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Design and Analysis of Linear Quadratic Gaussian
Feedforward Controllers for Active Noise Control
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Abstract—A method for sound field control applied to active
noise control is presented and evaluated. The method uses Linear
Quadratic Gaussian (LQG) feedforward control to find a Minimal
Mean Square Error (MMSE)-optimal linear sound field controller
under a causality constraint. It is obtained by solving a polynomial
matrix spectral factorization and a linear (Diophantine) poly-
nomial matrix equation. An important component in the design
is the control signal penalty term of the criterion. Its use and
influence is here discussed and evaluated using measured room
impulse responses. The results indicate that the use of a relatively
simple, frequency-weighted penalty on individual control signals
provides most of the benefits obtainable by the considered more
advanced alternative. We also introduce and illustrate several
tools for performance analysis. An analytical expression for the
attainable performance clearly reveals the performance loss
generated by having to use a causal controller instead of the
ideal noncausal controller. This loss is largest at low frequencies.
Furthermore, we introduce a measure of the reproducibility of
the target noise sound field with given control loudspeaker setups
and room transfer functions. It describes how well a controller
that uses an input subspace of dimension equal to the effective
rank of the system is able to reproduce a target sound field. This
performance measure can e.g. be used to support the selection of
good combinations of placements of control loudspeakers.

Index Terms—Active noise reduction, sound field control, sound
field reproducibility, effective rank, feedforward control, causality
constraints, linear quadratic control.

I. INTRODUCTION

A. Background

OUND field control deals with the problem of controlling

the acoustic field in a volume or area in space so that the
controlled sound field approximates a predefined desired sound
field. The goal can e.g. be equalization, to compensate for dis-
tortions introduced to a signal by the loudspeakers and room
responses as in [1]-[3].

Manuscript received February 25, 2014; revised June 01, 2014; accepted Au-
gust 02, 2014. Date of publication August 19, 2014; date of current version
August 27, 2014. This work was supported in part by the Swedish Research
Council under contract 2009-5527, by Dirac Research AB, and by the Knut and
Alice Wallenberg foundation. The associate editor coordinating the review of
this manuscript and approving it for publication was Prof. Woon-Seng Gan.

A. Barkefors and M. Sternad are with the Department of Engineering Sci-
ences, Uppsala University, 751 21, Uppsala, Sweden, and also with Dirac Re-
search AB, 753 23 Uppsala, Sweden (e-mail: annea.barkefors@signal.uu.se;
mikael.sternad@signal.uu.se).

L.-J. Brannmark is with Dirac Research AB, 753 23 Uppsala, Sweden (e-mail:
lars-johan.brannmark@dirac.se).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TASLP.2014.2349856

One special case of sound field control is noise reduction,
when silence in the controlled volume or area is desired. Then
the desired sound field becomes the negative sound pressure
deviation of the noise that is to be cancelled. Sound field control
turns into active noise control, ANC.

Typically, traditional ANC systems use adaptive control algo-
rithms [4]-[7]. While adaptive algorithms have the advantage of
being flexible and able to follow changes in the characteristics
of the noise, they are computationally demanding and may have
stability problems. Also, there is a need for one or several mi-
crophones within the region of control.

In our work, we have focused on situations where the sys-
tems are linear and the surroundings are known not to change, or
to change only between certain known states. Examples of this
would be car compartments and airplane compartments. Then
the transfer functions from available control loudspeakers to the
volume of interest for control can be measured in advance, and
a controller implemented offline. In the case when the condi-
tions are known to change between certain known states, such
as number of passengers in the car, one controller per state
could be implemented and some gain scheduling scheme used.
The reference signals to the controller (the measurable distur-
bances in a feedforward ANC problem) are assumed to have
known first and second order moments. Under these assump-
tions, a model-based design of a Minimal Mean Square Error
(MMSE)-optimal linear sound field controller can be obtained.
Using a controller calculated offline in this way is less compu-
tationally demanding than using an adaptive scheme. There are
examples of methods using fixed controllers, see for example [8]
where low frequency road noise around 40 Hz is reduced in a
consumer car, whereas most of the research on ANC in car com-
partments has been focused on adaptive techniques [9], [10].

Three main approaches to sound field control have been
explored during the last decades, all of which suffer from
important restrictions: Wave Field Synthesis [3], [11], [12] and
High Order Ambisonics [ 13] are both mainly intended for audio
reproduction. They are based on theoretical approximations
of reality, which for ANC purposes is a major disadvantage.
ANC demands high accuracy in the models that are being used,
and theoretical approximations will never be detailed enough.
Finally, we have multipoint Mean Square Error (MSE) designs,
which are also in general performed as per-frequency designs
[14], with some approaches using spherical harmonics [15],
[16].

Here we investigate a multipoint MSE feedforward control
strategy based on Linear Quadratic Gaussian (LQG) control that
avoids these restrictions and that was recently proposed for use
in feedforward ANC systems [17], [18]. This method utilizes
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multiple loudspeakers to control the sound field within a target
volume. It inherently takes the time-domain as well as the fre-
quency-domain properties of the resulting sound field into ac-
count. An optimal stable controller in the form of IIR (Infinite
Impulse Response) filters is obtained under specified constraints
on transport delays and computational delays.

We use a polynomial equations approach to controller de-
sign [19]. Compared to state-space methods, the polynomial
approach offers increased structural insight and also has good
numerical properties. Compared to time domain matrix-based
MSE methods for sound field control [20], the inversion of large
block-Toeplitz matrices is avoided.

LQG feedforward control is relevant not only for ANC but
also for other types of sound field control problems where multi-
point MSE criteria are of interest. Recently the method has been
applied successfully to problems of equalizer design and robust
room compensation, see [2], [21]-[23], as well as to acoustical
zone design [24].

B. Contributions

Three key issues are discussed in this paper. First, the use of
model-based LQG feedforward control for ANC is outlined, in-
cluding modeling aspects, design equations and expressions for
the residual control errors and the minimal criterion value. The
latter quantifies the performance loss incurred by a prescribed
causality constraint.

Second, when we minimize a control-weighted MSE crite-
rion, the properties of a frequency- and loudspeaker-dependent
penalty on the control signals will determine the resulting per-
formance. Constraints on the control loudspeaker powers have
previously been introduced as simple scalar regularization terms
[25] or Lagrange multipliers [26] in frequency-domain MMSE
designs. The MIMO (Multiple Input Multiple Output) LQG de-
sign framework provides a much richer set of possibilities. The
effects of different usages of the control signal penalty term in
the criterion are investigated, both in terms of performance in
relation to theoretical performance limits, and in terms of con-
trol signal energy usage.

Third, the theoretical concepts of the effective rank of the
control path and the reproducibility of the desired sound field
are evaluated as performance indicators and guidelines for loud-
speaker placement. The loudspeaker placement problem has re-
ceived increasing interest, with [27]-[29] proposing different
optimization approaches for frequency-domain MMSE designs.
In our case, we seek a tool that can assess the attainable per-
formance of a given loudspeaker setup, taking into account the
properties of a target sound field at multiple frequencies in a
reverberant environment. The performance predictor is directly
obtained from measured room transfer functions and it does not
require the computationally demanding solution of the complete
sound field control problem. These properties make it attrac-
tive to use in situations when a large number of loudspeaker
designs, placements or other design elements are to be assessed
and compared.

C. Outline of Paper

Section II discusses the sound field control problem and
presents the design of an optimal feedforward LQG controller.
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The attainable performance is first expressed in terms of the
minimal criterion value. Performance of the presented con-
troller is then discussed in terms of the effective rank of the
control path and the reproducibility of the desired sound field,
i.e. how well the controller can reproduce the target sound
field. Possible strategies for adjusting the control signal penalty
matrix are then outlined. Section III presents an experimental
evaluation based on measured room impulse responses. The
usefulness of the effective rank and reproducibility measures
are evaluated and the influence of different choices of time
advance on the performance is shown. Further, the importance
of investigating not only achieved levels of attenuation but
also the remaining control error is illustrated. The influence
of design choices and loudspeaker setup on the input signal
economy is investigated and finally the effects outside the area
of control are illustrated. A discussion and the conclusion is
presented in Section IV.

D. Mathematical Notation and Some Terminology

The transpose of a matrix M is denoted M’. Real-valued
vectors v(t) of discrete time signals are written in italics, as
are scalars. Causal FIR (Finite Impulse Response)-filters with
real-valued coefficients {p,, } are represented by polynomials in

the backward shift operator g *:

P(qil) =po+ p1q71 4+ pnqunp

For discrete-time shift operators, v(t — 1) = ¢ 'v(¢) and

v(t + 1) = qu(t). The time domain operator ¢! corresponds
to 2~ ! or e 9% in the frequency domain, where w is the normal-
ized angular frequency. The frequency domain representation
|V (w)|? of a discrete-time signal v(¢) refers to its power spec-
trum, i.e. the discrete Fourier transform of the autocorrelation
function of v(#). When the complex-valued frequency function
V{(w) corresponds to a vector v(t) of time-varying sound
pressures, it is often denoted a complex sound field. Arguments
of filters and system models will in some places be omitted
where there is no risk of misunderstanding.

Polynomial matrices (matrices of FIR filters) are represented
by bold italics, such as M (g~') and rational matrices (matrices
of rational discrete-time transfer functions) by bold calligraphic
symbols, e.g. H(q~!). Rational matrices are represented in
terms of polynomial matrices by right matrix fraction descrip-
tions (MFDs), H = BA~! [30].

A square polynomial matrix M (¢~1) is said to be minimum
phase if all zeros of det(M(z 1)) are located within the unit
circle |z] < 1 of the complex plane. All rational transfer func-
tions in M ~*(g~') are stable if M(g~") is minimum phase.
The conjugate matrix M. (q) of a polynomial matrix M(g~*)
with real-valued coefficients is defined as its transpose with the
forward shift operator q substituted for ¢! as argument in all
polynomials.

II. LINEAR FEEDFORWARD SOUND FIELD CONTROL

A. The Sound Field Control Problem

Our acoustic control system is modeled as linear and it uti-
lizes N control loudspeakers to control the sound pressure field
at M measurement positions (control points) in which the room
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e(t) n(t) D z(t)

u(t i
-R(g") L H(g™) i I

Fig. 1. Block diagram of the system, with noise path D(g~*), control path
H(q~') and controller R{q~!). The model also includes an autoregressive
process F~'(q~!) to describe the spectral properties of the feedforward signals

n(t).

transfer functions have been measured. A block diagram of the
discrete-time system is shown in Fig. 1. The transfer functions
from the N x 1 input vector «(t) to the control loudspeakers to
the M X 1 output vector y(¢) at the measurement positions are
described by a stable and causal right MFD of the form

y(t) = Mg () = BlgHAT (¢ Hult), (1)

where all the delays are included in the models in the form
of leading zero coefficients of the polynomial matrix B(g ).
This includes both transport delays and delays introduced by
sound cards etc. Here, the polynomial matrices B(¢~') and
A(q~1) have dimensions M x N and N x N respectively. When
A(q~1) = I, we have a set of FIR models. A physically mo-
tivated model structure is the use of (1) with A(¢~!) being a
diagonal polynomial matrix with equal diagonal elements, see
section 2.7 of [21]. The roots of these filter polynomials would
constitute common acoustic poles [31], representing the modes
of the acoustic system. The transfer functions represented by
H(q 1) are variously called forward paths, secondary paths or
control paths.

The primary paths from an L x 1 vector n(t) of measurable
feedforward or reference signals to the M measurement posi-
tions are described by a second stable and causal discrete-time
model in right MFD form:

2(t) = D(g )n(t) = D(g HE g (), ()

where D(g~!) has dimensions M x L and E(q~!) has dimen-
sions L x L. Again, all the delays in the system are included
as leading zero coefficients of the polynomial matrix D(g~1).
In a feedforward ANC problem, D(¢~1) would represent the
noise path, and therefore be a part of the model of the controlled
system. Specifically it would represent a model of the part of the
total noise at each of the M control points that is perfectly cor-
related with at least some of the L noise measurement signals.
Such linear models can be estimated by system identification
[32], [33], based on measurements of n(%) and of the resulting
noise at the control points. Components of the noise that are un-
correlated with n{t+7) for any 7 cannot be damped by the feed-
forward controller and will therefore not have to be modeled.

In other sound field control applications, D(g~!) would rep-
resent the desired sound field response at the measurement posi-
tions. In such cases, it would constitute a part of the specification
of the problem formulation.

The dynamic systems H(g ') and D(q~!) are here assumed
to be linear, time-invariant and known. Their denominators,
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A(q 1) and E(g 1) are assumed to be monic, i.e. to have unit
matrices as leading coefficient matrices, and to be minimum
phase. Therefore their inverses are causal and stable rational
matrices. The assumption that the primary path D(g ') is
known limits the applications for active noise control to situa-
tions where it is possible to model the primary path in advance.

The vector n(t) is assumed to be available with a time
advance of up to d samples. In sound field control with
pre-recorded sound, a large advance ¢¢ can sometimes be used.
In ANC problems, this time advance represents the results
of using a separate prediction of the reference signal n(t).
The signal ¢“n(t) = n(t + d) used below would in that case
represent only the components of the measurement signals that
are predictable by d samples!. Furthermore, n(t) is assumed
to have zero mean. Available knowledge of its second-order
moments is represented here by a vector-autoregressive (AR)
model

n(t)y = F (g e(t) 3)

where the L x L polynomial matrix F'(q~!) is monic and where
the . x 1 vector e(%) is white, with zero mean and known covari-
ance matrix E(e(t)eT(t)) = A. This part of the model will in
many problems be nonstationary, and may have to be adjusted
adaptively in real time. Lack of specific knowledge would be
represented by a white noise model n(t) = e(¢). The attainable
performance of the controller will depend on the properties of
the dynamic systems D(¢~!) and H(g~!), the time advance d
and the predictability of the feedforward signal n(#), as speci-
fied by (3).

In the design process, the aim is to construct a rational linear
and stable LQG feedforward controller R(g ™) that acts on the
feedforward signal shifted d samples forward in time:

u(t) =

The resulting feedforward control error is then

~R(g Hn(t + d). 4)

e(t) = 2(1) + y(t)

= (¢""D(¢™") ~H(g HR(g " Nn(t +d).  (5)
which is to be minimized. Thus, the linear controller R(q 1) is
to be designed so that H(q~*)R(q~!) approximates the target
path ¢~9D(q 1) that includes a delay of d samples.

The performance of a linear causal feedforward controller (4)
approaches that of a noncausal Wiener solution if d — oo, or
if n(t) is perfectly predictable over time. The latter case oc-
curs if n(#) is described by finite sums of sinusoids, which im-
plies that the autoregressive model (3) has all poles (roots of
det(F(z~1) = 0) on the unit circle |z] = 1. A noncausal
Wiener design would correspond to an optimization of the con-
troller R separately at each frequency of interest, without taking
its time domain properties into account. See e.g. [25], [34] for
such multipoint MMSE designs in the frequency domain.

IThe LQG controller to be presented in Section I1I-B below contains an op-
timal (Wiener) predictor that appropriately utilizes the statistical knowledge of
n(t). However, it may in some problems be of advantage to use a separately
designed predictor. We introduce the design variable d for this reason, and also
to illustrate the noncausal limit, when d — 2o,
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B. Feedforward LOQG Controller Design

Linear Quadratic Gaussian control uses the first and second
order moments of the signal statistics to produce a linear con-
troller that minimizes a quadratic criterion [35]. If all involved
signals have Gaussian statistics, then the controller is optimal
in the class of all linear and nonlinear controllers. This is the
case here if ¢(¢) in (3) is Gaussian. If some signals are non-
gaussian, then the controller is still optimal in the class of linear
controllers.

The objective of the controller design is to minimize a scalar
quadratic criterion representing the control-weighted MSE

E{(V(qg He®) V(g He(t)
+ (W(g Hu(t))W(g Hu(t)} (6)
under constraints of stability and causality of R(g~'). The ex-
pectation E{-} in (6) is taken with respect to the statistics of
e(t) in (3).

The criterion (6) has two parts. The first penalizes a weighted
sum of the control errors (5), and the M x M error penalty
matrix V(g ') may be used to give different weights on the
errors in different spatial positions, at different frequencies or
in different signal subspaces. In the second term, the N x N
control signal penalty matrix W (g ') influences the usage of
the control loudspeakers. It can be used to prevent the loud-
speakers from being used outside of their operating frequency
ranges, as well as to direct the control signal energy into or away
from certain directions in the control signal space. In noncausal
Wiener solutions for multipoint MMSE designs, regularization
often needs to be applied, see e.g. [25], [26]. A scalar regular-
ization parameter v > 0 would in our framework correspond to
the use of W = /al. The design of W (¢ ~1) will be discussed
in more detail in Section II-E below. The noncausal case, for
d — 00, is discussed in more detail in Section II-F.

The Optimal Controller: Assume that in the frequency do-
main, W..(¢’“)W (e /%) is positive definite for all frequencies
w. Then a unique stable linear feedforward controller (4) that
minimizes the criterion (6) for the model (1), (2), (3), exists and
is given by

u(t) = =R(g Hn(t + d)

—A(gHB M MR HE (g Dn(t +d), (7)

where the N x N causal and minimum phase polynomial ma-
trix (g 1), with causal and stable inverse, is obtained from the
polynomial matrix spectral factorization (omitting arguments
for brevity)

B8.8=B.V.VB+ AW.WA (8)

or

A'B.BA = HV.VH+W.W, 9)

and the N x L causal polynomial matrix Q(q ') together with
the N x L noncausal polynomial matrix L.(g) are obtained
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as the unique solution to the polynomial matrix Diophantine
equation

¢ ‘B.V.VD = 3.Q + qL.FE. (10)

See Section 3.3 of [36] for a proof of optimality of the design
equations (7)-(10), in a setting where (3) may be generalized to
vector ARMA (Auto Regressive Moving Average) models.

Using the trace rotation rule, tr(AB) = tr(BA) and Par-
seval’s formula, the scalar criterion value (6) can be expressed
as

_ b —dpy -1
J= tr%j |- {V (7D - HR) F'AF,
X (de* — R*H*) V.
+ WRF 'AF,'RW.} %‘ (11)

The individual diagonal elements of the two terms in the inte-
grand of (11) reveal how the performance loss is influenced by
the remaining noise powers in the M control points (first term)
and by the control powers of the N elements of u(t) (second
term).

By using (1), (2), (3), trace rotation, the optimal controller ex-
pression (7) and the spectral factorization (8) in (11) and com-
pleting the squares, the minimal criterion value can be shown to
be given by the following expression:

1
Jmin =tr

— F'E'D.V, (1-VB(3.8) 'B.V.
55 . F B DY (I-VB(B.0) "BV

X VDE*lFflAd—z
zZ

dz

+ fr L(B.B) 'L.A—=
¥4

. (12)
215 J|2=1

It is shown in Appendix A that when d — oo, then L.{(q) — 0
in the Diophantine equation (10). Therefore, the first term in
(12) represents the performance in the noncausal limit d — 0.
The second term, which vanishes when L, = 0, represents the
loss of performance caused by the causality constraint. This is
further illustrated in Section III. The integrands of (12) can be
studied in the frequency domain to reveal how these two terms
vary with frequency.?

The polynomial feedforward controller design technique can
be generalized to robust designs, that minimize the criterion on
average over the model uncertainty [37]. Robustness with re-
spect to the properties of the sound field in-between control
points can be included [2], [21], [38]. The latter extension makes
it possible to safely use the design at higher frequencies, above
the spatial Nyquist frequency defined by the positioning of the
M control points. However, in this paper we will not focus on
the robust design extensions, but, in Section III, we will evaluate
the design at frequencies below the spatial Nyquist frequency.

2Using the matrix inversion lemma and (8), the factor
I-VB(3.8)"'B.V.in(12)equals (I + BV(A.W.WA)"'B.V.)" "
If W(z~1) is positive definite for all z—! = £~9% then this expression will
be positive definite for all w. Therefore, the integrand of the first term of (12)
is a positive semidefinite I x L-matrix at all frequencies.
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Design procedure: To summarize a typical design procedure,
appropriately placed control loudspeakers, with sufficient
power in the frequency range must be available. A control
path model (1) is estimated using test signals from these
loudspeakers. Noise path models (2) are obtained from noise
measurements. Solution of (8) and (10) then provide the con-
troller (7), as an /N x L matrix of IIR filters. The impulse
responses of these filters can be approximated by long FIR
filters, which in general provide less sensitivity to round-off
errors.

A robust but lower-performance design can be obtained by
assuming () to be white, i.e. by not taking its actual corre-
lation properties into account. A higher performance design is
obtained by adjusting a vector AR-model (3) to the statistics
of n(t). Changing noise statistics then must be tracked by ad-
justing this model and by periodically re-calculating the con-
troller. When the AR-model (3) and/or the noise path model
(2) change, while the secondary paths (1) stay constant, we
only need to re-solve the Diophantine equation (10). The much
more computationally demanding spectral factorization (8) re-
mains constant. Such a strategy is one of indirect adaptive con-
trol [39]. It opens up the possibility of adaptation of high-order
MIMO feedforward ANC systems to track time-varying prop-
erties of broadband as well as narrowband noise. The adap-
tive control potential of the proposed scheme is under current
investigation [40].

C. The Frequency-Dependent Effective Rank of the Control
Path

To understand the attainable performance of the controller in-
troduced above, we need a characterization of the control path
that describes the type of sound field it can create by using “rea-
sonable” amounts of control energy.

Since the sound field that affects the criterion (6) via the
error term is weighted by the error penalty matrix V(g~!)
we will work here with the weighted room transfer functions
V(g H(g™) and V(g )D(q 7).

We now introduce a property of the weighted control path, the
effective rank, that is a frequency-dependent measure. There-
fore, the time domain operator g ~' is substituted by the fre-
quency domain variable e =7 below.

The M x N matrix V(e ~#*)H(e "9~} can be represented at
frequency w /27 by a singular value decomposition

VH = ¥(w)S(w)® (w Za, w)®H (w), (13)
where I? = min(M, N). The unitary matrices
T(w) = [P(w)...¥Up{w)] of dimension M x M
and ®(w) = [Py(w)...Py(w)] of dimension N x N

contain the orthonormal left and right singular vectors of
V(e 9“YH(e~9) respectively. The real-valued scalar singular
values o1 (w), ..., o.(w), where o; > 7,1, are located on the
diagonal of the otherwise zero M x N matrix X (w).
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The left singular vectors {¥;{w)} are spatially sampled
approximations to the Karhunen-Loéve expansion functions
(see e.g. Chapter 10.6 in [41]) of a continuous-space correlation
function. Since VH has rank < R = min(M, N), at most
R of the singular values are nonzero. These nonzero gains
o;(w) and corresponding left singular vectors ¥;(w) are also
denoted the principal gains and the output principal directions
of the dynamic system [42]. Furthermore, some of the nonzero
singular values may be insignificant. The frequency-dependent
effective rank r(w) can for the matrix V(e 7)H(e 7*) be

i=r+1

defined as
71 < 5} \
Zz 10 (W)

where 6 = 0.001 will be used throughout this paper. The ef-
fective rank is a discrete-space approximation of the essential
dimensionality of a continuous-space sound field, also some-
times denoted the richness of the field, introduced in [43], [44].3
The effective rank represents the number of significant principal
gains of the control system at frequency w/2x. The subspace
spanned by ®,..1(w),..., ®x(w) represents the (N — r)-di-
mensional space of input principal directions that are “hard to

se”. Control signals that are sinusoids with frequency w/2x
would produce little acoustic output if they are scaled and phase-
shifted so that they are a vector in this subspace. The subspace
spanned by W, (w), -+, Uar(w) represents the (M — r)-di-
mensional space of output directions that are “hard to reach”.
Typically, the effective rank of the control paths increases with
frequency and it increases linearly with the radius of a 2D area
covered by the measurement positions [44].

St 0 (@)

7(w) = arg min { (14)

D. Reproducibility of the Desired Sound Field

We now introduce a representation of how well a par-
ticular sound field can be approximated by the given
setup. In particular, it characterizes how well the noise
n(t) can be controlled by a feedforward controller that
uses only the components of the control paths represented
by their effective rank. The target complex sound field,
as seen by the criterion (6) via the error penalty matrix,
S(w) = V(e 7)Z(w) = V(e 7*)D(e )N (w), is orthogo-

nally projected onto the space spanned by ¥q(w), -, ¥,.(w).
The projection of S(w) on ¥, (w) is
S(w) = V()P (w)S(w). (15)

A summation over m, together with exchanging S{w) for
V(e 1*)D(e 7% )N (w), gives the orthogonal projection as

(W)V (e 7)D(e )N (w).

=3 U (w)v)

m=1

(16)

The sound field S(w) = V(e #*)D(ec¥“)N(w) can now
be said to be reproducible by the weighted control paths

3A different definition of effective rank, based on an entropy-based measure
of the singular values, has been introduced in [45].



1782

V(e 7)YH(e 7) at frequency w/27 with relative error a(w),
0 < a(w) <1,if

1Sw) Sl _
EC

When a(w) = 0, the target sound field is perfectly reproducible.
At the other extreme, when a{w) = 1, the target sound field lies
in a subspace that cannot be reached by a control system that
uses the part of the control paths defined by their effective rank
at frequency w/27.

It is shown in Section II-F below that under certain condi-
tions, the frequency function (17) can be used to predict the per-
formance of the controller (7), without actually having to design
the controller. To investigate this property, we will in Section III
compare the predicted relative error in dB, —10 log, (e (w)), to
the error obtained by the controller (7).

A different method that has been suggested to predict attenu-
ations in e.g. [10] is the multiple coherence function method. It
gives the maximum attainable sound reduction as a function of
frequency w/27 as

(17)

A(w) =-10 log (1 — Mz (w)) ) (18)
where 7,,.. is the multiple coherence function between the feed-
forward signal n(#) and the primary noise z(t). This method
therefore only takes the primary path into account. The repro-
ducibility measure (17) will also incorporate information about
the given control path and give the maximum attenuation that
can be achieved for the combined system.

E. Designing the Control Signal Penalty Matrix

The control signal penalty matrix W {(g~!) in (6) is used to
influence the properties of the control loudspeaker inputs. It en-
ables us to let physical constraints of the system that are not
included in the linear model (1) to influence the criterion. An-
other way would be to introduce power limitations as hard con-
straints, an approach that is investigated for noncausal designs
in e.g. [26] and [46]. Our method of instead allowing such side
conditions to influence the design via criterion weights leads to
simpler solutions than the latter approach.

Since W (g~ ') appears in the spectral factorization equa-
tion (8) or (9) only via the term W, (q)W (g~ 1), the discussion
and design outlined below is for W, (q)W (q~!) directly.

When comparing different designs that target different sets of
control points, it is in some problems undesirable that the rela-
tion between the weighting of the error signals and the input sig-
nals in the criterion (6) should change depending on how many
measurement positions are used. To prevent this, the penalty
matrix W.(q)W (g~!) can be weighted by the number of mea-
surement positions. Doing so will leave the balance in the crite-
rion function between control power and error power per mea-
surement position unchanged when changing the number M of
measurement positions distributed over the area or volume to be
controlled.

The design of the control signal penalty matrix will here be
performed in two steps, addressing two different aspects of the
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control system. The matrix is thus subdivided additively into
two terms,

W (W ') =Wi(@Wilg )+ Wal(g)Walg ).
(19)
The first and perhaps most apparent usage of the control signal
penalty matrix is preventing the control loudspeakers from
being used outside their operating frequency range. The matrix
W 1.W is used for this purpose. It can be chosen diagonal:

WitsWir 0 - 0
WLW, = 0 (20)
: . 0
0 - 0 WinWin

where each scalar FIR filter Wy;(g~ ") is designed in the fre-
quency domain so that Wy ;(e~7*) has a small but nonzero gain
in the operating frequency range of the corresponding loud-
speaker, and a large gain outside of this range. Note that con-
structing W 1.(e/“ )W (e =7%) positive definite for all w is a
way to guarantee full rank of B.(e?“)B(e~7%) for all w. This
ensures that the spectral factor 3 from (8) is stably invertible,
which is required in (7).

A second possible usage of the control signal penalty matrix
is to prevent the controller from using the input principal direc-
tions that are hard to use, or equivalently, trying to affect output
principal directions that are hard to reach with the current
control loudspeaker setup, as discussed in Section II-C. If this
subspace exists it is because one or several of the columns of
H(e=7«) are linearly dependent at frequency w/2x, or nearly
linearly dependent. A linear dependence of the columns in
‘H(e=7*) might lead to numerical problems in the spectral
factorization (9). Designing the control signal penalty matrix in
the way described next will prevent such numerical problems.

Consider the rational spectral factorization (9), with the sin-
gular value decomposition (13) of its first right-hand term and
the partitioning (19) of its last term:

A'B.BAT = HV.VH+W.W
= dLEENPE L W W, + W, Wy, (21)

Considered in the frequency domain, the N X NV diagonal matrix
SH'3 contains the R nonzero squared singular values {oZ(w)}
along its diagonal. Among these, 021 (w) .. . 0% (w) are related
to the hard-to-use input signal subspaces of the control path sub-
system. If the penalty matrix Wy, W is designed in the fre-
quency domain such that

Wi (#)Wale ) = B(w)P(@)@(w)  (22)
where
roO 0 0 7
0 X
Plw) = 0 (23)
pr-{—l(w)
: 0
LO 0 pN(w)_
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then the real-valued scalar penalty terms {p;} could be used to
penalize exactly the part of the control power that will go into
this subspace. By setting the p; s large, this “unnecessary” part
of the control energy could be eliminated. Quantitative guide-
lines on the choice of penalties and their relations to the singular
values of the control paths are derived next.

F. Connection Between the Measure of Reproducibility and
the Control Signal Penalty Matrix

We return to the singular value decomposition (13) and will
focus here on the limiting case of the noncausal controller, i.e.
the case d — oc. This would in practice apply to cases with
narrowband noise, which is predictable so that a prediction can
generate n(t+ d) for large d. The design is performed under the
assumption that the control penalty matrix W . (e?* )W (e %)
is designed as

W.W=WyW,=23"8" (24)
where X7 (w) = diag (pi(w)),i = 1... N. Note that so far this
is a generalization of the design (22) of Wa. (e )Wy(e %)
that was introduced in the previous section.

The noncausal limiting Wiener solution to the LQG feed-
forward control problem is expressed as a rational matrix
R(q,q~ ') with double-sided infinite impulse response. It is
obtained as the limit

Ruc(g,q7") = lim R{g™")g" (25)
of the causal solution. Since L.(q) — 0 in the Diophantine
equation (10) when d — oc (see Appendix A), the Diophantine
equation (10) in the noncausal limit approaches the identity

¢ BV (Vg D) = B(0Q(g").  (26)
The limiting expression @,,.(¢~1) = limg_,o @(g~") for the
polynomial matrix Q(¢~!) is therefore given by

@, = lim ¢ ‘B1B.V.VD. (27)
Inserting this expression for @,,.(¢ *) into (7), the cor-
responding limiting frequency domain expression for the

control signal from the noncausal controller R,.(e ) =
limg_, oo Re?4 becomes

U(w)

~RpeN(w) = Jim —ABIQE eI N (w)
(A, 'BBA Y MV VDN (w).

(28)

Now the singular value decomposition (13) can be used together
with (21) and (24) for the control signal penalty matrix to ex-
press the noncausal controller as

Roe = (8BS + £2)87) e w4 VD

= & diag ( 201»

a7+ pi

) wiyDp, (29)

since ® = ®~!. The matrix diag(-) has dimension N x M.
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The effect of the control signal on the resulting sound field
at frequency w, weighted by the error penalty matrix V(e 1),
becomes

VHR,.N(w) = BEB7 & diag ( 7 ) TIVDN (w)
Ji H

2

g
= W diag |
1dg(0_2+ )

7 £

) THYDN(w)

N 02
:Z o T, 0EVDN (w),
o1 \Oi Thi

where U;(w), ¢ = 1... N are the N first left singular vectors
of V(e ~7*)H(e~7*). If the penalty weights p;(w) in (24) are
chosen, as suggested by (23) in the previous section, such that
pi(w) = 0,4 =1...r and if we furthermore set

(30)

pilw) > o} (w), i=r+1,...,N 31

we obtain

VHR?LGN(W) = Z ‘I/L‘I’{{VDN(LU)
=1
N 0_2 u X
+ ! \I]iqji VDN (w) = S(w s
i;—l<0'?+pi> @) (@)

(32)

where § {(w) was defined in (16). This leaves the total weighted
error

Jim VE(w) = (VD - VHR,.) N(w) ~ S(w) - S(w).

- (33)
In other words, when designing the control signal penalty matrix
as outlined by (22)—(23) and using much larger penalty weights
in (23) than the corresponding squared singular values of the
weighted control path (13) at that frequency, the performance of
the feedforward controller should in the noncausal limit be close
to that predicted by the reproducibility measure (17) introduced
in section II-D.

III. EXPERIMENTS

Several experiments were performed to investigate the per-
formance of the feedforward controller applied for noise can-
cellation in a setup described by Fig. 2.

Before the experiments, the models P(q 1) and H(¢ 1) in
Fig. 1 needed to be identified. In the identification process, high
order FIR models have been used. Therefore, A(¢~') = I in
(1)and E(q 1) = Iin (2). The identifications were made using
swept sinusoids as excitation signals. The controllers were de-
signed as IIR filters according to (7). Here we approximated
them using high order FIR filters, which provides a simple and
safe design with respect to numerical rounding errors.*

All measurements were performed with a sampling fre-
quency of 44.1 kHz. However, since the frequencies of interest

4Implementation as IIR filters provides lower numerical complexity, but care
must be taken with respect to the filter realization and its sensitivity to rounding
erTors.



1784

el o] |

O 0000 ® ®® 8000 0O ‘
Cooo©®®®® JO O O O

10 &m
K %

@5"@‘3

Fig. 2. The experimental setup. There are 14 midrange loudspeakers and two
subwoofers (drawn as larger loudspeaker symbols) placed around a living room
sofa. The loudspeaker that is marked dark gray is used as noise source in the
experiments. Above the sofa there are 224 measurement positions distributed
over a volume of 1.3 x 0.3 x 0.3 m. The measurement positions are marked
by ‘)0’ symbols. The 16 measurement positions marked gray are called Grid 1,
which is placed at ear height and covers an area of 0.3 X 0.3 m in the xy-plane.

TABLE I
THE HEIGHTS OF LOUDSPEAKERS SET UP AROUND A
LIVING ROOM SOFA ACCORDING TO FIG. 2

Speaker number ~ Height ~ Speaker Number  Height

[m] [m]
1 1.15 9 1.75
2 1.15 10 1.45
3 1.15 11 1.8
4 0.4 12 1.15
5 1.95 13 1.75
6 1.25 14 1.45
7 1.25 15 1.8
8 0.4 16 1.25

are below 1000 Hz, the data has been downsampled by a factor
10 before processing in order to reduce the computational
burden.

A. Experimental Setup

All experiments were performed in a room of dimensions
4.6 m X 6 m x 2.6 m, furnished to have similar acoustic prop-
erties as those of a living room. As is shown in Fig. 2, 16 loud-
speakers, of which two were subwoofers and 14 midrange, were
placed at different heights, see Table I, around a living room
sofa. The impulse responses from all loudspeakers to 224 mea-
surement positions above the sofa were measured using two
microphones. The measurement positions were spaced d,,, =
0.1 m apart and spanned a volume of 1.3 m x 0.3 m x 0.3 m.
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Fig. 3. Frequency response in dB of the noise speaker (speaker 2) to Grid 1.
The gray curves show the individual responses to the 16 measurement positions,
and the black curve shows their rms average.
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Fig. 4. Frequency response in dB of one of the subwoofers (speaker 4) to
Grid 1. The gray curves show the individual responses to the 16 measurement
positions, and the black curve shows their rms average.

From this measurement grid, a smaller grid has been selected,
with 16 measurement positions that span an area of 0.3 m X
0.3 m in the xy-plane at ear height. This grid is marked by dark
gray in Fig. 2 and will be referred to in the following as Grid 1.
This is the area that is chosen for control.

From the closest loudspeaker, the distance to the center of
the measured volume was 1.7 m, which makes the nearfield
components of the sound field negligible. Therefore, the spa-
tial Nyquist frequency for this setup becomes fn = ¢/2d,, =
344/0.2 = 1720 Hz, where ¢ is the speed of sound. This fre-
quency lies well above the frequencies of interest for ANC.>

One loudspeaker was selected to act as noise source in the ex-
periments. This loudspeaker, numbered 2 and colored dark gray
in Fig. 2, will be referred to as noise source or noise speaker
below. The magnitude responses of the noise paths or target
paths, from the noise source to the measurement positions in
Grid 1, are shown in Fig. 3, together with their rms average.
The frequency responses of the other midrange loudspeakers
are similar, though they will differ due to the different place-
ments in the room. In Fig. 4 the magnitude responses from one
of the subwoofers to the same 16 measurement positions are
shown, again together with their rms average, to indicate the
difference in frequency range for the subwoofers compared to
the midrange loudspeakers.

SAlso when taking some nearfield phenomena into account, and therefore
using Kirkeby’s rule of thumb [34] to have three measurement positions per
wavelength, the highest frequency that is usable is still rather high for ANC
purposes; 1147 Hz.
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B. Design Choices

1) Modeling Delay, or Time Advance: The feedforward ref-
erence signal time advance, which corresponds to a delay in the
noise path, is set to d = 441 samples, corresponding to 0.1 s.
This gives a controller with performance close to, but somewhat
below that of the noncausal limiting case. In Section III-D, a
controller is designed also for the modeling delay d = 0, to
highlight the difference in performance.

2) Error Penalty Matrix: The objective here is to perform
ANC in the entire area in space corresponding to Grid 1 and
no measurement position is more important than any other. The
choice for the error penalty matrix is therefore V(¢~1) = L.

3) Control Signal Penalty Matrix: The impact on the control
signal energy levels of using various control signal penalty ma-
trix designs will be investigated in Section III-F. For the other
experiments, we use the simple frequency-weighted diagonal
matrix W1(g~ ') designed as described in Section II-E, setting
Wy(q ') = 0 in (19). Each diagonal element of W1, W is
designed in the frequency domain to have a low gain (—25 dB)
within the operating frequency region of the corresponding
control loudspeaker and a high gain (0 dB) outside of it. The
operating frequency region of the midrange loudspeakers is
chosen from inspection of Fig. 3 to be 40 Hz to 1500 Hz, where
the upper limit defines the control bandwidth and is set close
to the spatial Nyquist frequency of the measurement grid. For
the subwoofers, the operating frequency region is selected as
30400 Hz, see Fig. 4. Finally, the elements of W, W have
been weighted with the number M of measurement positions
as discussed in Section II-E.

C. Influence of the Effective Rank

This subsection illustrates how the effective rank and the
measure of reproducibility can be used to investigate if the
number of loudspeakers used for control can be reduced without
appreciably affecting the obtainable attenuation. Grid 1 is used
as the target area.

In Fig. 5(a) the effective rank of the control path as defined
by (14) is shown, using all 15 control loudspeakers. The effec-
tive rank increases with frequency, which can be expected since
the complexity of a sound field will increase with frequency.
The effective rank for this model also increases for frequencies
below 30 Hz, an effect that is caused by model errors due to low
signal amplitudes and noise in the measurements.

Going back to the higher frequencies, Fig 5(a) shows that the
maximum effective rank is 13. Considering that 15 loudspeakers
are used, of which only the 13 midrange speakers produce sig-
nificant power above 400 Hz, the theoretical limit for the effec-
tive rank is 13. In other words, for frequencies above 1200 Hz,
where the effective rank saturates, all available midrange con-
trol loudspeakers would be needed. However, for ANC pur-
poses, the frequencies of interest lie below 1200 Hz. It might
for example be possible to remove two loudspeakers without
affecting the effective rank of the system for frequencies up
to 900 Hz. Up to four loudspeakers could be removed if ac-
cepting the highest frequency to drop to 600 Hz. How to choose
which loudspeakers to remove is not obvious from the singular
value decomposition but the geometry of the setup can often
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Fig. 5. The effective rank of the control system in Grid 1 using three different
loudspeaker setups (a) The effective rank using 15 control loudspeakers (b) The
effective rank using 13 control loudspeakers (black curve) and 11 control loud-
speakers (gray curve).

give some hints as to which loudspeaker positions may be su-
perfluous. For the given setup the two loudspeakers number 11
and 15 that are marked light gray in Fig. 2 could be removed,
or if four loudspeakers are to be removed, also number 12 and
16 since they contribute from spatial directions close to those
of some of the other control loudspeakers. They are also the
furthest away from the region of interest for control. Fig. 5(b)
shows the effective rank for the system both after removing two
and four loudspeakers as described.

A comparison of the effective rank for 15 loudspeakers and
for 13 shows that there is very little difference for frequencies
up to 900 Hz. Above 900 Hz, the original system has higher
effective rank, as expected. Comparing with the effective rank
for the system when using only 11 loudspeakers shows that the
effective rank is still very similar up to around 400 Hz but then
it drops somewhat compared to the two other systems of 13 and
15 loudspeakers.

The effective rank is an integer quantity. As the effective rank
increases, the number of principal gains being summed in (14)
increases as well, but the relative contribution of each added
principal gain decreases. This means that the effective rank be-
comes more sensitive to small changes in the principal gains,
leading to the oscillatory behavior in Fig. 5.

Next, the reproducibility of the target sound field by the con-
trol system is calculated, both for the initial system of 15 con-
trol loudspeakers and for the reduced systems. The results are
shown in Fig. 6. The reproducibility measure « defined by (17)



1786

—IOIOgl O((x)

Frequency [Hz)
(a)

-1 Olog1 0(oc)

10 10° 10
Frequency [Hz]

(b)

Fig. 6. The reproducibility in Grid 1 of the target sound field by the control
sound field using three different loudspeaker setups (a) Reproducibility of the
target using 15 control loudspeakers (b) Reproducibility of the target using 13
control loudspeakers (black curve) and 11 control loudspeakers (gray curve).

is plotted as —10log(«), to give a correspondence to the pos-
sible achievable power attenuation. A high reproducibility is
predicted, with possible achievable attenuations above 20 dB for
15-350 Hz. There are small differences in the reproducibility for
the three systems up to 1200 Hz. Even for frequencies where the
system of 15 control loudspeakers had a higher effective rank
than the reduced systems, the differences in reproducibility are
small.

Two comments on reproducibility: In the example above, (%)
was selected scalar and white and corresponds to the input signal
to the single noise source. In general, we may have dimension
L > 1 for n(¢) and nonstationary situations, e.g. with multiple
noise sources coming from time-varying directions. The mea-
sure (17) can then still be used, but will have to represent a set
of curves that span the range of possibilities.

Furthermore, note that the noise z(¢) has in (2) been defined
as the component of the noise at the control points that can be
modeled by a linear dynamic system (2) with n(#) as input.
The reproducibility measure describes the reproducibility of this
component only. The total noise may in addition have signifi-
cant components that are uncorrelated with n(%).

D. Influence of the Time Advance d

As we have shown in Section II-B, the performance of the
controller can be divided into two terms as in (12). The second
term of (12) represents the loss of performance caused by the
causality constraint. The feedforward reference signal time ad-
vance has a direct influence on this term. This is illustrated
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Fig. 7. The rms average attenuation in Grid 1 of a controller calculated for
11 control loudspeakers with ¢ = 441 samples (black curve), and a controller
calculated for 11 control loudspeakers and d = O (gray curve).
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Fig. 8. The rms average of the attenuation (black curve) over Grid 1 after con-
trol, together with the maximum (dark gray curve) and minimum (light gray
curve) attenuation. 11 control loudspeakers are used.

in Fig. 7 which shows the attainable attenuations for two con-
trollers implemented for the control system consisting of the 11
control loudspeakers marked white in Fig. 2. The first controller
(black curve) is implemented with time advance d = 441 sam-
ples, and the second with d = 0 samples. The figure shows that
it is mainly in the lower frequencies that the change of d has
an impact on the performance. We have found a similar pattern
also in experiments in a car cabin [18].

E. Variability of the Attenuation and Remaining Control Error
over the Control Points

The maximum, minimum and rms average attenuation over
Grid 1 is shown in Fig. 8 for a design made with 11 control
loudspeakers, evaluated for the measured transfer functions.
The controller of Section II-B was used, using a time advance
d = 441 samples, corresponding to 0.1 s, error penalty matrix
V(¢ ') = I and control penalty matrix W(q ') = Wi(q 1)
as described in Section III-B.

It can be noted that the rms average of the simulated atten-
uation over the 16 measurement points (black curve in Fig. 8)
follows the reproducibility curve for 11 loudspeakers in Fig. 6b
rather well, although the control penalty (W = W 1) was not de-
signed with this property in mind. This aspect will be discussed
more extensively in Section III-F below.

There are several frequencies for which the minimum attenu-
ation in Fig. 8 is negative by over 20 dB. Noise at these frequen-
cies is in other words greatly amplified in at least one position
within the grid. To understand why the controller is allowed to
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Fig. 9. The remaining noise after control over Grid 1. The black curve repre-
sents the rms average of the control error E|€(w)|?, the dark gray curve the
maximum value and the light gray curve the minimum value over all 16 control
points within Grid 1.

cause such amplifications, we need to inspect the target transfer
function, that from the noise speaker, shown in Fig. 3. There
are many deep but very narrow dips in amplitude for individual
measurement positions for frequencies above 200 Hz. The fre-
quencies with high noise amplification coincide with these dips.
The sound pressure level is very low in such a dip, and there-
fore the resulting sound pressure level after control remains low
even if it has been amplified by up to 20 dB.

The criterion (6) targets the sum of the squared errors and not
the attenuation. Therefore it makes sense to inspect not only the
obtained attenuation but also the remaining error. Fig. 9 shows
the rms average remaining error E|&(w)|? together with the
maximum and minimum error over Grid 1 after control. It shows
that what looks from Fig. 8 to be a disastrous amplification of
the noise turns out to have limited effects. The maximum error
curve is smooth with no huge remaining error for any frequency
as compared to the other frequencies or measurement positions.

As an illustration, time plots from a simulated attenuation of
a noise signal containing energy in a narrow frequency band
around 150 Hz are shown in Fig. 10. The noise 7(#) was created
by running white noise through an AR process with one pole
pair placed with radius = 0.99 at 150 Hz. The original noise
z(t) is shown together with the remaining error &,(¢) for the
measurement position « with the minimum attenuation, 26.8 dB
in Fig. 10a, and in Fig. 10b for the measurement position with
maximum attenuation, 40.1 dB.

F. Control Signal Economy

It is now investigated to what extent the number of utilized
loudspeakers and also the total control input power can be re-
duced without appreciably affecting the control performance.
We also investigate the effectiveness of penalizing the use of
hard-to-use control input directions. Three designs are made for
Grid 1. The choices of modeling delay d and the error penalty
matrix V(¢ 1) are selected as discussed in section I1I-B, namely
d corresponding to 0.1 s and V(¢ 1) = 1.

Case 1: A controller is designed to use all 15 available con-
trol loudspeakers. The control signal penalty matrix
W (g !) is here chosen diagonal, using W1 (q ) as
described in Section I1I-B3.
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Fig. 10. Time plots showing the measurement positions with the lowest and
the highest attenuation of a noise signal. The gray curves show the original
noise signal and the black curves show the remaining error after control (a) Min-
imum attenuation over the grid, 26.8 dB (b) Maximum attenuation over the grid,
40.1 dB.

Case 2: Four of the control loudspeakers are removed, in
the same way as in section III-C, leaving a con-
trol system consisting of 11 control loudspeakers,
which are marked white in Fig. 2. The control signal
penalty matrix W (g~ !) is chosen in the same way
as for Case I. One advantage of removing control
loudspeakers is of course that there is a cost of using
hardware that is not essentially needed. It is also in-
teresting to see how removing loudspeakers in this
way influences the use of control power by the re-
maining loudspeakers. Will the power that in Case /
is sent to the four removed loudspeakers merely
be redistributed over the remaining control loud-
speakers or will the total power be reduced?

Case 3: The same control system with 11 loudspeakers
is used as in Case 2, but the control signal
penalty matrix W (g 1) is designed as described in
Section II-D, with W,W being the same as in
Case 2, and the term Wy, W by (22) added. The
penalties {p,1(w)...p11(w)} in (17) are chosen
as p; = 02,4 = r +1,...,11, which implies that
pi > o fori =r+1,..., N, fulfilling condition
(31). This case was investigated to find out if penal-
izing the nullspace in the way described would be
of advantage.
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Fig. 11. Simulated attenuation of the noise. The blue curve represents the av-
erage attenuation achieved in Grid 1 using 15 control loudspeakers and a flat
diagonal control signal penalty matrix, and the red curve using the same type
of control signal penalty matrix design, but only 11 control loudspeakers. The
green curve represents the average attenuation when 11 control loudspeakers are
used together with an control signal penalty matrix designed from the nullspace
of the control system. The curves are difficult to distinguish, so the difference
between the red and the green curve is shown for clarity in Fig. 12.

Simulated attenuation curves were created, showing in
Fig. 11 the rms average over Grid 1 for all three cases. It can
be seen from the figure that going from Case I to Case 2 or 3
gives no severe degradation of the average performance over
Grid 1 for any frequency band up to 1000 Hz.

The green curve in Fig. 11 (rms average for 11 loudspeakers
according to Case 3) can be compared to the corresponding re-
producibility curve in Fig. 6(b). According to the discussion
in Section II-F, the performance of the controller designed for
Case 3 is predicted by the reproducibility curve, if the time ad-
vance d is chosen large enough for the controller to approach
the noncausal solution and if the scalar penalties { p; } of (23) are
chosen sufficiently large. A comparison between the two figures
shows that the resulting attenuation follows the general trend of
the reproducibility curve, but in particular for frequencies below
180 Hz, the obtained attenuation is lower than predicted. The
most likely cause for the difference is our use of a large but still
finite time advance d, whereas the reproducibility results hold
for d — o0. In Fig. 7, and also in [47], it was found that the
impact of the time advance is mainly in the lower frequencies,
resulting in worse agreement with the reproducibility curve for
lower time advances.

The difference between Case 2 and Case 3 in Fig. 11 is en-
larged in Fig. 12. For this scenario, the difference due to the
change of control penalty is at most just over 1 dB.

Now that it is established that no severe performance degra-
dation of the noise reduction occurs in any of the three cases,
the input signal power levels to the control loudspeakers for the
three cases are compared using the total output power from the
controller,

2

: 1 2 1 —jw
PZtE&;ztjl’U(t)l = me(e )

when the feedforward signal n.(¢) is white noise with unit power.
Table II shows the powers of the input signals to each con-
trol loudspeaker for the three cases considered, as well as the
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Fig. 12. Difference in achieved attenuation between using a simple diagonal
control signal penalty matrix and a control signal penalty matrix designed from
the nullspace of the control system. In both cases, 11 control loudspeakers were
used.

TABLE 11
POWER OF SIGNALS TO THE CONTROL LOUDSPEAKERS FOR
THREE DIFFERENT CONTROLLER DESIGNS

Speaker
(midrange/subwoofer)

3 IR DT IRP 5 YT IR

1, midrange 50.1 56.8 56.6
3, midrange 68.2 79.2 79.0
4, subwoofer 0.57 0.69 0.65
5, midrange 36.2 38.1 38.0
6, midrange 17.0 19.0 19.1
7, midrange 26.0 26.7 26.7
8, subwoofer 0.3 0.43 0.41
9, midrange 55.9 63.7 63.6
10, midrange 42.8 50.0 49.8
11, midrange 72.8 0 0
12, midrange 50.4 0 0
13, midrange 102.4 117.9 117.9
14, midrange 30.9 38.5 38.5
15, midrange 48.3 0 0
16, midrange 47.8 0 0
Total 649.6 491.2 490.1
#/ > Ry |? 1 0.756 0.755
#/ > |Rg|? - 1 0.998

total sum over all the loudspeakers, averaged over one second.¢
Also, the ratios of the total sums are presented. It is seen that
reducing the numbers of control loudspeakers from 15 to 11 re-
duces the total input power by 24%. The input signal powers
to the individual loudspeakers increased somewhat when re-
moving four of the loudspeakers. Although the total sum over
all the loudspeakers decreased, some of the signal power from
the removed loudspeakers was redistributed over the remaining
loudspeakers.

Also penalizing the use of the hard-to-use input directions
when using 11 control loudspeakers leaves the total input power
unchanged as compared to Case 2. The change in individual
input signal powers when going from the diagonal control signal
penalty matrix to the more advanced is also insignificant in the

The scaling of the power to the midrange loudspeakers is very different than
that to the subwoofers. This is because the two loudspeaker types had different
settings for their amplifiers (both are active loudspeakers). A better comparison
would be to use the signal powers after amplification, however unfortunately
these were not available.
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Fig. 13. The resulting attenuation in all the 244 measurement positions after
control over Grid 1 for a 150 Hz feedforward noise signal. The sound field
has been interpolated between the measurement positions to make interpreta-
tion easier.

investigated experimental setup. This indicates that the diag-
onal control signal penalty matrix is adequate in terms of con-
trol signal economy. Control strategies that use the hard-to-use
input directions would need to generate large inputs to some
combinations of loudspeakers. Therefore, already the use of a
diagonal control penalty matrix will to a large extent prevent
the controller from using the hard-to-use input directions. Using
the more advanced control signal penalty matrix (22) therefore
does not seem necessary unless there is a problem with ill-con-
ditioning resulting from near linear dependence in the columns
of H(g™1).

This result also explains why the RMS average of the atten-
uation in Fig. 7 and Fig. 8 (obtained with a diagonal penalty
matrix) was rather well predicted by the corresponding repro-
ducibility curve in Fig. 6. The accuracy of that performance
measure does by Section II-E rely on that the hard-to-use input
directions are not used. This is indeed the case in the present ex-
ample, also in Case 2, where the diagonal control penalty matrix
was used.

G. Validation Outside of the Small Grid

It is of interest to examine how the sound field behaves out-
side the area or volume targeted for ANC, in particular to inves-
tigate to what extent noise amplification occurs outside of the
control grid.

Simulations were performed, where the resulting sound field
after control was calculated at all of the 244 measurement po-
sitions above the living room sofa. The controller design was
made for Grid 1, using 11 control loudspeakers and a simple di-
agonal control signal penalty matrix W (q 1) = Wy(q !). The
remaining design choices were as discussed in Section III-B,
namely d corresponding to 0.1 s and V(g !) = I. The re-
sults from simulations where the feedforward signal contains
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Fig. 14. The resulting attenuation in all the 244 measurement positions after
control over Grid 1 for a 400 Hz feedforward noise signal. The sound field
has been interpolated between the measurement positions to make interpreta-
tion easier.

sinusoids at 150 Hz and 400 Hz are shown in Figs. 13 and 14
respectively.”

Figs. 13 and 14 show four slices through the volume of mea-
surement positions above the living room sofa. The measure-
ment positions used for the controller design, Grid 1, are located
on the horizontal slice z = 100 mm, between the two vertical
slices z = 500 mm and & = 800 mm. This grid is at a typical ear
height of a listener. For 150 Hz, the zone of control extends out-
side the design grid in the z-direction. There is a considerable
attenuation of the noise in the entire 0.3 X 0.3 x 0.3 m volume
around the 0.3 x 0.3 m Grid 1. At the sides, increasing or de-
creasing x, there is a degradation proportionate to the distance
from Grid 1. This degradation seems fairly independent of the
y-coordinate. At 400 Hz, a much faster degradation of perfor-
mance outside of the design area as compared to 150 Hz is to be
expected. This is due to the shorter wavelength and consequent
increased complexity of the sound field. Fig. 14 shows the same
general behavior as Fig. 13 but the degradation outside of Grid
1 is much faster, and the zone of control does not extend as far
in the vertical z-direction as for 150 Hz.

IV. DISCUSSION AND CONCLUSION

The aim of this work has been to provide insights and tools
that can be used to improve the controller design and the perfor-
mance analysis for feedforward active noise control.

When the control path is known to be stationary, a model-
based multi-point MMSE sound field control approach is an
interesting and powerful alternative to the conventional adap-
tive control solutions. Feedforward control filter parameters can
then be optimized in advance with respect to the performance
in multiple positions that cover an extended area or volume. As
shown in [17] and [18], this can significantly extend the area of

7In the figures, the sound field between the measurement positions has been
interpolated using trilinear interpolation, in order to make the figures easier to
read. To accurately reconstruct the sound field in between design points, more
advanced interpolation methods are needed, see e.g. [21].
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silence as compared to optimization in a few microphone posi-
tions, when using multiple loudspeakers. In this paper, the illus-
trative simulation case study based on measured room impulse
responses results in an average attenuation of over 20 dB up to
350 Hz, and above 10 dB for frequencies up to 700 Hz over a
0.3x0.3 m area. In many situations, some parts of the system are
time-invariant, while others (such as the properties of the refer-
ence signal n(t)) are nonstationary. It is therefore of interest to
further develop this design into a partly fixed and partly adap-
tive design, in which some model parts are updated by on-line
adaptation.

Regarding the controller design, we have evaluated the use
of Linear Quadratic Gaussian multivariable feedforward filter
design based on a polynomial equations approach. This method
provides feedforward filters in the form of stable high-order IIR
filters under a causality constraint. The choice of control penalty
matrix has been investigated. Our preliminary conclusion is that
a diagonal polynomial matrix (corresponding to the use of sep-
arate FIR penalty filters for each input signal component) pro-
vides good properties and little is gained by introducing the
more complicated structures that have been investigated. With
areasonably frequency-weighted diagonal penalty matrix, large
control excursions are avoided.

Regarding the performance analysis, we have shown the rela-
tion between a theoretical measure of sound field reproducibility
and the obtained ANC performance when causality constraints
are removed. We have separately characterized the performance
penalty generated by a prescribed causality constraint. We have
also shown how the effective rank of the control path can be
used in a preliminary design phase. It may be used to iden-
tify possibilities to remove superfluous loudspeakers. It could
be interesting to combine this with a scheme for finding the
best locations out of a set of potential positions, such as the nat-
ural algorithms investigated in [27]. The effective rank and re-
producibility tools reduce the computational burden when per-
forming such preliminary investigations and are of use in many
problem formulations that balance performance aspects against
economic aspects.

APPENDIX

Consider the polynomial matrix Diophantine equation (10).
Multiplying by 3, (¢ 1) from the left, the equation becomes

¢ ‘B.'B.V.VD = Q+ B, 'L.FE. (34)

Here, @(g 1) is causal by definition, whereas the last term has
impulse response coefficients for both positive and negative
lags. The same is true for the left-hand side expression in (34).
However, since 3(¢ ') is minimum phase, 3 (¢ !) is a
stable system, so its impulse response will decay exponentially.
This implies that the impulse response of 3, 1(¢) decays expo-
nentially in forward (noncausal) time. Since both B(q ') and
V(g !) are polynomial (FIR filter) matrices, the factor

B, (@Bq)V.(g) =) Nig’ (35)
1=0

of the left-hand side of (34) will therefore have exponentially
decaying impulse response coefficients matrices in forward

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 22, NO. 12, DECEMBER 2014

time, N; — 0 when ¢ — oo. This implies that when d — o0,
the left-hand side of (34),

¢ 'B8,1B.V.VD

0o ny 5
= 217\/'iqi7d Z‘/jjqij ZDkqik . (36)
i=0 i=0 k=0

will approach a causal impulse response: all coefficients N; for
i — d > 0 vanish asymptotically. Since the last term in (34)
has noncausal impulse response coefficients for any value of
d, that term must therefore vanish when d — oc. Therefore
we conclude that the indeterminate polynomial matrix L.(¢) in
the Diophantine equation (10) approaches zero as d — oo. The
polynomial matrix Q(q 1) therefore approaches the expression
given by the left-hand side of (34) as d — oo, which gives (26)
and (27).
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