including StatRes) over the net or downloading it, go to: 
https://stochsd.sourceforge.io/homepage/. For more details see Appendix B: 
Supplementary material. 

9. Discussion and Conclusions 

Since the introduction of different kinds of numerical simulations in the 1950s 
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and 60s, the merits of CSS and DES have been discussed, sometimes in terms of 
micro and macro modelling and simulation. The underlying problem has been 
that micro models (DES) and macro models (CSS) often do not produce consis-
tent results, leading to questions about which type of modelling is correct [2] [3] 
[4] [5] [6] [11] [34] [35]. 

Nowadays, we know the cons and pros of each approach [10] [11] [12]. We 
understand why conventional CSS modelling can distort results, and we know 
how to perform CSS modelling in a correct way. We also know how to translate 
between DES and CSS models without losing consistency, and we understand 
the consequences in complexity, size and execution time for the different choic-
es, see [12]. This takes the mystery out of the micro/macro debate in a construc-
tive way.  

It is clear that the old CSS approach of modelling all quantities as continuous, 
often without proper attribute and stage-to-compartment expansions and with-
out a good understanding of how to implement uncertainties, is very limited in 
its possibilities to produce CM-consistent models.  

A central question which this paper discusses is: Is it theoretically and practi-
cally possible to produce CM-consistent models within CSS modelling and if so, 
what is required? 

The answer is that CM-consistency is theoretically possible to attain, provided 
that the modeller knows how to model continuous matter and discrete tokens, 
how to make attribute expansions, how to perform stage-to-compartment ex-
pansions to obtain the intended sojourn-time distributions and how to imple-
ment different types of uncertainties. From a practical point of view, this is even 
relatively straightforward for many models. However, some models, with e.g. 
many attributes or attributes that can take many (or infinitely many) values, are 
best handled by DES modelling.  

A skilful modeller should also know the prerequisites for using one type of 
modelling instead of another, as well as the consequences of the respective 
choice. The greatest asset of CSS is that it is almost independent of the size of 
material or population (provided that the identity of described objects can be 
dropped), while the weakest part is the cost of handling attributes and so-
journ-time distributions. For the DES approach, on the other hand, the model 
size grows linearly with the number of objects described, but it can easily ac-
commodate many attributes (even unique identities and space coordinates), and 
an agent’s or entity’s sojourn time in a stage is handled without any expansion 
by drawing a single random number from an appropriate distribution. 

Furthermore, consistent CSS modelling with both continuous and discrete 
parts can in many cases replace the often awkward combined modelling that in-
termixes concepts from the CSS and DES approaches. Even though many CSS or 
DES languages contain construction elements from the alternative approach, the 
understanding and validity of a model built on a combination of CSS and DES 
concepts can be unsatisfactory or obscure.  

https://doi.org/10.4236/ojmsi.2017.54019


L. Gustafsson et al. 
 

 

DOI: 10.4236/ojmsi.2017.54019 284 Open Journal of Modelling and Simulation 
 

This paper is intended as a guide to consistent CSS modelling and we believe 
that its content should be included in basic courses in CSS.  

We have also provided some supplementary material. First, the models pre-
sented in Appendix A are accessible over the internet from where they can be 
downloaded or directly executed. Second, an open source software tool for sta-
tistical post-analysis of results from many replications is also provided, see Ap-
pendix B.  

If the recommendations in this paper are followed, CSS modelling will reach 
its full potential and many unintended inconsistencies can be avoided. 
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Appendix A: Illustrative Model Examples 

To make the paper as compact as possible, six key examples are presented in this 
appendix and referred to at several points in main text. These models are pre-
sented below as model code and in some cases also as Forrester diagrams [27] 
[36]. The examples are also accessible for downloading and execution, see Ap-
pendix B. 

Examples: 
A1. Consequences of creating stochastic transitions by adding noise. 
A2. Continuous modelling of discrete objects hides behaviours and may dis-

tort results. 
A3. Tragic consequences of neglecting stage-to-compartment expansion. 
A4. Ridiculous results from a continuous SIR model and the importance of 

correct stage-to-compartment expansion. 
A5. Queues and statistical devices in CSS. 
A6. Combined continuous and discrete modelling in CSS. 
Example A1: Consequences of creating stochastic transitions by adding 

noise  
Trying to make a deterministic CSS stochastic by adding or multiplying noise 

to the transitions is generally not a good idea. Here is a simple example of what 
can happen. 

Radioactive decay, where X(t) represents the number of non-decayed radioac-
tive atoms, with a decay fraction a per time unit can be implemented in a deter-
ministic model as: ( ) ( ) ( )–X t t X t t a X t+ ∆ = ∆ ⋅ ⋅ . If we try to describe the ir-
regular nature of radioactive decay by adding random perturbations to the tran-
sition as: 

( ) ( ) ( ) ( )–X t t X t t a X t b e t+ ∆ = ∆ ⋅ ⋅ + ⋅              (6) 

where e(t) is a zero-mean discrete-time white noise, here assumed Gaussian, we 
would obtain results as in Figure A1. 

As illustrated by Figure A1, the stochastic model could produce a number of 
artifacts, such as:  

1) Non-integer numbers of the remaining non-decayed atoms. 
2) Stochastic variations unrelated to the remaining number of atoms. 
3) Sudden increases in the number of atoms. 
4) Continued variations, even when all atoms are decayed. 
5) A negative number of atoms may occur.  
6) The model’s behaviour will strongly depend on the time-step used. 
The artifacts in this example may seem obvious, but when part of a larger 

model, they may generate severe consequences that may be hard to trace back to 
their root cause. Variations without appropriate reasons may excite other parts 
of the model. A negative number of tokens may trigger various phenomena, e.g. 
driving other processes backwards. Furthermore, if e.g. the logarithm or the root 
of the number of remaining atoms is used, the model will crash when this  
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Figure A1. Adding noise to a deterministic CCS model may create a 
number of artifacts. The results from a deterministic model with added 
noise (solid line) and without (dashed line) are shown. (X(0) = 40, a = 0.1 
and b = 4 where Δt = 0.1). 

 
number becomes negative.  

The reason for failure in this example is that transition stochasticity is an in-
trinsic part of the dynamic process, and in this case the model should be: 

( ) ( ) ( )X t t X t Poisson t a X t+ ∆ = − ∆ ⋅ ⋅                (7) 

Then, for a sufficiently small Δt, all the artifacts will vanish. ■ 
Example A2: Continuous modelling of discrete objects hides behaviours 

and may distort results 
Continuous modelling removes many of the characteristics of a discrete sys-

tem because the transition stochasticities will vanish. Here we demonstrate that 
three fundamentally different discrete models can behave identically when mod-
elled as continuous. 

1) First, consider a discrete logistic growth model with a population size of 
X(t):  

( ) ( ) ( ) ( )2X t t X t Po t a X t Po t b X t + ∆ = + ∆ ⋅ ⋅ − ∆ ⋅ ⋅           (8) 

This is an open, first-order non-linear model. The model structure and its 
behaviours from three replications are shown in Figure A2. The population 
continues to fluctuate over time with large variations (with the risk of 
extinction).  

2) Next, consider a discrete epidemic SI model of N = S + I individuals, where 
a susceptible set (S) is infected by encounters with members of an infectious set 
(I). The risk of infection per time unit is proportional to the number of 
susceptibles, to the number of infectious subjects and to a constant c. Thus:  

( ) ( ) ( )–S t t S t t F t+ ∆ = ∆ ⋅                    (9a) 
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Figure A2. Forrester diagram of a stochastic logistic model and the results of three 
replications of the model for the case X(0) = 1, a = 0.1 and b = 0.01. In one of the 
replications, X became extinct. 
 

( ) ( ) ( )I t t I t t F t+ ∆ = + ∆ ⋅                     (9b) 

( ) ( ) ( )t F t Po t c S t I t∆ ⋅ = ∆ ⋅ ⋅ ⋅                    (9c) 

This is a closed, second-order bilinear model, shown in Figure A3, where the 
number of infectious subjects increases stepwise to N = S + I, where it remains. 

3) Finally, consider a discrete “pruned prey-predator” model where prey 
births and predator deaths are removed. 

( ) ( ) ( )PREY t t PREY t t Deaths t+ ∆ = − ∆ ⋅            (10a) 

( ) ( ) ( )PRED t t PRED t t Births t+ ∆ = + ∆ ⋅            (10b) 

( ) ( ) ( )Encounters t PREY t PRED t= ⋅             (10c) 

( ) ( )t Deaths t Po d t Encounters t∆ ⋅ = ⋅∆ ⋅             (10d) 

( ) ( )t Births t Po e t Encounters t∆ ⋅ = ⋅∆ ⋅              (10e) 

This model consists of two open and coupled first-order submodels, shown in 
Figure A4, where the number of predators increases stepwise to an undefined 
final level (while the prey vanish). 

Now, we eliminate the transition stochasticity from the three models by 
removing the Po[ ] clauses. We then obtain the corresponding deterministic 
models that are embedded in the stochastic models.  

In Figure A5, the three deterministic models and their identical behaviours 
are shown. 

As seen in Figure A5, the continuous approach removes all the differences 
between the behaviours of the three models by eliminating the variability created 
by transition stochasticity. It also introduces bias in the results (not shown here). 
Finally, it does not capture the risk of extinction in model A if, for example, the 
first event is death of the only subject initialised at time zero. ■ 

Example A3: Tragic consequences of neglecting stage-to-compartment 
expansion 

This simple but real example cost lives because the modeller did not understand  
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Figure A3. Forrester diagram of the stochastic SI model and three replications of its be-
haviour. (Results for S(0) = 9, I(0) = 1 and c = 0.01.) 
 

 
Figure A4. Forrester diagram of the stochastic pruned prey-predator model and three 
replications showing possible model behaviours of the predators. (Results for PREY(0) = 
9, PRED(0) = 1 and d = e = 0.01). 
 

 
Figure A5. Forrester diagram of the deterministic logistic model, the deterministic SI model and the determi-
nistic pruned prey-predator model, with the same parameter values and initial conditions as in the stochastic 
cases. The behaviours of these deterministic models are identical. 
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the difference between a stage and a compartment. 
Does cervical cancer develop from cancer in situ? 
During the 1960s, G.H. Green, a medical professor in Auckland, New Zealand, 

monitored a large number of women with cancer in situ (CIS) of the cervix uteri 
to determine whether CIS would progress into invasive cancer.  

His main scientific argument came from a clinical study of 75 women who 
showed persistent CIS. These women were followed up during 13 to 141 months, 
with a mean of 53 months (4.42 years). None of these women developed invasive 
cancer during the follow-up period [37]. Interpreting the results from the clini-
cal study by an inappropriate model led Professor Green to dismiss the common 
opinion that CIS is a pre-stage of cancer and to question the need for any treat-
ment at all of CIS.  

In statistical terms, the objective was to test whether the null hypothesis (H0) 
that: CIS will progress to invasive cancer could be rejected at a high level of con-
fidence based on the observations of the clinical study of 75 women with CIS. 

Conceptual model 
The conceptual description quoted here is taken from [37], but we have 

changed the denotation of the sojourn time from m to D.  
“ANALYSIS 
… it was supposed that every patient developing carcinoma in situ had the 

same probability q of ultimately developing invasive cancer.…  
Model 1. Poisson process. Suppose that invasion is determined by some 

chance event which has a constant likelihood with time, regardless of age and the 
duration of carcinoma in situ. …Suppose further that in patients who will not 
ultimately develop invasive cancer the carcinoma in situ heals spontaneously 
with the same time course …Then if the mean latent period before invasion or 
regression is in years, the probability that the ith patient followed for Ti years 
does not develop cancer is  

( )1 1 e iT Dq− −                   (1)        

With this model we can avoid the need to determine whether any lesions have 
regressed spontaneously—and hence the need to define criteria for this event. 
The probability that each patient will ultimately revert to normal is (1 − q). … 

The probability P that no patients develop cancer is then given by the product 
of 75 such terms, and has been computed for various values of q and D.”  

Unfortunately, the cancer in situ stage was assumed to have an exponential 
sojourn-time distribution (see Equation (1) in the quote above). Then, it does 
not matter whether the conceptual model is realised as a DES, CSS or analytical 
model. The error is already in place. In CSS model terms, this means that the 
cancer in situ stage is modelled by a single compartment.  

A model to interpret the clinical experiment, where the sojourn-time distribu-
tion in the cancer in situ (CIS) stage is unspecified, is shown in Figure A6(a), 
and the model equivalent to Green’s and Donovan’s model, where the CIS-stage 
is represented by a single compartment, is shown in Figure A6(b). 
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Figure A6. CSS model where q out of 75 studied women with a CIS lesion [initial 
value stochasticity: Bin(75, q)] are assumed to ultimately develop invasive cancer. 
Only these women are initiated into the CIS-stage. The progressing women are as-
sumed to have an average sojourn time of D years in the CIS-stage before progress-
ing to invasive cancer. What then is the probability that none of the women will 
have cancer during the average 4.42 year period of follow-up? (The invasive 
CANCER stage is only required as a counter.) Figure A6(a) shows a general model 
of the clinical experiment with the CIS-stage unspecified, and Figure A6(b) shows 
the corresponding CSS code to Green’s and Donovan’s model, where the CIS-stage 
is represented by a single compartment. 
 
The interpretation of the clinical experiment as: “… it was supposed that every 

patient developing carcinoma in situ had the same probability q of ultimately 
developing invasive cancer” means that only the women that would eventually 
end up with cancer had to be included in the model. This number is of course 
unknown for each new experiment, which is why this uncertainty must be re-
flected in the model. This is accomplished by initial value stochasticity as: CIS(0) = 
Bin[75, q]. 

The very limited objective, of only calculating the probability of obtaining ze-
ro invasive cases during the follow-up period (which had been observed in the 
clinical study), given the values of the risk parameters q and sojourn time D, 
made it possible to use the very simple analytical model quoted above, although 
we discuss it in terms of an identical CSS model.  

With their model, Green and Donovan rejected the null hypothesis (H0) that: 
CIS will progress to invasive cancer at a high level of confidence for all plausible 
combinations of values for q and D. 

Alternative models 
What would have happened with realistic modelling of the disease process, i.e. 

with a realistic sojourn-time distribution for the CIS-stage?  
To illustrate the importance of this question, we consider the sojourn-time 

distributions for the CIS-stage by testing different numbers of serial compart-
ments, but with the same overall (and realistic) time parameter value of D = 11 
years. 

The sojourn-time distributions for k = 1, 3, 5 and 10 serial compartments 
(k-Erlang(D/k))b for the CIS-stage are shown in Figure A7(a) and their cumulative  
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Figure A7. (a) The sojourn-time distributions of one progressing woman developing invasive cancer for k = 1, 3, 5 and 10 serial 
compartments describing the CIS-stage with the same total value of the parameter D = 11 years; (b) The corresponding cumula-
tive distributions. The average follow-up period of FU = 4.42 years, is marked by a vertical dotted line. Note the huge difference in 
risk, according to the model, of having cancer after 4.42 years when the CIS-stage is represented by 1, 3, 5 or 10 compartments, 
although the average sojourn time D is the same! 

 
distributions are shown in Figure A7(b).  

The follow-up time varied for the 75 women in the study, which is important 
to recognise when the CIS-stage is modelled by more than one compartment, 
because then it is also important to know how long each woman has already 
been in the CIS-stage at “time zero”. In this example we ignore this (using the 
average follow-up time for all women) in order to only illustrate the conse-
quences of different distributions of the sojourn-time. 

For different sojourn-time distributions of the CIS-stage, where k = 1, 3, 5 and  
10 serial compartments are used, the probabilities of none of the 75 women de-
veloping invasive cancer during the follow-up period are shown in Table A1.6 

Professor Green’s model, where the CIS-stage is represented by a single com-
partment, predicts with more than 95% probability that at least one of the 
women in the clinical study would get cancer. Therefore, he concluded that the 
opinion that CIS leads to cancer could be rejected with 95% confidence. 

However, the null hypothesis that CIS will develop into invasive cancer (with 
these parameter values) can be rejected at 95% confidence only when using the 
CIS representation of a single compartment. For k > 1, there is no support for 
rejection of the null hypothesis.  

Consequences 
Since Green and Donovan failed to understand the importance of modelling 

the sojourn-time distribution, they rejected the true null hypothesis that cancer 
in situ is a pre-stage to invasive cancer. The consequences of the study was that 
the professor allowed women with cancer in situ to remain untreated during the 
following decade, which in turn led to a number of cancers and deaths and fi-
nally to a legal process where the professor was convicted [40]. ■ 

 

 

6In [38] and [39] it was found that the CIS-stage must be modelled by at least three serial compart-
ments (perhaps more) to obtain results consistent with observations. 
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Table A1. Probability of obtaining at least one invasive cancer case from 75 CIS cases 
when q = 0.12, D = 11 years, and the follow-up time = 4.42 years, when the CIS-stage is 
represented by k = 1, 3, 5 and 10 serial compartments. 

Model 1 compartment 3 compartments 5 compartments 10 compartments 

Prob  
(≥1 case out of 75) 

95.2% 66.8% 38.2% 7.2% 

 
Example A4: Ridiculous results from a continuous SIR model and the 

importance of correct stage to-compartment expansion 
Here we calculate the size of an epidemic obtained from SIR models having 

the same sojourn-time but with different distributions, and also compare the 
results from continuous and discrete SIR modelling. 

Conceptual model: The model has the following setting: The studied popula-
tion N = S + I + R initially consists of 1000 susceptible individuals, a single indi-
vidual that has just entered the infectious stage, and zero recovered individuals. 
Every individual of the population meets every other under equal conditions in 
each time unit. When a susceptible individual meets an infectious one, the 
probability per time unit of the susceptible becoming infected is p = 0.0003, and 
the expected sojourn time in the infectious compartment is D = 4 time units. 

Figure A8 shows such a SIR model where k serial compartments representing 
the I-stage generate a k-Erlang(D/k) distribution for the sojourn-time distribu-
tion in this stage. 

We denote this model SIkR, where k is the number of serial compartments in 
the I-stage. (The S-stage is just a reservoir of susceptibles and the R-stage is just a 
“counter”, so they are represented by single compartments.) We also compare 
the deterministic and stochastic versions of these models. 

The model code for a stochastic SIkR model is: 

( ) ( ) ( )1S t t S t t F t+ ∆ = − ∆ ⋅                    (11a) 

( ) ( ) ( ) ( )1 1 11 2I t t I t t F t t F t+ ∆ = + ∆ ⋅ − ∆ ⋅              (11b) 

( ) ( ) ( ) ( )2 2 1 22 2I t t I t t F t t F t+ ∆ = + ∆ ⋅ − ∆ ⋅              (11c) 

  

( ) ( ) ( ) ( )12 2k k k kI t t I t t F t t F t−+ ∆ = + ∆ ⋅ − ∆ ⋅             (11d) 

( ) ( ) ( )2kR t t R t t F t+ ∆ = + ∆ ⋅                   (11e) 

( ) ( ) ( ) ( ) ( )( )1 21 kt F t Po t p S t I t I t I t ∆ ⋅ = ∆ ⋅ ⋅ ⋅ + + +          (11f) 

( ) ( ) ( )1 12t F t Po t I t D k∆ ⋅ = ∆ ⋅                  (11g) 

( ) ( ) ( )2 22t F t Po t I t D k∆ ⋅ = ∆ ⋅                  (11h) 

  

( ) ( ) ( )2k kt F t Po t I t D k∆ ⋅ = ∆ ⋅                  (11i) 

The objective is to study the number of susceptible individuals being infected,  
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Figure A8. SIkR model of an infectious disease with transmission parameter p and aver-
age sojourn-time in the I-stage D. 
 
S(0) − S(End), for k = 1, 3, 5, 10 and ∞ for both continuous and a discrete mod-
els. 

Results: The full results from 10,000 replications of a stochastic model are 
given by a probability distribution function of the number of susceptibles that 
become infected. Figure A9 shows the results for the SI1R model. 

From the 10,000 replications, the average size of the epidemic and its standard 
deviation are estimated. From this, we also calculate the 95% confidence interval, 
see Table A2.  

The average size of the epidemic was 53, 76, 83, 84 and 96 individuals for k = 
1, 3, 5, 10 and ∞ compartments, respectively. Thus even going from the model of 
k = 1 to k = 3 increases the result by more than 40%.  

Table A2 also shows that an embedded deterministic SIkR model using the 
same parameter values produces a fundamentally different outcome than a sto-
chastic model. More surprising, the size of the epidemic estimated by a determi-
nistic SIR model is independent of the number of serial compartments, k, of the 
infectious stage. 

The reason why the deterministic model distorts the results is that it neglects 
the possibility that the single infectious individual may recover before infecting 
another susceptible, so that no epidemic will occur. ■ 

Example A5: Queues and statistical devices in CSS  
Queues, which are central in DES, can be smoothly modelled within CSS. 

Queuing estimates such as average number of tokens waiting, average waiting 
time, utilization of a resource (that can be busy or idle) can then easily be calcu-
lated within a CSS model. 

Implementation of queuing systems in CSS is straightforward. This is demon-
strated for the M/M/1, M/M/s and M/M/∞ cases, where M stands for “Markov” 
or “Memoryless” which means exponentially distributed inter-arrivals and ser-
vice times, and the third symbol represents the number of parallel servers, see 
[41].  

Let QS denote the actual number of queuing and served tokens represented by 
a compartment with the same name. The input is a Poisson process, with the av-
erage arrival rate, λ, and the customers are served by s servers working in paral-
lel, with the average service rate, μ, for each server. This gives the stochastic 
model: 

( ) ( ) ( ) ( )QS t t QS t t In t t Out t+ ∆ = + ∆ ⋅ − ∆ ⋅                (12a) 

 I-stage 

S I1 I2 R Ik 

p D 

F1 
F21 F22 F2k F2k-1 
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Figure A9. A p.d.f. of the number of susceptible individuals becoming infected 
[S(0)–S(End)] calculated from 10,000 replications of the stochastic SI1R-model. The bar 
intervals are 0 - 9, 10 - 19, ···, 550 - 559. (The first bar (0 - 9) is truncated. It has the value 
0.7422). 
 
Table A2. Number of individuals contracting the disease. Results obtained from 10,000 
replications of the stochastic models and from the corresponding deterministic models. 

 SI1R SI3R SI5R SI10R SI∞R 

Stochastic model: Average 
(95% C.I.) 

53.1 
(50.7 - 55.5) 

75.7 
(73.0 - 78.4) 

83.0 
(80.2 - 85.8) 

84.1 
(81.3 - 86.8) 

96.2a 
(93.3 - 99.1) 

Deterministic model 318.5 318.5 318.5 318.5 - 

aTo realise k = ∞ (which means a constant time-delay of exactly D time units), a stochastic DES model with 
the fixed sojourn time of D time units was used. 

 

         [ ]In Po t tλ= ∆ ⋅ ∆   (We drop “(t)” for simplicity)         (12b) 

         ( ),1Out Po t MIN QS tµ= ∆ ⋅ ⋅ ∆    for the M/M/1 case;     (12c) 

         ( ),Out Po t MIN QS s tµ= ∆ ⋅ ⋅  ∆   for the M/M/s case;        (12d) 

         [ ]Out Po t QS tµ= ∆ ⋅ ⋅ ∆  for the M/M/∞ case (“self-service”) (12e) 

Remarks: MIN(QS, s) means that at most s tokens can be served simulta-
neously, and if QS < s only QS tokens are served. Of course, λ, μ and also the 
number of available servers s can be varied during the simulation. For further 
discussion on queuing models in CSS, see [8].  

Figure A10 shows an M/M/s queue model with a number of devices for in-
ternal statistics. The devices to study the internal statistics of the queue in Figure 
A10 are:  

In_Count and Out_Count count the customers that enter and leave the queue. 
Cum_QS_Time accumulates QS over time to obtain the total waiting time in the 
compartment QS. Dividing Cum_QS_Time by In_Count gives Av_QS_Time,  

  

Number of infected cases [S(0)-S(End)] 
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Figure A10. An M/M/s queuing system. Here, QS is a compartment holding the total 
number of currently queuing and served tokens. The arrival rate is λ (lambda), the service 
rate (per server) is μ (mu) and the number of parallel servers is s. The lower part of the 
diagram shows devices for counting arrivals and departures, and for calculating average 
queue-time, queue-length and server utilization. 
 
and dividing it by Time gives Av_QS (the average number in the queuing sys-
tem). 

Finally: Busy = If QS < s then QS else s, which is accumulated over time in 
Cum_Busy. The (average) Utilization of the s servers over the replication is then: 
Cum_Busy/(s*Time). 

Because the tokens have no identity, they cannot be followed, so min and max 
through-times cannot be obtained. ■ 

Example A6: Combined continuous and discrete modelling in CSS 
Conceptual model: The Lotka-Volterra equations describe a prey-predator 

system for two species X and Y by differential equations [42] [43]. The prey 
breeds at a rate proportional to its size X, and is reduced because of “encounters” 
with predators, which are proportional to X·Y. We also include competition 
among prey, proportional to X2. The “encounters” with prey give the predators 
the energy to breed, so they increase in proportion to X·Y. Finally, the predators 
die in proportion to their number Y. The continuous Lotka-Volterra model then 
has the mathematical form: 

2d dX t aX bXY cX= − −                    (13a) 

d dY t dXY eY= −                      (13b) 

where a and d are fertility constants, b and e mortality constants, and c is a pro-
portionality constant for competition. In our setting, we let the prey be a conti-
nuous amount of biomass X (e.g. of grass), while the predators Y are a discrete 
number of tokens (e.g. sheep). The combined continuous-discrete model can 
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then be rewritten as: 

( ) ( ) 1 2 3– –X t t X t t F t F t F+ ∆ = + ∆ ⋅ ∆ ⋅ ∆ ⋅  (Continuous grass)     (14a) 

( )1t F t a X t∆ ⋅ = ∆ ⋅ ⋅                        (14b) 

( ) ( )2t F t b X t Y t∆ ⋅ = ∆ ⋅ ⋅ ⋅                     (14c) 

( )2
3t F t c X t∆ ⋅ = ∆ ⋅ ⋅                       (14d) 

( ) ( ) 4 5Y t t Y t t F t F+ ∆ = + ∆ ⋅ − ∆ ⋅  (Discrete sheep)        (14e) 

( ) ( )4t F Po t d X t Y t∆ ⋅ = ∆ ⋅ ⋅ ⋅                    (14f) 

( )5t F Po t e Y t∆ ⋅ = ∆ ⋅ ⋅                       (14g) 

The behaviour of the combined continuous-discrete model, starting at the 
equilibrium X(0) = 60 tons of grass and Y(0) = 28 sheep with a = 0.2, b = 0.005, c = 
0.001, d = 0.005 and e = 0.3, is exemplified in Figure A11. 

In the replication shown in Figure A11, the discrete predators become extinct 
at around 450 time units, so the continuous prey increases logistically and now 
without irregular variations.  

Comparing the continuous model (13) with the combined model (14) reveals 
that the continuous model rapidly reaches an equilibrium state for both species 
without further variations. Starting at the equilibrium state used here only pro-
duces the two straight lines: X(t) = 60 and Y(t) = 28. Furthermore, a phenome-
non such as extinction cannot occur for model (13). ■ 

Appendix B: Supplementary Material 

We want to provide the following means to the reader:  
1) To hands-on try stochastic CSS and to test and see the differences between 

stochastic and deterministic CSS model behaviours, the six examples A1 to A6 
presented in Appendix A are made available from internet. 

2) A tool for statistical post-analysis of multiple runs of a stochastic CSS mod-
el is also provided there. 

B1. Examples A1 to A6 
 

 
Figure A11. A replication of the prey-predator model with continuous prey (X) and dis-
crete predators (Y) using the combined model (14). 
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In order to give the reader a deeper understanding and experience of stochas-
tic CSS modelling, we provide a simple an easy-to-use stochastic CSS language 
called StochSD, see Section B2. The frequently referred six models, A1 to A6 in 
Appendix A can be downloaded and executed in StochSD. Alternatively, you can 
have these six models in Insight Maker. 

To try Stochastic CSS go to: https://stochsd.sourceforge.io/homepage/. From 
here you can get access to the models A1 to A6 in both StochSD and in Insight 
Maker. 

If preferred, you can build and simulate stochastic CSS models in any CSS 
package where a Poisson distributed random number generator is included.  

B2. StochSD including the StatRes software for statistical post-analysis 
StochSD (Stochastic System Dynamics) is a rudimentary open-source tool 

(where the graphics is not yet very elegant) for deterministic and stochastic  
modelling and simulation based on Insight Maker7 version 5. StochSD includes 
an advanced and well tested tool StatRes for statistical post-analysis and some 
other tools. StochSD is open-source, which means that you get it for free. It also 
gives you access to the source code and the right to modify the code under the 
open-source licence. StochSD is written in HTML and JavaScript.  

StatRes (Statistical Results) performs output analysis of a stochastic model 
written in StochSD. It works on an opened StochSD model file, orders N replica-
tions, collects results of specified quantities and calculates statistics of averages, 
standard deviations, confidence intervals, min & max values and percentiles. It 
can also present the statistics in the form of histograms, box plots and scatter 
plots (X-Y plots) with coefficient of correlation between X and Y calculated, 
etc.  

For using StochSD (including StatRes) over the net or downloading it, go to: 
https://stochsd.sourceforge.io/homepage/. Here you also find detailed docu-
mentation of StochSD and StatRes. 

System requirements: Any operative system that can run a modern 
web-browser, including Windows 7 or later versions, Mac OS X or GNU/Linux. 
The web-browsers that are well tested for StochSD are Google Chrome and Mo-
zilla Firefox. (It does not work on Internet Explorer.) The web-browser will load 
StochSD and run your models.  

It is our hope that other researchers or CSS software developers will help to 
make stochastic CSS powerful by including appropriate tools for statistical 
post-analysis to various CSS packages. We therefore provide open code for 
StochSD and its included tool StatRes in particular. 

 

 

 

7We have used the open System Dynamics part: simulation engine, function library, error detection 
facility, macro facility etc. from Insight Maker. However, the non-open parts based on mxGraph (for 
model flowchart and result diagrams) and Ext JS (for modelling window and buttons etc.) have been 
replaced in order to make StochSD completely open. Furthermore, the file handling has been re-
written. Finally, we have made some modifications to conform to System Dynamics conventions. 
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