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On Long-Term Statistical Dependences in Channel
Gains for Fixed Wireless Links in Factories

Markus Eriksson and Tomas Olofsson

Abstract— The reliability and throughput in an industrial
wireless sensor network can be improved by incorporating
the predictions of channel gains when forming routing tables.
Necessary conditions for such predictions to be useful are that
statistical dependences exist between the channel gains and
that those dependences extend over a long enough time to
accomplish a rerouting. In this paper, we have studied such
long-term dependences in channel gains for fixed wireless links
in three factories. Long-term fading properties were modeled
using a switched regime model, and Bayesian change point
detection was used to split the channel gain measurements into
segments. In this way, we translated the study of long-term
dependences in channel gains into the study of dependences
between fading distribution parameters describing the segments.
We measured the strengths of the dependences using mutual
information and found that the dependences exist in a majority of
the examined links. The strongest dependence appeared between
mean received power in adjacent segments, but we also found
significant dependences between segment lengths. In addition to
the study of statistical dependences, we present the summaries
of the distribution of the fading parameters extracted from the
segments, as well as the lengths of these segments.

Index Terms— Radio link, Wireless sensor networks, Fading,
Channel models, Mutual information, Parameter estimation.

I. INTRODUCTION

A. Background and Motivation

THE modern process industry depends on a well function-
ing data traffic for monitoring and control and this traffic

is generally sent over cables. However, there is a growing
interest to use wireless sensor and actuator nets (WSANs) to
reduce installation costs and gain flexibility when modifying
the monitoring and control implementations. By using a wire-
less communication medium, new issues such as fading and
time varying throughput in wireless communication channels
must be addressed. Generally, closed loop control and discrete
signaling are identified as applications with the least tolerance
for latency and outage, where a few lost packets can lead to
a long standstill in production [1].

The better we understand the fading characteristics of the
radio links, the better are our possibilities to reliably commu-
nicate over the network, e.g., by routing traffic in a way so that
packet losses and congestion are avoided as much as possible.
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In particular, if we can predict the channel gains ahead of time,
then the routing tables can be updated before such problems
occur.

Communication standards for WSANs, such as,
WirelessHART and ZigBee, usually advocate centralized
scheduling of contention free periods, or time division
multiple access (TDMA) with super frames to meet latency
requirements [2]–[4]. They target radios that implement the
low power, low bit rate, IEEE 802.15.4 physical layer, with
a packet transmission duration of approximately 5 ms. The
centralized scheduling imposes constraints on the update rate
of the routing tables to be on the order of seconds, since the
network manager needs to collect information on topology,
link quality and sampling rate from the connected devices.
As a consequence, prediction horizons must also be on the
order of seconds or longer to be useful.

Such long horizons are in contrast to those usually consid-
ered in the literature for mobile communication [5], [6], where
they involve a few symbols, say 10-100, which corresponds
to micro- to milliseconds. The need for long time horizons is
further emphasised by the fact that many of the use cases
for industrial WSAN may generate relatively sparse data
traffic [1], which means that some links will be probed at
a relatively low rate.

Needless to say, long term prediction of channel gains
requires that there exist long term statistical dependencies in
the channel gains. For fixed wireless links, which generally
constitute the majority of links in WSANs, such dependencies
may be caused by regular movements of surrounding objects
that strongly influence the radio propagation in terms of
multi path fading or shadowing. If the movement of such
influential objects is predictable, then we have reason to
believe that their effect on the fading can be predictable
as well.

The main purpose of the paper is to prove that channel
gains observed in factory environments are predictable on
a long time horizon and we do this by showing that there
exist statistical dependencies between channel gains over long
horizons. Our results indicate that such dependencies do exist
for a majority of the links. Note, however, that finding long
term dependencies in relatively highly resolved time series is
generally considered to be difficult. An often used approach
to handle this problem, and the one used in this study, is to set
up a hierarchical model where some parameters describe the
short term dependencies and where the long term behaviour of
these parameters are described by another set of parameters.

Below we outline the approach we have used to detect the
statistical dependencies.
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B. Outline of the Method for Detecting Statistical
Dependencies in Channel Gain

Our analysis of the long term dependencies is based on
a hierarchical switched regime model that captures the essen-
tial behavior of the channel gains at fixed wireless links that
has been reported in the literature and that we have also
observed in our studies, see Section II for details. The model
separates the short term- and long term dynamics of the fading
by allowing the time series to be split in a number of time
segments, delimited by random change points (CPs).

All fading values that reside in the same segment are
assumed to be independent and identically distributed (i.i.d.)
and this serves as a model for the short term dynamics. Fading
behavior on a longer time scale is determined by the dynamics
of the parameter vector which changes value at every CP.
Dependencies between fading values at two different time
instants may have one of the following two reasons: (A) either
the time instants are close enough such that the fading values
are drawn from the same distribution, or (B) they belong to dif-
ferent segments, with corresponding parameter vectors that are
statistically dependent. Reason (A) motivates a study on the
distribution of the fading parameters and on segment length,
and reason (B) motivates a study on statistical dependencies
between parameters describing different segments.

In this work we perform the studies motivated
by (A) and (B) using data that have been collected
from three different sites in the process industry, one rolling
mill in Sandviken, one paper mill in Iggesund and one
flotation plant in Garpenberg. The following method is used:
(i ) We use a CP detection (CPD) algorithm to split link data
series into non overlapping segments. The CPD algorithm has
been specially tailored for a regime switching model where
an i.i.d gamma distribution is used to model the variations
in power gain in each segment. (i i ) The parameter vectors
associated with each segment are estimated and, together
with the estimated CPs, they form a batch of data for each
link that consists of time series of parameter vectors and the
corresponding segment lengths. The length of each segment
is defined as the separation in time between the two CPs that
confine the segment. (i i i ) We study statistical dependence in
the time series by combining parameters into pairs, resulting
in observations that are two dimensional, between which it is
possible to estimate mutual information (MI). In particular,
we study statistical dependence between the length of
segments and the variability in received power, as well as
between parameters describing adjacent segments. However,
the proposed method can of course be generalized to concern
more complex patterns extending over several segments.
(iv) A statistical test is performed on each estimated
MI value to determine, with a 95% significance level,
whether or not the parameters are dependent.

Note that the identified parameters, see (i i ) above, provide
important information about the short term fading distribu-
tions. In particular, we obtain the Nakagami-m figure1 from
which we, via a simple parameter transformation, can obtain

1Please note that a gamma distribution for describing power gain corre-
sponds to a Nakagami-m distribution for describing the amplitude gain.

estimates of the K -factor and thus enable a comparison with
findings in other studies on fixed wireless links in factories.

The CPD algorithm in (i ) was originally developed by
Fearnhead in [7], but has been modified in this work for
observations generated from a gamma distribution. It uses
the Viterbi algorithm to find the, a posteriori, most probable
sequence of CPs conditioned on a series of observations,
see Section III for details. A similar work was pre-
sented in [8], based on an on-line algorithm developed by
Adams and MacKay in [9], with the intent of reacting to
changes in real time. In our application an off-line algorithm
is more appropriate since we are studying batches of data from
which we want to infer statistical dependencies.

C. Contributions

Our main contributions and findings in the paper can be
summarized as follows:

• We have modified the CPD algorithm developed by
Fearnhead in [7], so that the observations are assumed to
be generated by a gamma distribution, with a piecewise
constant parameter vector.

• We apply the CPD algorithm to measurements of received
signal strength (RSS), obtained from three different fac-
tories. Our results show that the CPs are, typically, sepa-
rated in time by more than one minute, up to several hours
as the longest. We also uncover a statistical dependence
between K -factors and duration of segments.

• We show the existence of statistical dependencies
between parameter vectors describing adjacent segments.
For example, at a significance level of 95%, more
than 90% of the links show a statistical dependence in
mean received power between segments.

• We confirm earlier reports on high values of K for fixed
wireless links compared to mobile scenarios. In fact,
we note values that are slightly higher compared to the
reported results from previous work, and we provide
a plausible explanation based on differences in how the
studies were performed.

The paper is organized as follows: In Section II we sum-
marize earlier studies on fixed wireless links and complement
with own results to motivate why the regime switching model
is well suited for describing the fading process. Details of the
corresponding CPD algorithm are presented in Section III and
the method for detecting statistical dependencies is explained
in Section IV. This is followed in Section V by a description of
how the experimental data was acquired at the different sites.
In Section VI we present the results and, finally, in Section VII
we conclude and discuss the results.

II. FIXED WIRELESS LINKS

In this work we are concerned with fixed wireless links.
Such links have been studied in applications, such as, broad-
band wireless access (BWA) [10]–[13], indoor/office environ-
ments [14]–[16], and factories [17]–[19]. Most studies indicate
that the fading can be well described as Rician, which can be
explained as follows [17], [18]: The transmitter establishes
a spatial field acting as a reference value corresponding to



3080 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 64, NO. 7, JULY 2016

a stationary channel gain. Movement of reflecting objects will
perturb the multipath components, causing variations from
the stationary value. If the number of moving reflectors are
large enough and if their contribution to the scattering is of
comparable magnitude, the central limit theorem states that
the random component associated with the moving reflectors
becomes complex Gaussian in the phasor domain and the
resulting fading distribution thus becomes Rice. See, e.g., [20]
for a brief summary on basic fading models and their under-
lying assumptions.

The K -factor associated with the Rician distribution depend,
for fixed wireless links, on how much the moving reflectors
contribute to the received power in comparison to the con-
tribution from the fixed reflectors. Thus, these K -factors are
specific to the site, the relative position of the transceivers,
and other factors influencing the wave propagation paths. For
instance, in [11] it was shown that the K -factor depends
on season, antenna height, antenna beam width, and antenna
separation. In [13] it was shown for a metropolitan area that
antennas in line-of-sight (LOS) and with obstructed view of
surrounding streets resulted in very high K -factors. For links
with antennas in non-LOS (NLOS), and at street level in close
proximity to vehicles, the K -factors were much lower. In the
latter case, they varied significantly with traffic conditions; the
heavier traffic, the lower K -factors were observed.

Long term fading behavior for links in a rural area was
studied in [21] where links obstructed by trees experienced
temporal fading in excess of 10 dB through changes in wind
conditions. Turbulence caused fast fading through wavering
motion of the leaves, whereas the mean wind speed affected
shadowing conditions by displacing the tree tops. The effect
of the wind speed was not as prominent in the off-leaf season,
giving rise to regular behavior in the fading process with a very
long time cycle.

Similar mechanisms as described above hold also for
indoor/office environments [14]. However, due to higher atten-
uation caused by denser partitioning from nonconductive walls
and inventories, the overall indoor fading is more influenced
by shadowing compared to outdoor environments.

Fixed links inside factories share fading characteristics
with both the metropolitan area and the typical indoor/office
environment [18]. Factories resemble metropolitan areas in the
sense that attenuation is not severe. This is because factories
often have large open areas where aisles are arranged in
an orderly, orthogonal, intersecting fashion. Moreover, heavy
machinery readily facilitate multiple paths to illuminate the
receiver. On the other hand, since many factories are sectioned
into localized work areas, they resemble indoor channels in the
sense that perturbations of the channel due to motion often are
confined to one or two main paths.

Relatively short term fading over links in four factories was
examined in [19]. The links were measured for five minutes
and then sorted into different groups based on the composition
of personel and machinery in the vicinity of the radio nodes.
From these short time series of channel gain, they showed
that temporal fading is Rician, and topographies with a mix
of moving personel and machinery tends to have the lowest
K -factors.

Fig. 1. RSS, sampled at 1 Hz, between fixed nodes deployed inside a flotation
plant.

More long term evolution of channel statistics in factories
was studied in [20] where it was observed that fading over
a link can be described as switching between different states
caused by major events in the vicinity of the nodes. Such
events could for instance be the movement of an overhead
crane or a fork lift. Movement of this type of equipment
typically occur only for a relatively short time, followed by
long time spans when they remain at fixed positions. When
large objects are moving, causing radical changes either in the
phase or magnitude of some of the multipath components that
contribute significantly to the link, the distribution describing
the fading before and after the movement of the object will be
different. Such changes may occur both in mean level and/or
dynamic range of the fading.

One example of this behaviour is given in Figure 1, where
the RSS, sampled at 1 Hz, at a link inside a flotation plant is
presented. Between t = 0 and t ≈ 210 s, the link is nearly
static. Between t ≈ 210 s and t ≈ 410 s, the fading fluctuation
is approximately 10 dBm, and after t ≈ 410 s, the fading
goes back to a nearly static behavior, but now at a different
mean level.2 We can thus consider the time series to consist
of three time segments, delimited by two CPs. According to
the earlier discussion, the nearly static distributions correspond
to situations with a small influence of moving reflectors and
the large RSS fluctuations corresponds to a larger influence of
such reflectors. In this particular example, it is quite plausible
that the fluctuations is caused by one single large object close
to the transceivers that begins to move at t ≈ 210 s and
stops at t ≈ 410 s. See also Figure 3 for another example
where the measured RSS changes abruptly between different
distributions.

The fading dynamics within the segments is closely con-
nected to the speed of the moving reflectors that give rise

2The behavior could be explained by a change in shadowing conditions due
to a nearby moving object. Another plausible explanation is that the low RSS
region corresponds to a scenario with very little activity and with multiple
radio paths interfering destructively. Between t ≈ 210 and t ≈ 450 s some
reflecting object, responsible for one or more of the multiple paths, is moving
and it stops at a position where the contributions from the object now instead
add constructively to the other paths.
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Fig. 2. Measured RSS between fixed nodes sampled at 100 Hz. The ruler
marks time differences of � = 0.09 s which coincide with the peaks in the
measured RSS.

to the fading variations. If only one single nearby reflecting
object is moving, then its contribution to the fading will
roughly be a harmonic oscillation with a frequency that will
be determined by how many wave lengths the radio path
is changed per second. According to the sampling theorem,
the RSS values must be observed at a rate at least twice the
oscillation frequency to be faithfully monitored. Machinery,
cranes, and vehicles typically move at walking speed, i.e.,
in the order of meters per second, and the frequencies of the
oscillations associated with such objects should then be in the
order of 10 Hz for a wavelength of 12.5 cm.3 Thus, the RSS
must be sampled at rates of at least 20 Hz to faithfully monitor
the oscillations.

To examine the short term fading dynamics and confirm
the above reasoning, we conducted a separate experiment
where the RSS values were sampled at 100 Hz. During
the measurement, one overhead crane in the vicinity of the
transceivers was moving sporadically, giving rise to sporadic
oscillations in the RSS time series. One example is shown in
Figure 2 where the fading suddenly experiences oscillations
with peaks that are separated in time by approximately 0.09 s
corresponding to a frequency of approximately 11 Hz.

We realize from the above example that, to capture the
fading dynamics on a short time scale, covering for instance
the oscillative behavior caused by large reflecting objects
moving at walking speeds, we must observe the RSS values
at a relatively high sampling rate, say at least 20 Hz. If our
sampling rate is below this, then the oscillations between
t ≈ 0.4 and t ≈ 1 s in Figure 2 would be indistinguishable
and instead appear as random fluctuations. Therefore, at low
sampling rates it is more practical to assume that the obser-
vations are i.i.d. on the short time scale.4 This assumption
simplifies the mathematical treatment of the statistical model
considerably.

In summary, the fixed wireless links in factories can be well
described as Rician on a short time scale but on a longer time
scale we must also take into account that the parameters of the

3The carrier frequency was approximately 2.4 GHz in our experiments.
4The maximum sampling rate used in our experiments was 8 Hz,

see Section V.

distribution will change, often quite abruptly and unexpectedly.
Furthermore, short term dependencies are difficult to capture
unless the RSS values are observed at relatively high sampling
rates. If these high rates are not met, an i.i.d. model is more
relevant. We therefore propose a regime switching model to
describe the fading on these links, where the random CPs
models the abrupt and unexpected switching behavior and
the assumption of i.i.d samples within each time segment
stems from the difficulties of describing the short time fading
dynamics using undersampled RSS data.

Note that such a regime switching model can, with proper
choices of the transition probabilities, be written as a special
case of a hidden Markov model (HMM). HMMs have been
used to model channel fading over links with mobile trans-
ceivers, for instance in [22]. See [23] for a survey on Markov
modeling of channel fading and its applications.

As outlined in Section I-B, this regime switching model
is further used to segment the RSS measurements using a
CPD algorithm.

Note that the Rice distribution can be approximated by the
Nakagami distribution with high accuracy [14]. As was shown
in [24], the receiver will experience Nakagami distributed
fading when the received signal consists of a sum of i.i.d.
Rayleigh-fading signals, which resembles the assumptions that
led to the Rice distribution. Since the Nakagami distribution
results in significantly simpler mathematical treatment in the
CPD algorithm, we have chosen in this work to model channel
gains as Nakagami distributed instead of Rician. This corre-
sponds to power gains that are gamma distributed.

Note also that parameters from the Nakagami distribution
can be transformed into the corresponding Rice parameters,
see (28) below. This allows our results to be compared with
those from studies that have fitted Rician distributions to
empirical measurements.

III. CHANGE POINT DETECTION

In this section we describe the CPD algorithm that was
originally developed by Fearnhead [7], with the modification
that observations are assumed to be generated by a gamma
distribution.

We treat CPD as a longest path problem, where the cost
function is determined by the marginal likelihood and a prior
assumption about the rate of CPs. The problem is solved with
the Viterbi algorithm and the solution consists of the maximum
a posteriori (MAP) set of CPs.

The section starts with an introduction to the data generation
model and we show, among other things, how to compute the
marginal likelihood for an arbitrary sequence of observations.

A. Data Generation Model

Consider a sequence of RSS observations, r1:T �
{r1, r2, . . . , rT }, where we use the colon notation for defining
which indices that belong to the sequence. A segmentation
of r1:T is defined by the set of CPs, τ1, . . . , τM+1, where
we define τ1 = 0 and τM+1 = T . We then have M seg-
ments where the observations belonging to the mth segment
are r(τm+1):τm+1 .
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We assume the observations within a segment to be
conditionally i.i.d. gamma defined by the parameter vector
θ � (α, r̄ ), where α and r̄ denote the shape parameter, and
the mean power, respectively, having the pdf,5

f (r |θ) = αα

�(α)r̄α
rα−1 exp

(
−αr

r̄

)
. (1)

For some general segment rt :s , the pdf in (1) yields the
likelihood

f (rt :s |θ) =
(

αα

�(α)r̄α

)s−t+1

Pα−1 exp
(
−α

r̄
S
)
, (2)

where

P =
s∏

i=t

ri and S =
s∑

i=t

ri . (3)

ML parameter estimates of α and r̄ that are considered in
Section V are obtained as

θ̂ = arg max
θ

f (rt :s |θ). (4)

The parameter vector θ is assumed to be piecewise constant
between the CPs τ1, ..., τM+1. Let θm denote the parameters
associated with the mth segment and assume that θm and θn

are, a priori, independent for m �= n. The prior distribution
for these parameters is for practical reasons here chosen to
be conjugate with respect to (2) [25]. This means that the
posterior density function and the prior will share the same
functional shape and this choice allows for an efficient algo-
rithm implementation for CPD that utilizes simple updating
rules of sums and products of the type shown in (3).

The conjugate prior over θ with respect to (2) is given
by [25],

f (θ |a, b, c, d) = 1

Z

aα−1

�(α)b

(α
r̄

)αc
exp

(
−αd

r̄

)
, (5)

where Z is a normalization constant that depends on the real,
positive, hyperparameters a, b, c and d . To avoid lengthy
notation below, the conditioning on these parameters is not
written out explicitly.

The posterior probability distribution of θ is proportional
to the product of the likelihood function (2) and the prior
distribution (5),

f (θ |rt :s) ∝ f (rt :s |θ) f (θ)

= 1

Z

a′α−1

�(α)b
′
(α

r̄

)αc′
exp

(
−αd ′

r̄

)
, (6)

with a′, b′, c′, d ′ defined as,

a′ = a P b′ = b + s − t + 1,

c′ = c + s − t + 1 d ′ = d + S. (7)

We see that (6) and (5) share the same functional form in θ .
The marginal likelihood, L(t, s), is given by,

L(t, s) =
∫ ∞

α=0.5

∫ ∞

r̄=0
f (rt :s, θ)dr̄dα, (8)

5Several different parameterizations exist in the literature for the gamma
distribution and with the one chosen in this work, α corresponds directly to
the parameter m in the Nakagami-m distribution.

where integration from α = 0.5 is due to the fact that this is the
smallest shape parameter that is allowed in the corresponding
Nakagami distribution [24]. The inner integration over r̄ in (8)
is valid for αc′ −1 > 0 , αd ′ > 0 and from [26, eq. (3.381:4)]
we get,

L(t, s) = 1

Z

∫ ∞

0.5
g(α)dα, (9)

where g(α) is given by,

g(α) = αa′α−1

�(α)b
′
�(αc′ − 1)

d ′αc′−1
, (10)

and a′, b′, c′ and d ′ are defined in (7).
The integral over α in (9) has no analytical solution and

it is evaluated numerically using the Laplace approximation,
as described in Appendix D.

The CPs τ2:M are, a priori, assumed to be uniformly
distributed over the sequence of observations. This noninfor-
mative prior assigns equal probability that rt is a CP, for all
t = 1, . . . , T ,

Pr(CP at t) = λ, (11)

where λ is set to some small number that reflects the expected
rate of CPs,

λ = Expected number of CPs

Total number of observations
. (12)

This leads to a geometric distribution of segment length,

Pr(τm+1|τm) = λ(1 − λ)τm+1−(τm+1). (13)

As will be evident from the results presented in
section VI-A, a specific value of λ results in segments with
a wide range of different length. Thus, the resulting segmen-
tation is relatively insensitive to the choice of λ.

B. MAP Change Point Detection

The MAP segmentation is defined as the set of CPs
τ ∗

2 , . . . , τ
∗
M that fulfill,

{M, τ ∗
2 , . . . , τ

∗
M } = arg max

M,τ2,...,τM

Pr(τ2, . . . , τM |r1:T ). (14)

Note that we also maximize over the number of segments, M .
Thus, the optimization is not performed over a predetermined
number of CPs.

This segmentation is obtained using the Viterbi algorithm
which relies on an auxiliary variable, Q∗(t), that is defined
as [7]

Q∗(t) = Pr(rt :T |CP at t − 1,

MAP estimate for t < τ ∗
m , . . . , τ

∗
M ), (15)

for t = 2, . . . , T and,

Q∗(1) = Pr(r1:T |MAP estimate for τ ∗
2 , . . . , τ

∗
M ). (16)

Q∗(1) can be interpreted as the likelihood that the model
described in Section III-A generated the sequence r1:T , con-
ditioned on the most likely sequence of CPs. Using the above
stated definitions, (15) can be calculated recursively as [7],

Q∗(t) = max
s>t

{L(t, s)Q∗(s + 1)λI(s �=T )(1 − λ)s−t }, (17)
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Fig. 3. Measured RSS from a link that shows a regime switching behavior.
The output from the CPD algorithm and parameter estimation is included in
the figure.

where t ≤ s ≤ T and Q∗(T + 1) = 1. The indicator function
I(s �= T ) = 1 when s �= T and 0 otherwise. Let s∗(t) be the
value that maximises (17),

s∗(t) = arg max
s>t

{L(t, s)Q∗(s + 1)λI(s �=T )(1 − λ)s−t }. (18)

When Q∗(t) has been calculated for t = 1, . . . , T ,
the MAP CPs τ ∗

2:M in (14) are calculated with the following
recursion:

1) Set τ ∗
1 = 0,m = 1,

2) While τ ∗
m < T ; set τ ∗

m+1 = s∗(τ ∗
m + 1); m = m + 1.

C. Parameter Estimation

With a segmented sequence of RSS observations, the ML
estimate, θ̂ , for the mth segment rτ∗

m+1:τ∗
m+1

is obtained

through (4), where f (rτ∗
m+1:τ∗

m+1
|θ) is given in (2). The length

of the segment will be denoted �̂m and is calculated as,

�̂m = τ ∗
m+1 − τ ∗

m . (19)

The algorithm is illustrated in Figure 3 where the red lines
mark the estimated CPs that separates a sequence of RSS
measurements into five segments, each with a parameter
triplet.

In Section V-B, the CPD algorithm will be applied to RSS
measurements from L different links. For future reference, let
Ml denote the number of segments in the lth link, and let ϕl

m
denote the parameter triplet associated with the mth segment,

ϕl
m = {α̂l

m , ˆ̄r l
m , �̂

l
m}, (20)

where m = 1, . . . ,Ml . The total set of parameter triplets from
the lth link are referred to as 	l ,

	l = {ϕl
1, . . . , ϕ

l
Ml

}. (21)

D. Choice of Hyperparameters

The processing in Section V-B, was conducted with hyper-
parameters set to values indicated by table I. By inspec-
tion of the update rules (7) for the posterior parameters,
we note that the prior parameters a, b, c and d , can be
viewed as the sufficient statistics for a number of fictitious
samples, where b and c sets the number of fictitious samples,

TABLE I

PARAMETER VALUES USED FOR DEFINING THE
PRIOR DISTRIBUTIONS IN (5) AND (13)

and a, d correspond to their product and sum, respectively.
In applications where prior information is available, this can
be incorporated by setting a, d to reflect the behavior of the
signal, and b, c can be considered as weights. When b and c
are large in comparison to the number of observed data points,
the resulting segmentation will be strongly influenced by the
prior.

The conjugate prior used in this work was difficult to tune to
the vast span of possible r̄ for the collection of links. To handle
this we normalised the received power to unity on each link.6

This simplified the choice of a common prior that could be
used for all links.

IV. DETECTING STATISTICAL DEPENDENCIES

USING MUTUAL INFORMATION

The main goal of our study is to assess whether or not the
RSS values show statistical dependencies over time, which
in the switched regime model corresponds to dependencies
between the parameters describing the segments. Since the
priors used do not induce statistical dependencies, any such
dependencies that are observed in the estimated parame-
ters associated with the extracted segments, must have been
induced by data.

MI provides means to measure general statistical depen-
dencies between variables and the authors of [27] developed
a framework for nonparametric estimation of MI that avoids
assumptions about the underlying distribution. These estimated
MI values can subsequently be used in a hypothesis test to
determine whether the parameters are dependent or not. The
approach in [27] is summarized below, followed by a descrip-
tion of the hypothesis tests and how to choose appropriate
thresholds in the tests.

A. Computation of MI

For general continuous random variables, X and Y , taking
on values x and y respectively, their MI [28] is defined as,

I (X,Y ) =
∫

Y

∫

X
p(x, y) log

p(x, y)

p(x)p(y)
dxdy, (22)

where integration is performed over the support of X and Y .
For independent variables, we have p(x, y) = p(x)p(y)
and the integral becomes zero. For dependent variables,
(22) evaluates to some positive value corresponding to the
amount of information that Y holds about X or vice versa.

6Note that a scaled gamma distributed variable is also gamma distributed.
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Throughout the rest of this work, log, denotes the natural
logarithm, thus, the unit for I is nat.

The unknown distributions of X and Y , are assumed
to generate M two dimensional observations, (xi , yi ), for
i = 1, . . . ,M . The first step in estimating MI from the samples
(x1:M , y1:M ), is to construct a kernel estimate of p(x, y),

p̂(x, y) = 1

M

M∑
i=1

1

h2 G

(
1

h
‖(x − xi , y − yi )‖2

)
, (23)

where G is the Gaussian function,

G(v) = 1√
2π

e
−v2

2 , (24)

h is the scalar kernel width, and ‖ · ‖2 denotes the 2-norm.
From p̂(x, y), estimates Î (x1:M , y1:M ) can be computed as,

Î (x1:M , y1:M ) = 1

M

M∑
i=1

log

(
p̂(xi , yi )

p̂(xi) p̂(yi )

)
, (25)

where p̂(x) and p̂(y) are estimates of marginal densities
obtained as

p̂(x) =
M∑

i=1

p̂(x, yi ) and p̂(y) =
M∑

i=1

p̂(xi , y). (26)

In addition to the above steps of obtaining Î (x1:M , y1:M ),
we make use of a preprocessing step where the samples
(x1:M , y1:M ) are copula transformed [29], leaving them uni-
formly distributed on the interval [0, 1], which simplifies the
choice of kernel width h.7

B. Test for Statistical Dependencies

The estimates Î (x1:M , y1:M ) are always non-negative and
to state that a dependency has been detected we require the
estimates to deviate significantly from zero. Thus, we set up
a hypothesis test where the null hypothesis, H0, states that the
parameters are independent, and, accordingly, hypothesis H1
states that they are dependent. The test consists in compar-
ing Î (x1:M , y1:M ) to a threshold, I M

0 , and it rejects H0 if
Î (x1:M , y1:M ) > I M

0 , where I M
0 is chosen to give a rate of

type I errors of ρ = 5 %, i.e.,

Pr( Î (x1:M , y1:M ) > I M
0 |H0) = 0.05, (27)

We will in the following refer to I M
0 as the independence

threshold, and in the section below we describe how to
compute it by means of Monte Carlo (MC).

C. Computation of the Independence Threshold

We study two different types of dependencies between
parameters that require a somewhat different treatment when
computing I M

0 . The first type is examined in Section VI-B,
where x and y are replaced with parameter estimates
(α̂m , �̂m). Hence, parameters from the same segment are
regarded as a two dimensional observation, from a set of
such observations we can estimate MI. The second type of

7Since MI is invariant under monotonic transformations of x and y, this
does not affect estimates Î ((x1:M , y1:M )) [29].

dependence is treated in Section VI-C, where x and y are
replaced with parameter estimates from adjacent segments,
(α̂m , α̂m+1), ( ˆ̄rm , ˆ̄rm+1) and (�̂m, �̂m+1), which again
form sets of two-dimensional observations from which we can
estimate MI.

The reason for treating the two types differently is that CPD
will introduce excess dependencies between the estimated
parameters in adjacent segments, but not between parameters
within the same segment. This causes an upward bias in the
estimated MI-values for the second type of dependence. This
bias stems from an increased risk of missed detections in CPD
when the difference between parameters associated to adjacent
segments is small. Thus, consecutive parameter estimates
with relatively similar values will be underrepresented in the
batches. We have no reason to believe that this mechanism will
be present when parameters associated with the same segment
are considered.

In the former case, the MC evaluation involves running
the CPD on a simulated data set, generated by the model
described in Section III-A, with segments having independent
parameters. The latter case allows for simplifications in com-
puting I M

0 . The MC methods for the two cases are detailed
below.

1) Tests for Parameters Within the Same Segment: When
considering parameters belonging to the same segment, we can
find the distribution of MI estimates using an MC method as
follows: (i) Generate NMC = 10, 000 sets of x and y, each
of size M , from normally distributed independent X and Y .
(ii) Copula transform each set and compute Î (x1:M , y1:M ).
(iii) Set I M

0 as the 95% percentile of the distribution of
estimated MI values.

2) Tests for Parameters Between Adjacent Segments: To
take into account the above mentioned bias in MI estimates,
the CPD algorithm is incorporated into the MC method,
as illustrated in Figure 4. The algorithm executes as fol-
lows: (i) generate Msim > M independent θ vectors8 from
the prior distribution (5) and Msim independent � values
from (13). (i i) Use these parameters to simulate Msim seg-
ments and concatenate these segments into one vector, r1:T .
(i i i)) Apply the CPD algorithm to r1:T using the framework
in Section III-B and estimate the parameters corresponding
to each segment. (iv) Select the M first parameter triplets,
ϕ̂1:M , and for each parameter, estimate MI with a time shifted
version of itself, i.e., Î (α̂1:M−1, α̂2:M ), Î ( ˆ̄r1:M−1, ˆ̄r2:M ), and
Î (�̂1:M−1, �̂2:M ). Repeat steps (i)-(iv) to obtain NMC = 300
estimates of MI for each parameter. Set I M

0 as the 95%
percentile of the distribution of estimated MI values.

The computed I M
0 resulted in slightly different values for

the three different parameters, α̂, ˆ̄r or �̂ and the threshold that
corresponded to the parameter that was currently being tested
was used.

Note that the approach for obtaining the threshold for
parameters in adjacent segments is computationally expensive
and we therefore limited the computations to sample sizes

8Since some true CPs may be missed in the detection we need to simulate
a larger number of segments than is actually required in the batch. In our
work, choosing Msim = 1.3M was found to yield a sufficient number of
segments.
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Fig. 4. Monte Carlo method for computing the I M
0 when testing for statistical

dependence between parameters in adjacent segments.

of M = {50, 100, 400, 600} as well as a smaller NMC to
find I M

0 . When the hypothesis tests were applied to a time
series of consecutive parameter estimates of arbitrary size Ml ,
the independence threshold with the closest, smaller M in the
above list was used.

V. EXPERIMENTS

Measurements were conducted at three fully equipped and
operational factories, one rolling mill, one paper mill, and
one flotation plant. The deployment areas typically included
heavy machines, overhead cranes, and a large amount of metal
objects, all acting as reflectors. This is illustrated in Figure 5,
showing the deployment area at the rolling mill, where nodes
were placed on both sides of the production line.

A. Measurement Setup

Measurements were conducted with a net of Zolertia Z1
nodes which use the IEEE 802.15.4 compliant CC2420 trans-
ceiver, operating at the 2.4 GHz band. They were deployed in
an area of approximately 1000 m2 with the majority of nodes
in a close proximity to machines to mimic a realistic wireless
control scenario. An example is shown in Figure 6 where two
of the Z1 nodes are mounted on a paper machine. The dis-
tances between nodes in the deployment areas varied between
three and approximately 50 meters. Furthermore, some links
were in LOS most of the time, whereas others were close
to disconnected, e.g., due to strong shadowing. This resulted

Fig. 5. Overview of the deployment area of the nodes at the rolling mill in
Sandviken.

Fig. 6. Two Zolertia Z1 nodes deployed at the paper mill.

in a vast span in the links’ measured RSS. Measure-
ments were gathered in two different campaigns summarized
below.

Campaign I: The first campaign involved transmitting
packets every second9 using a National Instruments signal
generator. The nodes received the packets and stored the corre-
sponding RSS-values on internal memory cards. The measure-
ments at the rolling mill and the paper mill were gathered over
periods of approximately 20 hours, using 24 and 34 nodes,
respectively. This resulted in 7 × 104 RSS samples per link,
with an amplitude resolution of 1 dBm. Measurements at the
flotation plant were conducted on two occasions of approxi-
mately 20 hours each, using 23 nodes. Altogether, Campaign I
resulted in RSS measurements from 104 links. The packet
loss at different links is presented in the middle column
in Table II.

Campaign II: Campaign II involved a more extensive mea-
surement conducted at the rolling mill. Eighteen nodes were
used and transmissions were done in a round-robin fashion
where all pairwise links were monitored during each round.
This resulted in 153 possible unique links. Each round was
completed in 0.125 seconds10 during 90 consecutive hours,

9The RSS observation rate in Campaign I was thus 1 Hz.
10The RSS observation rate in Campaign II was thus 8 Hz.
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TABLE II

THE PACKET LOSS FOR THE TWO CAMPAIGNS. THE MIDDLE
AND RIGHT COLUMNS OF THE TABLE SHOWS THE NUMBER

OF LINKS EXPERIENCING A PACKET LOSS WITHIN THE

INTERVALS SPECIFIED IN THE LEFT COLUMN

Fig. 7. Overview of the data processing.

resulting in approximately 2.6 × 106 RSS samples per link
and these samples were stored at logging units.

Out of the 153 possible links, 23 proved to be disconnected,
thus resulting in 130 links containing meaningful link RSS
data. The rightmost column in Table II summarizes the packet
loss at the different links.

B. Processing

The RSS measurements from Campaigns I and II were
processed as illustrated in Figure 7. CPD was applied to each
of the L links in the campaign followed by parameter estima-
tion (PE).11 This resulted in L batches, 	1, ..., 	L , see (21),
consisting of parameter triplets with ϕl

m defined in (20).
The batches from Campaign I were used solely to overview the
distributions of fading parameters and segment lengths. The
number of segments obtained from Campaign I was found to

11 L = 104 in Campaign I and L = 130 in Campaign II.

Fig. 8. The distribution of segment lengths for each link. The red line in
the middle of each box indicates the median and the blue edges represent the
10th and 90th percentiles. The links have been sorted by ascending median.
(a) Links in LOS. (b) Links in NLOS.

be insufficient for reliably estimating MI between the para-
meters. These were instead computed using batches obtained
from the more extensive Campaign II.

VI. RESULTS

In this section we present distributions of the parameters
estimated using data from Campaign I and results from the
dependency test using data from Campaign II. The para-
meter estimation summaries are given in Section VI-A, and
Sections VI-B and VI-C concern the results from the
dependency tests. In Section VI-B, the dependencies between
parameters belonging to the same segments are presented,
whereas VI-C presents results on dependencies between
parameters in adjacent segments.

A. Distribution of Estimated Parameters

1) Segment Lengths: The distribution of segment lengths
are presented in logarithmic scale in Figure 8 using box
plots. Links in LOS and NLOS are presented separately and
to simplify visual inspection, the links have been sorted by
ascending median.

We see that a large amount of the segments last for
100 to 1000 seconds. However, the spread is large and the
median at different links may differ by more than a factor 100.
There is no evident difference between the distributions for
links in LOS and NLOS. The shortest observed segments only
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Fig. 9. The distribution of K -factors, sorted by site and presence of LOS.
The red line in the middle of each box indicates the median and the blue
edges represent the 10th and 90th percentiles.

lasted a few seconds whereas the longest lasted 24 hours. Two
of the links were static enough to constitute only one single
long segment, marked by red lines in the upper right corner
of the figure.

2) K-Factors: The parameter α influences the spread of
the gamma distribution, with high and low values yielding
small and large spread, respectively. Since most studies on
fixed wireless links have involved the Rice distribution and
presented results in terms of K -factors, we have here chosen to
transform the estimates of α-values to corresponding estimates
of K -factors according to [30]

K̂ =
√
α̂2 − α̂

α̂ − √
α̂2 − α̂

, (28)

and present these values instead. The resulting distribution of
estimates are shown in Figure 9. To further facilitate a com-
parison with other studies, each estimate has been weighted
with its corresponding segment length prior to computing
the histogram that underlies the box plot.12 The results are
presented separately for the three sites and the links are sorted
by LOS and NLOS.

Much as expected, links in LOS typically yield higher
K -factors than those in NLOS; Links in LOS have K -factors
that are approximately twice as large as for links in NLOS. The
majority of the estimated K -factors are found in the interval
[5, 25] dB, which is slightly higher than what has been
reported by previous similar studies. For instance, in [19] the
K -factors were found to reside between 4 and 19 dB, with an
overall average of 12 dB, and in [18], a K -factor of 10 dB
adequately described variability in their measurements.

3) Mean Received Power: As discussed in Section II,
the fading in the considered environments can be described
as switching between different states. The distribution of the
mean received power for a certain link with this regime switch-
ing behaviour then describes one aspect of the variability of the
states, namely how the mean power differ between different
states.

12More specifically, the histogram is computed based on a set of estimated
K -factors where each estimate has been duplicated as many times as the
corresponding segment’s length. Thus, values associated with a long segment
are upweighted in proportion to the segment length.

Fig. 10. The distribution of ˆ̄r for each link. The red line in the middle of
each box indicates the median and the blue edges represent the 10th and 90th
percentiles. (a) Links in LOS. (b) Links in NLOS.

The distribution of mean received power is presented in
Figure 10. The results are presented separately for links in
LOS and NLOS and they have been sorted by ascending
median in the same way as in Figure 8.

We observe a vast spread in the median values. These range
between −90 dBm up to −30 dBm. This large difference
is a direct consequence of the spread in antenna separation,
in combination with the fact that some links are in LOS and
some are in NLOS.

The variability of mean received power seldom exceeds
10 dBm, and several links have an almost indistinguishable
variability in the parameter. Please note that the overall fading
variability is always higher than the variability of mean
received power. For example, if a link consists of only one
single stationary fading state that runs over the entire mea-
surement and with a low K -factor, then the fading variability
is high, but the mean received power is constant and thus
shows no variability.

We observe a slight tendency for both links in LOS and
NLOS that weak links generally experience a higher variability
in mean received power. One possible explanation is that the
strong links often have one significant strong contributing
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radio path and a moving reflector that is not responsible for this
path will not be able to alter the mean power much, although
it may be enough to trigger a change in fading state. A weak
link has, with higher probability, several contributing radio
paths of comparative strengths and a moving reflector may
than influence the mean more strongly. Thus, weak links are
comparatively more susceptible to perturbations due to moving
reflectors.

B. Dependencies Between Parameters
Belonging to the Same Segments

We have limited the study of parameter dependencies within
segments to the combination α and �, which we believe to
be the most important. If such dependencies exist, we may
potentially be able to predict the next CP based on an estimate
of α that can be obtained from a few RSS-samples.

The test for dependencies consists in combining the seg-
mentation algorithm in Section III-B with the framework
for estimating MI in Section IV. The different steps in the
processing are outlined in the lower half of Figure 7. Before
presenting the outcome of the dependency test, we illustrate
the method of computing the MI in more detail by applying
it to one of the links and presenting some intermediate steps.

1) Illustration of the Method for Computing MI: The
method for computing MI is illustrated in Figure 11. The
link considered in the example experienced nearly static fading
over long periods of time, separated by shorter periods with
larger variability. In the upper plot we see a section of the
measured RSS, where six CPs were detected, marked with
red lines. The CPD for this particular link, resulted in overall
M = 624 segments. Parameters α and � were estimated for
each such segment and these parameter pairs are presented as
circles in a scatter plot (middle).

These M parameter pairs are used to compute a joint density
estimate, p̂(�̂m , α̂m), using (23). This density is shown as
a contour plot overlaying the scatter plot. Please note that the
variables have been copula transformed prior to presentation.
The true parameter values can be read from the lower and left
axis, whereas the copula transformed values are given by the
upper and right axis. Recall from Section IV-A that the copula
transform yields parameters that are uniformly distributed
in the interval [0, 1]. This implies further that independent
copula transformed parameters will be uniformly distributed in
a unit square and any deviation from this indicates dependent
parameters.

In the plot we can see a linear trend in the data, where
high α̂ correspond to large �̂, and vice versa. Thus, the plot
indicates that the parameters are dependent, implying further
that the MI should deviate significantly from zero.

To estimate the MI between α and � we use (25), with
the marginal density estimates p̂(α̂) and p̂(�̂), computed
using (26) resulting in Î (�̂1:M , α̂1:M ) = 0.25 nat. For this
case we have that I M

0 = 0.11 nat and since the estimate is well
above this threshold we consider α and � to be dependent for
this link.

We can examine this dependence in more detail in the
bottom plot that shows a comparison between the conditional
density p̂(�̂|α̂ = 8 dB) and the marginal density p̂(�̂).

Fig. 11. (a) Measured RSS for the example link. (b) ML estimates α̂1:624 and
�̂1:624 with the corresponding joint density function, p̂(�̂m , α̂m ). The copula
transformed values are given by the upper and right axis. (c) Comparison
between p̂(�̂) and p̂(�̂|α̂ = 8 dB), the latter given by the cross section
along the red line in (b).

The conditional density is given as the cross section along the
red line in Figure 11(b). We see that, given information that
α = 8 dB, we are in a better position to predict � than if we
have not received this information. In this particular example,
E[�|α = 8 dB] = 16 s would probably be a better estimate
than the unconditional mean, E[�] = 44.8 s.

2) MI for All Links: Each link in the data set is
processed in a similar way as in the example above, resulting
in L = 130 MI values. Note that the number of segments, M ,
which is the number of samples used to compute the MI, varies
between links. Furthermore, since I M

0 is a function of M ,
different thresholds are used for different links in the test.

The L MI values are presented in Figure 12 as a scatter plot.
Each blue circle represents one link by its M and estimated
MI and the red curve shows I M

0 . For every link appearing
above this curve, we consider α and � to be dependent.

We see that all links passes the test. Thus, we can, at a
significance level of 95%, reject the hypothesis that α and �
are independent. Note, however, that this does not necessarily
imply that the existing dependence is very strong.

C. Dependencies Between Parameters in Adjacent Segments

Dependencies between parameters in adjacent segments
were detected in a similar manner as in Section VI-B. In this
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Fig. 12. Scatter plot of Î (�̂l
1:Ml

, α̂l
1:Ml

). The red line marks I M
0 .

Fig. 13. Scatter plot of Î ( ˆ̄rl
1:Ml −1,

ˆ̄rl
2:Ml

). Each blue circle correspond to

a link and Î ( ˆ̄rl
1:Ml −1,

ˆ̄rl
2:Ml

) is plotted against the number of segments, M,
from which the estimate was obtained. The red curve shows the independence
threshold that was used for different M.

case MI was estimated between parameters and shifted ver-
sions of themselves, leaving other cross-combinations to future
work. Thus, we have restricted the study to MI estimates
Î (α̂1:M−1, α̂2:M ), Î ( ˆ̄r1:M−1, ˆ̄r2:M ), and Î (�̂1:M−1, �̂2:M ).

The MI values between ˆ̄rm and ˆ̄rm+1 for the different links
are presented in Figure 13 as a scatter plot. As earlier, each
blue circle represents one link by its M and estimated MI.
When computing I M

0 , special care was taken to compensate for
the bias in MI introduced by the CPD algorithm, as mentioned
in Section IV. However, due to the high computational cost
involved, I M

0 was only computed for a limited set of values,
M ∈ {50, 100, 400, 600}. Tests involving arbitrary M used the
I M
0 with the closest, smaller M in the above list. The red curve

shows the independence threshold that was used for different
M and for every link appearing above this curve, we consider
ˆ̄rm and ˆ̄rm+1 to be dependent.

The estimates Î ( ˆ̄r l
1:Ml−1,

ˆ̄r l
2:Ml

) exceed I M
0 for 91% of the

links and most links have a MI estimate well above Î M
0 ,

indicating a significant statistical dependence.
Similar scatter plots for α̂ and �̂ are shown in

Figures 14 and 15, respectively. Figure 14 suggests that α̂ has
the weakest statistical dependence since the links are grouped
close to I M

0 . Note, however, that most segments are fairly

Fig. 14. Scatter plot of Î (α̂l
1:Ml−1, α̂

l
2:Ml

). The red curve shows the

independence threshold that was used for different M.

Fig. 15. Scatter plot of Î (�̂l
1:Ml −1, �̂

l
2:Ml

). The red curve shows the

independence threshold that was used for different M.

TABLE III

PERCENTAGE OF LINKS SHOWING SIGNIFICANT STATISTICAL

DEPENDENCE BETWEEN PARAMETERS CORRESPONDING
TO ADJACENT SEGMENTS

static which corresponds to high values of α. With the coarse
RSS resolution of 1 dBm, estimates of this parameter will
suffer from erratic quantisation noise that, potentially, conceals
statistical dependencies. Note that this is of minor concern
in a routing context since the information on mean signal
strength, r̄ , are more important for nearly static channels.

The results from the dependency tests are summarized in
Table III. We see that only half of the links passes the test
for α, but the majority of the links passes the test for r̄ and �,
with r̄ yielding the largest estimates of MI.

VII. CONCLUSIONS AND DISCUSSION

We have introduced a regime switching model for fixed
wireless links in the process industry and used this model for
CPD to split the RSS time series into segments. From the
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extracted segments, we presented statistics on their typical
length as well as on the parameters that describe temporal
fading within each segment. The segment lengths are typically
100-1000 s, but extreme values of only a few seconds or
several hours have also been observed.

The bulk of the observed K -factors were found between
5 dB and 25 dB, which is slightly higher compared to results
from previous similar studies. However, it should be noted that
our method of estimating K -factors will typically yield higher
values than methods that do not rely on a segmentation prior
to the parameter estimation. The CPD will favor homogeneous
segments, meaning that the fading variation within these
segments will generally be less than for segments of pre-
determined length, which is the case in, e.g., [19].

In addition, we have used MI to identify dependencies in
the fading process. For instance, the statistical dependencies
were found between segment lengths and K -factors, where
long segments are, typically, associated with close-to-static
channels. This dependence could potentially be used to design
a predictor of the next CP based on an estimate of the K -factor
obtained from a few RSS samples and such predictions would
allow the network manager to adapt the rate of beaconing
transmissions. When a channel is close to static, a lower rate
is preferable since further beaconing of a fading state that
has already been observed contains little information and the
resources are better spent sending data.

The fading distribution parameters also showed statistical
dependencies between adjacent segments. For instance, more
that 90% of the links proved to have a significant dependency
for r̄ . This is interesting from a routing perspective since these
parameters can be associated with a packet error rate, which
often is the information that routing decisions are based upon.

The benefits of incorporating accurate information on link
quality into the problem of state estimation over a WSAN,
were emphasised by Quevedo et al. in [31]. Their method relies
on a finite set of possible routing tables and full information on
link quality. Developing methods to acquire this information
was pointed out as an open research area, where our work
may serve as a starting point.

Potential future work includes the design of predictors
utilising these dependencies. Our work has been limited to
studies of dependencies between parameters in adjacent seg-
ments. However, it is plausible that other parameter combi-
nations may also yield strong dependencies, and predictors
that use several parameters in combination, and over several
segments, may prove superior.

Lastly, the algorithm that is outlined in Sections III-IV
could be useful for other applications than the one considered
in this paper. Whenever the regime switching model with
gamma distributed observations is a reasonable model for the
underlying process, the algorithm serves as a general tool for
detecting regular behavior in the observed time series.

APPENDIX

A. Implementation of Viterbi

Running a direct implementation of Viterbi according
to (17) on long data series, soon yield numbers that go below

the machine precision on a computer. A simple way to avoid
this problem is to implement the algorithm in log domain.
By taking the log of,

log Q∗(t) = max
s

{log L(t, s)+ log Q∗(s + 1)

+ I (s �= T ) logλ+ (s − t) log(1 − λ)}. (29)

Maximising (29) will lead to the same solution, s∗(t),
as maximising (17).

B. Efficient Computations of L(t, s)

The maximisation over s in (17), requires the computation
of L(t, s) for a fixed t with increments of s = t + 1, . . . , T .
Since the sum, S, and product, P , in (3) form sufficient
statistics to (2), recomputing for L(t, s + 1) is a simple matter
of updating S and P with rs+1, followed by reiterating the
Laplace method in (9). The Laplace method fits a Gaussian
function to g(α), which involves finding the maxima α0.
In section D we show that g(α) has a strict global maxima,
thus Newton’s method quickly converges towards α0.

C. Comments on the Choice of Conjugate Prior in (5)

For periods of time where the measured RSS are very
static, small changes such as quantisation noise, can trigger
the algorithm to form a new segment. This behavior can
be counteracted by adjusting λ. Another way is to choose
a prior, (5), that assigns low probability to high values for α.
This will affect the algorithm’s average resilience to form
segments that consist of static RSS values. With parameters
chosen as in Table I, the algorithm punish values of α that are
larger than 5.

D. Laplace Approximation for Evaluating (9)

In the Laplace approximation, a Gaussian function is fitted
to the posterior distribution in (9), for which the integral is
analytically tractable [32]. This is done in two steps as follows,

Step 1: Find the mode, α0, of the posterior, thus fulfilling
d

dα g(α0) = 0
Step 2: Compute the so called precision A =

− d2

dα2 ln(g(α0))

When α0 and A has been computed, an approximation of
the marginal likelihood is given by

L(t, s) =
∫ ∞

0.5
f (α)dα

≈
∫ ∞

−∞
exp

(
A

2
(α − α0)

2
)

dα = √
2π

g(α0)

A
1
2

. (30)

The derivative of the posterior is given by,

g′(α) = (n + b)ψ0(α)− (n + c)ψ0(α(n + c)+ 1)

+ ln

(
pa

(s + d)n+c

)
(31)

There is only one zero crossing of the above derivative and
it is easily found through the numerical method of Newton-
Raphson.
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The precision A of the fitted Gaussian is given by the second
order derivative of the logarithm of the posterior distribution.
In this case given by,

g′′(α) = (n + c)2ψ1(α(n + c)− 1)− 1

α2 − (n + b)ψ1(α).

(32)

Results obtained by the Laplace approximation coincide
almost completely with results obtained from trapezoidal
integration indicating that the computed marginal likelihood
values are accurate.
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