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a b s t r a c t

A dynamic population system is often modelled by a deterministic difference equation model to obtain
average estimates. However, there is a risk of the results being distorted because unexplained (random)
variations are left out and because entities in the population are described by continuous quantities of an
infinitely divisible population so that irregularly occurring events are described by smooth flows.

These distortions have many aspects that cannot be understood by only regarding a deterministic
approach. However, the reasons why a deterministic model may behave differently and produce biased
results become visible when the deterministic model is compared with a stochastic model of the same
structure.

This paper focuses first on demographic stochasticity, i.e. stochasticity that refers to random variations in
the occurrence of events affecting the state of an individual, and investigates the consequences of omit-
ting this by deterministic modelling. These investigations reveal that bias may be strongly influenced by
the type of question to be answered and by the stopping criterion ending the analysis or simulation run.
Two cases are identified where deterministic models produce unbiased state variables: (1) Dynamic sys-
tems with stable local linear dynamics produce unbiased state variables asymptotically, in the limit of
large flows; and (2) linear dynamic systems produce unbiased state variables as long as all state variables
remain non-negative in both the deterministic and the stochastic models. Both cases also require the
question under study to be compatible with a solution over a fixed time interval.

Stochastic variability of initial values between simulation runs because of uncertainty or lack of infor-
mation about the initial situation is denoted initial value stochasticity. Elimination of initial value stochas-
ticity causes bias unless the model is linear. It may also considerably enlarge bias from other sources.

Unknown or unexplained variations from the environment (i.e. from outside the borders of the studied
system) enter the model in the form of stochastic parameters. The omission of this environmental stochas-
ticity almost always creates biased state variables.

Finally, even when a deterministic model produces unbiased state variables, the results will be biased if
the output functions are not linear functions of the state variables.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

This paper examines the mathematical conditions for a deter-
ministic difference equation model to produce unbiased results
when used for population studies.

A population consists of entities that may have attributes of dif-
ferent kinds. These entities may perform different actions and they
may interact with other entities and with the environment. A pop-
ulation model should therefore capture the nature of the population
system under study as it evolves dynamically over continuous time,
focusing on the aspects specified by the purpose of the study. Pop-
ulation models constitute a class of models with a non-negative
ll rights reserved.

(L. Gustafsson).
integer number of discrete entities such as plants, animals, patients,
vehicles, molecules, atoms, data packets, etc. Such models are
fundamental in ecology, epidemiology, demography and queuing
systems. They are also used in physics, chemistry, molecular biol-
ogy, traffic planning, production planning and many other fields.
1.1. Stochastic population models – representation and time handling

In this paper the behaviour of stochastic population models is
used as a reference in comparisons with that of deterministic
models.

All irregularities from the behaviour of a real population, its
environment and the system conditions at a given (initial) point
in time are rarely known and cannot be modelled in detail. Instead,
irregularities are often specified in probabilistic terms, leading to
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1 We need to distinguish between bias in the state variables and in the results
(outcomes of the study). ‘Quantity’ is used to include both ‘state variable’ and ‘result’.
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stochastic population models. A non-trivial question is then how
such a probabilistic description of a dynamic population can, and
should, be converted into an executable simulation model.

Three types of stochasticity may be implemented in a popula-
tion model, namely demographic stochasticity, environmental sto-
chasticity and initial value stochasticity. Demographic stochasticity
[1,2] is the randomness about ‘when the next event such as birth,
death, migration or other change of state (or attribute) of an entity
will occur’. Stochastic variability of initial values between simula-
tion runs because of uncertainty or lack of information about the
initial situation is denoted initial value stochasticity. This is concep-
tually related to demographic stocasticity, but will only intervene
at the initial point of the study, while environmental stochasticity
[1,2] comes from external, partly unknown factors such as temper-
ature, precipitation, supply of food, etc. that can vary within the
simulation run.

In a recent investigation of the foundations of stochastic popu-
lation modelling and simulation [3], it was found that demographic
stochasticity can be correctly handled by either of three different
types of representation:

� First, the population model can use an entity-based representa-
tion where each entity is individually described with its attri-
butes and conditional behaviour and can be individually
monitored. This micro representation is used in e.g. Discrete
Event Simulation and Individually Based Simulation.
� The second option is to use a compartment-based representation

where all entities in the same situation (i.e. having the same set
of attribute values) are located in the same compartment. Only
the number of entities in each compartment is then recorded.
This macro representation is used in e.g. compartment models,
which can be numerically handled using tools from Continuous
System Simulation.
� Third, a state-based representation exists, where every situation

that the entire model can be in has to be represented as a
unique separate state. This representation is used for e.g.
Markov models and often leads to a model of gigantic size.

The time handling, i.e. the updating of the (demographic) sto-
chastic model over time, is based on irregularly occurring events
that will change the attribute values. The time handling can be per-
formed in three different ways, irrespective of the representation
used. The first way is to increment time in such small time-steps
that zero or at most one event may occur during a time-step (using
Bernoulli statistics). The second way is to use larger time-steps
allowing several events per time-step (using Poisson statistics),
and the third is to ‘jump’ to the point in time for the next event
(using exponential statistics).

It has been shown [3] that irrespective of the representation
(entity, compartment or state) and the time handling method
selected, stochastic population models will produce mutually
consistent (contradiction-free) results, provided that some simple
rules are observed during the model building process.

1.2. Deterministic models of a population

Historically, there is a long tradition of using deterministic dif-
ferential or difference equation models for analysis or simulation
of populations.

Using a deterministic model simplifies model building. There is
an overwhelming number of studies where populations are mod-
elled in this way, using continuous state variables and ignoring
the effects of stochasticity. Even in textbooks on e.g. epidemiology,
biology and ecology [4–6] and in more general textbooks about dy-
namic systems [7,8], the presentations are often entirely based on
deterministic models, or at least lack demographic stocasticity. It is
then taken for granted that this is adequate and no concern is ex-
pressed about the validity.

On the other hand, there are early examples of understanding
that stochastic and deterministic models of the same population
system may produce profoundly different results. For example, in
1926 A.G. McKendrick [9] published a stochastic treatment of an
epidemic process and in 1960 M.S. Bartlett [10] published his book
‘Stochastic Population Models in Ecology and Epidemiology’ in which
the necessity of stochastic population models was emphasised and
different ways to construct them were discussed. Many, more re-
cent, textbooks present both deterministic and stochastic model-
ling and stress the relative advantages of both types [11–15].
However, a general discussion of the circumstances where deter-
ministic models are appropriate is lacking: ‘‘Full conditions for
agreements between deterministic and expected stochastic solu-
tions are at present unknown.’’ [13]. Some studies have compared
the results of different approaches to specific problems [16–22],
but in general this is not done.

1.3. Objective and overview of the paper

‘‘Understanding the dynamics of stochastic populations, and
how they deviate from the deterministic ideal, is being viewed
with increasing importance by ecologists and epidemiologists’’
[22].

It is not unusual that modellers assume that models with large
numbers (or large flow rates) or that linear models will be suffi-
cient to secure unbiased average results when stochastics are not
included. Still worse, working within the deterministic tradition,
this issue may not be raised at all.

Since entity-based, compartment-based and state-based mod-
els are three ways to produce a consistent realisation of a concep-
tual population model with demographic stochasticity [3,23], they
provide a gold standard when compared with a simplified deter-
ministic difference equation model.

The objective of this paper is to investigate when a determinis-
tic model can reproduce the average quantities1 of a corresponding
stochastic population model and to demonstrate and explain what
might otherwise happen. For this purpose, we require the quantities
to be unbiased, in the sense that:

deterministic quantity ¼ E½stochastic quantity�;

where E[�] denotes an ensemble average for a corresponding sto-
chastic model. In the following, this property is evaluated analyti-
cally when possible. Otherwise, a check is made of whether a
quantity from the deterministic model falls within the 95% confi-
dence interval of that from the stochastic model, based on 10,000
simulation runs.

A fundamental restriction implied by the use of a deterministic
model is that all information about variations, confidence intervals,
risks, extremes, correlations, etc. is lost and only deterministic re-
sults such as point estimates can be obtained instead of probability
distribution functions.

Nevertheless, a deterministic model of a population may be
useful in several circumstances if it can produce outcomes that
are close to the average of the outcomes that would be produced
by a corresponding stochastic model:

� One case is when average results are the main outcome of inter-
est in a study. The deterministic model could then produce
these average results in just one simulation run, instead of aver-
aging over many simulation runs of a stochastic model.
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� Furthermore, parameter estimation, optimisation and sensitiv-
ity analysis are difficult and problematic to perform with sto-
chastic models. If it is known that a deterministic
approximation will reproduce average results correctly, then
model parameters of the deterministic model can be adjusted/
optimised with respect to a data set. They can then also be used
in a corresponding stochastic model, which reveals additional
features such as the variability around the average outcomes.

Investigation of the quality of deterministic model behaviour is
complicated in several ways. First, omission of different types of
stochastics may create bias in the state variables representing
the subpopulations. Even when the state variables are unbiased,
a result, reflecting the objective of the study, can be a non-linear
function of the state variables and thus creates biased results.

Furthermore, the objective of the study also affects the stopping
criterion of the solution. The problem then is that the ensemble of
stochastic solutions may end at different points in time, causing
state variable values of a deterministic model to deviate from the
averages of the state variables of the stochastic solutions.

To clarify the situation, this investigation is conducted in steps.
First, we investigate when state variables of deterministic com-
partment models equal the average of the state variables of corre-
sponding compartment models with demographic stochasticity.
Next, we investigate what happens when initial value stochasticity
is omitted, and thereafter the consequences of omitting environ-
mental stochasticity. Finally, we investigate the conditions for
unbiased state variables to generate unbiased results, expressed
in terms of an output function.

This paper mainly focuses on qualitative aspects of using a
deterministic model – when will this create bias and of what rea-
sons? However, in the examples the presentation is complemented
with a more pragmatic view – when can a deterministic model be
used to reproduce average results with a tolerable bias?

The paper is structured as follows. Section 2 presents the meth-
od for investigating possible bias for deterministic models. In Sec-
tion 3 we discuss various implications of removing the stochastics
of a population model. In Section 4 the consequences of omitting
demographic stochasticity are demonstrated by three simple
examples. The two following sections deal with special cases
where unbiased state variables might be obtained when demo-
graphic stochasticity is dropped. Section 5 considers the case
where the flows between compartments stay very large and the
model has asymptotically stable linearised dynamics, while Sec-
tion 6 deals with positive linear systems and demonstrates the
necessity of a limitation to a fixed stopping time criterion to obtain
unbiased results. Section 7 treats the consequences of omitting ini-
tial value stochasticity, and Section 8 the consequences of omitting
environmental stochasticity. Section 9 discusses unbiased results
expressed by an output function of the state variables. In Section 10
we take a pragmatic approach, focusing on the specific model and
discuss how to test the consequences of dropping the stochastics of
the specific model. Finally, Section 11 provides a discussion and
conclusions.

2. Methods

2.1. Introduction

There is a great advantage in dividing the modelling process
into a conceptualisation phase and a realisation phase. The conceptu-
alisation phase deals with whether the conceptual model, with all
its simplifications, boundaries, assumptions, etc., is a good enough
description of the studied system to serve the given purpose of the
study. The realisation phase, on the other hand, only deals with
constructing an executable dynamic model that should be consis-
tent (contradiction-free) with the conceptual model. The conceptu-
alisation phase is outside the scope of this paper. We start from an
ideal case where a conceptual stochastic population model is com-
pletely specified. Fig. 1 presents a general overview of the studied
problem structure.

The method used in this investigation is to start with a well-
defined stochastic population model and compare its average
behaviour with the behaviour of a deterministic model of identical
structure. Note here that demographic stochasticity is intrinsic in
entity-based, compartment-based and state-based models, while
initial value stochasticity and environmental stochasticity have
to be added by specification.

Investigation of when a deterministic model of a population
will produce unbiased results is strongly simplified by the fact that
any of the three stochastic representations using any of the three
ways of time handling will produce mutually consistent results.
The deterministic compartment model is here usually compared
with a stochastic compartment model where time is handled by
Poisson statistics, a so-called Poisson Simulation model [24]. This
method is also called the ‘tau-leap method’ (the tau is the
time-step Dt leaping over many events) [25]. The two models to
be compared are then both represented by systems of difference
equations, so the structural and mathematical similarities become
obvious.

2.2. The models to be compared

A general stochastic population model, realised in Poisson Sim-
ulation form, is given by:

xs;iðt þ DtÞ ¼ xs;iðtÞ þ IniðtÞ � OutiðtÞ and xs;i P 0; i ¼ 1 . . . n ð1AÞ
xs;iðt þ DtÞ ¼ algebraic fcniðxsðt þ DtÞ; t þ DtÞ; i ¼ nþ 1 . . . r ð1BÞ

Iniðt þ DtÞ ¼ Po½Dt � GiðxSðt þ DtÞ; t þ DtÞ�; i ¼ 1 . . . n ð1C-1Þ
Outiðt þ DtÞ ¼ Po½Dt � HiðxSðt þ DtÞ; t þ DtÞ�; i ¼ 1 . . . n ð1C-2Þ

ys;kðtÞ¼CkðxSðtÞ;tÞ;k¼1 . . .m ð1DÞ
xs;ið0Þ¼ xos;i; i¼1 . . .n: Initial values; possibly from
statistical distributions: ð1EÞ
ps;jðtÞ; j¼1 . . .q:

Assignment of parameters; possibly fromstatistical distributions:
ð1FÞ

Stopping criterion ð1GÞ
Integration rule; size of Dt: ð1HÞ

Here, xS ¼ ðxs;1; xs;2; . . . ; xs;rÞT ¼ xT
s ; xs;nþ1; . . . xs;r

� �T denotes an ex-
tended state vector. It is composed of the vector of integer-valued
state variables (compartments) xs = (xs,1,xs,2, . . . ,xs,n)T, and possibly
also of auxiliary real-valued variables xs,n+1,xs,n+2, . . . ,xs,r, defined
by the algebraic equations (1B).

The difference equations (1A) are the kernel of the model, gen-
erating the dynamics of the state variables. They are expressed
here in Euler form. Inflows to and outflows from each compart-
ment are explicitly separated, which is necessary in the stochastic
case. Note that xs,i P 0 is required for all the n state variables. This
sometimes requires the inclusion of a conditional clause into an
appropriate equation.

In (1B), the r � n algebraic equations specify auxiliary variables
by algebraic functions of xS. In modelling, it is often practical, but
not necessary, to perform various kinds of algebraic (non-dynamic)
calculations by separate equations. Here, library functions from e.g.
a Continuous System Simulation Language such as mathematical
functions, logical functions, conditional statements, table look-up
functions and time-related functions can be included.



Fig. 1. Overview of the problem structure being studied. A conceptual model is defined from a population system at study. (This step is outside the scope of this paper.) The
well-defined conceptual model is then translated into an executable stochastic model and an executable deterministic model with the same structures. Finally, the average
results of the stochastic model are compared with those of the deterministic model.
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In the flow equations2 (1C), all flows into and out of each com-
partment are defined. It is here the demographic stochasticity is
operating. For each time-step and each equation in (1C), the argu-
ments of Po[Dt � Gi(xS(t + Dt), t + Dt)] or Po[Dt � Hi(xS(t + Dt), t + Dt)]
are evaluated, and Po[argument] is assigned a value by a Poisson-dis-
tributed random number generator [24]. Several inflows to a com-
partment i may be included in the function Gi and several outflows
may be included in Hi. The state variables will remain integer-valued
since they are initialised as (non-negative) integers and the Po[.]
terms in (1C) generate integer outcomes.3

The conceptual model should include the explicit formulation of
the objective of the study. Eq. (1D) defines the output variable(s)
that directly relate to the objective(s). An output is an algebraic
function of one or several variables. The values of an output vari-
able may be of interest during the whole trajectory or only at
one particular instant, for example at stopping time. Note that
the output variables ys,k may be functions also of auxiliary
variables specified by the algebraic equations (1B).

The initialisation of the state variables is defined by (1E). In
some studies, stochastic initial values may be used. This can e.g.
be necessary when modelling an experiment where a number of
individuals of a population are sampled to a study group. Initial
values are then drawn at each simulation run from statistical dis-
tributions representing known conditions of the entire population.

Furthermore, parameters, e.g. temperature, precipitation or
food supply, may be partly unknown or they may vary over time
in not precisely known patterns. If the statistical effects of such
irregularities on the model outcomes are of interest, then this
can be incorporated into the model by letting the parameter
assignments at (1F) be stochastic, with prescribed distributions
and statistics of their time variability. This introduces environmen-
tal randomness into the simulation model by affecting the parame-
ters of the functions Gi and Hi in (1C).

The stopping criterion (1G) needs to be defined, specifying
when the solution/simulation (starting at time zero) is to be com-
pleted. The stopping criterion can be of two kinds:

1. A fixed stopping time criterion, or
2. Integration until some criterion, other than ‘a fixed stopping

time’, is fulfilled. For this second type, stochasticity usually
means that the executions will end at different points in time
in different simulation runs.
2 We use the technical term ‘flow equations’ to denote Eq. (1C) although
Dt⁄flow_rate is a somewhat unconventional construction since it depends on the
user-defined quantity Dt.

3 We could also include combined stochastic/deterministic models by letting some
of the equations in (1C) be deterministic. However, this would here only complicate
the description without adding further insight.
Finally, in (1H), the integration rule and step-size Dt are speci-
fied. In this presentation, the Euler integration algorithm with a
fixed step-size is used for simplicity. This means that the
calculations are performed step-wise by holding the input intensi-
ties Gi(xS(t),t) and the output intensities Hi(xS(t),t) fixed during the
time-step (t,t + Dt). To avoid unnecessary complexity, throughout
this paper it is assumed that the time-step is sufficiently small to
cause negligible distortion of the time evolution of a model.

After the model equations are defined they are sorted, starting
with all difference equations (1A), all algebraic equations (1B),
and all flow equations (1C). At execution, the initial values (1E)
and constant parameters (1F) are defined once and for all. Thereaf-
ter, in a loop over time, the Eqs. (1A), (1B) and (1C) (and (1F) in the
case of time-varying parameters) are solved, followed by a redefi-
nition of current time according to t:¼t + Dt. This step-wise calcu-
lation over time continues until the stopping criterion is satisfied.
For a stochastic model a large number of simulation runs are nec-
essary to build the probability distribution/density functions (pdfs)
of the state variables or output variables.

Now, we define a corresponding deterministic model in which
all stochasticity is removed:

Definition 1. A ‘corresponding deterministic model’ represents a
model structure (1) where in (1C), Po[Dt � Gi(x(t),t)] and
Po[Dt � Hi(x(t),t)] are replaced by the arguments Dt � Gi(x(t),t) and
Dt � Hi(x(t),t) and where possible initial value stochasticity in (1E)
and environmental stochasticity in (1F) are replaced by fixed
deterministic values.

When we have only demographic stochasticity in (1), the corre-
sponding deterministic model is said to be embedded in the sto-
chastic model.

The deterministic model corresponding to (1) is given by:

xd;iðt þ DtÞ ¼ xd;iðtÞ þ IniðtÞ � OutiðtÞ and xd;i P 0; i ¼ 1 . . . n ð2AÞ
xd;iðt þ DtÞ ¼ algebraic fcniðxdðt þ DtÞ; t þ DtÞ; i ¼ nþ 1 . . . r ð2BÞ

Iniðt þ DtÞ ¼ Dt � GiðxDðt þ DtÞ; t þ DtÞ; i ¼ 1 . . . n ð2C-1Þ
Outiðt þ DtÞ ¼ Dt � HiðxDðt þ DtÞ; t þ DtÞ; i ¼ 1 . . . n ð2C-2Þ

yd;kðtÞ ¼ CkðxDðtÞ; tÞ; k ¼ 1 . . . m ð2DÞ
xd;ið0Þ ¼ xod;i; i ¼ 1 . . . n ð2EÞ
pd;jðtÞ; j ¼ 1 . . . q ð2FÞ
Stopping criterion ð2GÞ
Integration rule; size of Dt: ð2HÞ

Here, xD ¼ ðxd;1; xd;2; . . . xd;rÞT ¼ xT
d ; xd;nþ1; . . . xd;r

� �T denotes the ex-
tended state vector of the deterministic model. The vector of state
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variables is real-valued here and is denoted by xd = (xd,1, xd,2, -
. . . ,xd,n)T. If xs,i(0) and ps,j(t) in (1) are stochastic, then xd,i(0) and
pd,j in (2) represent some kind of ‘average’ of xs,i(0) and ps,j(t). The
execution takes place in the same way as for the stochastic model
described above.4 With no stochasticity, every simulation run will
give the same result, so only one simulation run is needed.

Comparing (1) and (2), the fundamental concepts of indivisible
entities and irregularly occurring instantaneous events in a sto-
chastic population model are replaced by infinitely divisible
amounts that change continuously over time in a deterministic
model.
2.3. Simplifications

In the following we often use simplified forms of the models (1)
and (2), in which the algebraic equations are eliminated. These
forms are obtained by first including the algebraic equations (B)
into the flow equations (C), and into the output equations (D).
The flow equations (C) are then substituted into the difference
equations (A). As a result of the substitutions, the functions Gi(.)
and Hi(.) in the flow equations (C) and Ck(.) in the output equations
(D) are replaced by functions gi(.), hi(.) and ck(.) of the state vari-
ables only, since the auxiliary variables xn+1,x2, . . . ,xr have been
eliminated.

In the stochastic case, model (1) then takes the simplified form:

xs;iðt þ DtÞ ¼ xs;iðtÞ þ Po½Dt � giðxsðtÞ; tÞ� � Po½Dt � hiðxsðtÞ; tÞ�
and xs;i P 0; i ¼ 1 . . . n;

ys;kðtÞ ¼ ckðxsðtÞ; tÞ; k ¼ 1 . . . m:
ð3Þ

Initial conditions, parameter values, the stopping criterion, the inte-
gration rule and the step-size are still part of the specification, but
not explicitly repeated here.

The corresponding deterministic model (2) then takes the form

xd;iðt þ DtÞ ¼ xd;iðtÞ þ Dt � giðxdðtÞ; tÞ � Dt � hiðxdðtÞ; tÞ
and xd;i P 0; i ¼ 1 . . . n;

yd;kðtÞ ¼ ckðxdðtÞ; tÞ; k ¼ 1 . . . m:
ð4Þ

However, simplification by substituting flow equations into differ-
ence equations can’t always be done without consequences. For
example, a conservative system where a flow, F, transports entities
from compartment x1 to compartment x2 with a flow rate propor-
tional to x1 is correctly described by:

x1ðt þ DtÞ ¼ x1ðtÞ � F

x2ðt þ DtÞ ¼ x2ðtÞ þ F

F ¼ Po½Dt � c � x1�

Substituting the flow equation into the difference equations gives:

x1ðt þ DtÞ ¼ x1ðtÞ � Po½Dt � c � x1�
x2ðt þ DtÞ ¼ x2ðtÞ þ Po½Dt � c � x1�

This creates a problem, because now there are now two indepen-
dent calls, with different return values, to the Po-generator (instead
of one common call for the value of F) at each time-step. Then the
total number of entities, x1 + x2, is no longer preserved.

However, for our purposes, inserting the flow equation into the
difference equation causes no problem when analysing the average
properties of the scalar state variable equations of (3) separately.
4 In deterministic modelling, the total inflow rate Gi and the total outflow rate Hi

per time-step to and from a compartment xi are usually combined into a net term
(Gi � Hi). However, here they are kept separate to maintain the similarity to the
stochastic case.
The main question for demographic stochasticity can now be
rephrased as: When can dropping the Po[] operators of (3) be jus-
tified in the sense that yd,k(t) = E[ys,k(t)], k = 1. . .m?

When comparing models (3) and (4), note that E[Po[Dt � gi]] = -
Dt � gi and E[Po[Dt � hi]] = Dt � hi (when the arguments are non-neg-
ative), so there is some hope that under certain conditions, the
state variables of the stochastic model ‘on average’ could behave
like those of the deterministic model. Additional conditions on
the output equations ck(.) will also be required to ensure unbiased
deterministic results.
3. Fundamental differences

This section presents a qualitative comparison of stochastic and
deterministic models of a population in order to provide an under-
standing of why a deterministic model may produce biased results.

There are a number of (omitted) factors that might make the
state variables and the results from a deterministic model of a pop-
ulation biased. Nine factors of particular importance are intro-
duced below and discussed and exemplified in subsequent
sections.

(a) Non-linearity: The models (3) and (4) may have flow rates
gi(x, t) or hi(x, t); i = 1 . . .n, that are non-linear functions of
the state variables. The state variables will then be more or
less biased. For simplicity, consider the case where n = 1.
Assume that a deterministic solution/trajectory for x at time
t is x(t) and that the stochastic solutions from two simula-
tion runs pass through x + dx and x � dx at time t. At t + Dt
the deterministic model is updated by Dt � f(x, t); (f = g or h),
while the stochastic model is updated by Po[Dt � f(x + dx, t)]
and Po[Dt � f(x � dx, t)]. The average of Po[Dt � f(x + dx, t)]
and Po[Dt � f(x � dx, t)] will then differ from that of
Po[Dt � f(x, t)] if f(�) is a non-linear function of x.

(b) Protection against a negative state variable: A population or
subpopulation can never have a negative number of entities.
This property is preserved in the models in the state equa-
tions of (3) and (4) by the statements xi P 0, i = 1 . . .n. This
sometimes requires the inclusion of a conditional clause in
a proper equation. For example, if xi(t + Dt) = xi(-
t) � Dt � a � xj(t), where a � xj(t) is e.g. the number of trees
felled, animals shot, enemies killed per time unit by xj lum-
berjacks, hunters, soldiers, respectively, and where i – j, then
a conditional statement is required to prevent xi from becom-
ing negative. One practical way is to limit the reduction of xi

to no more than xi itself, for example with a construction such
as: xi(t + Dt) = xi(t) �MIN[Dt � a � xj(t), xi(t)]. The same clause
can be used for the stochastic case. Note, however, that when
such a limiting clause becomes active, an otherwise linear
model will proceed non-linearly, so the state variables of
the deterministic model become biased. (This would be the
case in Example 2, in the next section, if the simulation were
to continue beyond the defeat of Force 2.)

(c) Neglecting stochastic jumps: For a deterministic model, the
phase space can be divided into separate regions wherein a
trajectory is restricted by the choice of initial values. For a
stochastic model, ‘stochastic jumps’ can cause transitions
between such regions. For example, Poisson-distributed
flows can take a population xi to zero (extinction) in a finite
time in a stochastic population model, even when this is
impossible for the embedded deterministic model starting
with xi > 0. (Example 3, below.)

(d) Neglecting oscillations generated by demographic stochasticity:
A deterministic model may reach a steady state while the
corresponding stochastic model is repeatedly excited by



5 The probabilities are calculated by considering the sequence of successive
elimination events. Conditional to being at state (5,3) the next event will take the
model to state (5,2) or to state (4,3). The probability of reaching a border state such as
(4,3) is P(4,3) = P(4,3j5,3) = P(5,3) � 3/(5 + 3) = 1 � 3/8 = 0.375, etc. Non-border states
(i,j) can be reached from both (i + 1,j) and (i,j + 1), so such a state is calculated as the
sum of two conditional probabilities, i.e. P(i,j) = P(i,jji + 1,j) + P(i,jj i,j + 1) = P(i + 1,j) � j/
(i + 1 + j) + P(i,j + 1) � i/(i + j + 1).
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demographic variations. Even for a deterministic model
starting from an equilibrium so that all xi remain constant,
the corresponding stochastic model, also starting from the
same equilibrium, may generate oscillations. Absence of
such oscillations may create bias for the deterministic model
results. (Example 5 in Section 5.)

(e) Neglecting that the stopping criterion should intervene at differ-
ent points in time: The question to be answered by analysis or
model experiments is coupled to the stopping criterion. A
fixed stopping time criterion (If time P T then Stop) is a nec-
essary condition for unbiased results. For other stopping cri-
teria, a stochastic model will end at different points in time,
which cannot be reflected by a corresponding deterministic
model. (Example 2, in the next section.)

(f) Averaging of stochastic initial values: Stochastic initial values
will create biased state variable values unless the model
equations are linear.

(g) Use of an average estimate as a fixed parameter value: A
treacherous but unnecessary error is to use an arithmetic
average of a parameter that does not simply enter additively
in an equation. (Example 8 in Section 8 illustrates this
aspect.)

(h) Neglecting environmental stochasticity: With few exceptions,
omitting environmental stochasticity will create bias in state
variables.

(i) Non-linear output function: A question to be answered by
analysis or model experiments is stated by an algebraic out-
put function yk = ck(x1, . . . ,xn, t). Even when the state vari-
ables x1, . . . ,xn are unbiased, a non-linear output function
will introduce bias into the results. This occurs for example
when the quantity of interest is a ratio (x1/x2), a fraction (x1/
(x1 + x2)) or a non-linear cost function of x. Also for a ques-
tion such as: ‘How often will xi exceed a value slightly above
the stationary level?’, the deterministic and stochastic mod-
els may produce very different answers.

4. Illustrative examples of omitting demographic stochasticity

Replacing a demographically stochastic population model with
a deterministic model can cause hugely biased results.

Example 1 (A queuing system). Consider an M/M/1 queuing system
[26], where random arrivals to a single service station have an
intensity of k = 1/10 entities per minute. Let the station serve the
entities with an exponentially distributed service time with an
average capacity of l = 1/9 entities per minute. This model can be
written in the form of Eq. (3) with the help of a conditional
MIN[a,b] clause that selects the smallest of the two arguments
[27]:

xðt þ DtÞ ¼ xðtÞ þ Po½Dt � k� �MIN½Po½Dt � l�; xðtÞ�;

where x(t) denotes the actual number of queuing and served enti-
ties. The exponentially distributed time between arrivals is on aver-
age 10 min (1/k), and the average of the exponentially distributed
service time is 9 min (1/l). Theory or simulations will then produce
the average number of queuing entities waiting for service as 8.1
persons, with an average waiting time of 1 h and 21 min.

Removing the stochastics, and instead using a constant arrival
rate of k = 1/10 per minute and a constant service rate of l = 1/9
per minute will give no waiting entities at all and a zero waiting
time. Thus neglecting stochastics to describe irregular events can
cause extremely misleading results.

More generally, queues and waiting for service will arise
irregularly for all q = k/l < 1, although less frequently for smaller
values of q. For the corresponding deterministic model no queues
or waiting are ever created for q < 1. h
The following example illustrates that linearity alone does not
ensure unbiased results for any question at hand.

Example 2 (Lanchester’s model of warfare). Lanchester’s model of
warfare [8,28], first published in 1916, is a simple model of a battle
between two fighting forces. Force 1 is characterised by its number
of entities (soldiers, aircraft, vessels, etc.), x1, and hitting power, a,
and Force 2 by its number, x2, and hitting power, b. The hitting
power is the (average) number of eliminated entities per time unit
that each member can inflict on the enemy. The combat proceeds
until the last entity of the losing force is eliminated.

In deterministic terms, the change in Force 1 depends on the
number of entities in Force 2 and their hitting power, so it can be
described by the differential equation: dx1/dt = �b � x2, and the
change in Force 2 has the similar equation dx2/dt = �a � x1. This is a
linear dynamic system, since it can be written as dx/dt = Ax, where:

x ¼
x1

x2

� �
and A ¼

0 �b

�a 0

� �
:

Here we are interested in the questions: Which side will win? What
number of entities will remain after the battle? How long will the
fight take? For simplicity, also assume that the hitting power of
both forces is the same, i.e. a = b = 0.1.

Dividing the first equation by the second then gives dx1/
dx2 = x2/x1 or

R
x1dx1 ¼

R
x2dx2. When integrated over the time of

the fight 0 to s this gives:

x2
1ðsÞ � x2

1ð0Þ ¼ x2
2ðsÞ � x2

2ð0Þ

if the forces are initially x1(0) and x2(0). Thus when the weaker force
(say Force 2) is eliminated at time s (i.e. x2

2ðsÞ ¼ 0), the relationship
x2

1ðsÞ ¼ x2
1ð0Þ � x2

2ð0Þ holds. For example, with x1(0) = 5 and x2(0) = 3
we obtain x2

1ðsÞ ¼ 52 � 32 ¼ 16, so the model predicts precisely x1

(s) = 4 remaining entities after the combat. Simulation of the deter-
ministic model gives s � 6.94 time units for a = b = 0.1.

Beautiful, but are these results correct? Does Force 1 always
win? Will the average number of remaining entities in Force 1 be
x1(s) = 4? Will the battle on average take 6.94 time units? To
answer these questions the assumptions of Lanchester’s model are
kept, but the number of entities eliminated for each time-step is
now integer and stochastic. The stochastic model can be analyt-
ically solved (excluding time) using a probability tree. This is
illustrated by Fig. 2 for the case x1(0) = 5, x2(0) = 3.5

Summing up, we find that the probability of Force 1 winning is
0.887 and that of Force 2 winning is 0.113. Furthermore, the
expected number of remaining entities after the combat for Force 1
is 3.545 (Rk �px1(k) = 5 � 0.3720 + 4 � 0.2690 + � � � + 1 � 0.0295),
while for Force 2 it is 0.232.

For the stochastic model, the time of the fight will vary between
simulation runs, with the average length estimated at 7.37 time
units (7.27–7.47 for a 95% confidence level obtained from 10,000
simulation runs).

In conclusion: The elegant results from the deterministic model
were all wrong. The stochastic results revealed the following major
discrepancies with the deterministic model: (1) x1 wins about 89%
of the fights, not all of them. (2) The expected number of x1entities
after the fight is 3.545 entities, which deviates significantly from
the deterministic model result of 4 entities. (3) The expected



Fig. 2. Probability tree presented as a spreadsheet model starting at x1 = 5 and x2 = 3. The cells show the probability of visiting state (x1,x2).
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number of x2 is 0.232 entities, not zero. (4) The length of the battle
time is significantly longer (about 7.37 rather than 6.94 time
units).

In Fig. 3a, stochastic trajectories from three simulation runs
starting at x1(0) = 10 and x2(0) = 8 are shown in the x1 � x2 phase
plane. As seen the trajectories may cross the demarcation line
between the areas of the phase plane where x1 and x2 have the
advantages. This makes it possible for x2 to win. In Fig. 3b the
deterministic trajectories can never cross each other.

When scaling up the initial number of entities on both sides in
the same proportions, i.e. from (5,3) to (10,6) and to (20,12), the
relative errors [(Deterministic_result � Stochastic_estimate)/sto-
chastic_estimate] decrease from 14% to 8% and to 4% for x1(s),
and decrease from 13% to 4% and to 1% for the probability that x1
will win the battle. However, the battle time, s, remains about 7%
too short even after scaling up the number of entities
proportionally. h

A simple example of how elimination of stochasticity can block
phenomena such as extinction and persistent excitations/oscilla-
tions is as follows.

Example 3 (A prey-predator model with prey competition). A
deterministic Lotka–Volterra model [29], where competition
between prey is added [8], is represented by:

dx1=dt ¼ a � x1 � b � x1x2 � k � x2
1

dx2=dt ¼ c � x1x2 � d � x2

where x1 is the number of prey and x2 the number of predators. The
prey will breed as f1 = a � x1, be reduced by predators as f2 = b � x1x2

and also by intra-species competition as f3 ¼ k � x2
1, where f1 is an in-

flow to and f2 and f3 are outflows from x1. The predators will breed
as f4 = c � x1x2 because of food and will be reduced as f5 = d � x2 be-
cause of natural deaths, where f4 is an inflow to and f5 is an outflow
from x2.
Fig. 3. (a) Three stochastic simulation runs starting at (10,8). The dotted diagonal demarc
form of hyperbolas. The straight line of equilibrium between the forces has the equatio
This system of equations has three stable equilibrium solutions,
which are analytically obtained by setting the derivatives equal to
zero and solving the resulting algebraic equations. These are
(x1 = 0,x2 = 0), (x1 = a/k, x2 = 0) and (x1 = d/c,x2 = a/b � kd/bc), cor-
responding to no prey or predators, only prey, and both prey and
predators, respectively.

When simulating this model, the outcome will depend on the
initial values of x1(0) and x2(0). If they are both set to zero they will
remain so. If only x2(0) is set to zero a logistic solution is obtained,
while if both x1(0) and x2(0) are non-zero, we obtain a solution
where both species will coexist. In a phase plane the stability
regions are strictly separated and a species can recover even from,
say, 10�10 entities!

For a corresponding stochastic model with discrete entities
[24,30], where Dt � fi is replaced by Po[Dt � fi]; i = 1 . . .5, the system
will never relax but will be persistently excited. Furthermore, the
stochastic model can go from a region where x1 – 0 and x2 – 0 to a
region where x1 – 0 and x2 = 0 or to a region where x1 = 0 and
x2 – 0, leading to x1 = 0 and x2 = 0, but not in opposite directions,
meaning that one or both species may become extinct. See Fig. 4.

For the deterministic model starting within x1 – 0, x2 – 0, the
solution is trapped in the region where both x1 and x2 are strictly
positive. The trajectories of the deterministic model will then
converge towards x1 = d/c, x2 = a/b � kd/bc. The stochastic model,
which has a non-zero probability of reaching x2 = 0 or x1 = 0
(leading to x2 = 0), will do so sooner or later if the simulation is
long enough, or will do so in a fraction of N simulations if N is large
enough. The absorbing states (x1 – 0, x2 = 0) and (x1 = 0, x2 = 0) will
then affect the expected values of the stochastic model results.

To make the discussion more general, the phase plane of x1 and
x2 is rescaled to x1/(d/c) and x2/(a/b � kd/bc) in Fig. 5, so that the
deterministic equilibrium point gets the coordinates (1, 1).

To examine what will happen when the stochastic and deter-
ministic models are scaled up, we double and quadruple the
deterministic equilibrium point from (60, 28) to (120, 56) and to
ates the areas where x1 and x2 have the advantages. (b) Deterministic trajectories in
n x2 ¼

ffiffiffiffiffiffiffiffi
a=b

p
� x1 (here a = b).



Fig. 4. Results from the prey-predator models of Example 3 with a = 0.2, b = 0.005, c = 0.005, d = 0.3, k = 0.001 and x1(0) = 90, x2(0) = 28. (a) Deterministic simulation. (b) A
Poisson Simulation run. The stochastic oscillations are persistent, but at about 400 time units the predators x2 become extinct, making the prey x1 behave in a logistic manner.
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(240, 112). With five parameters, this can be accomplished in
different ways. We did so by doubling and quadrupling the values
of a and d. The effects of the up-scaling are shown in Table 1.

As seen from Table 1, the deterministic equilibrium values were
somewhat lower for x1 and higher for x2 than the stochastic
averages (until extinction or 1000 time units). In relative terms this
deviation of course decreases with scale.

The risk of extinction in the stochastic model decreases heavily
for the larger scale. The deterministic model cannot pick up this
risk, but for a sufficiently large scale this effect can be neglected
and the deterministic model can be used.

The average distance from the equilibrium point for
the stochastic model is calculated by: DistðtÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1ðtÞ � d=cÞ2 þ ðx2ðtÞ � a=b� kd=bcÞ2

q
and Av dist ¼

R sim time
0

distðtÞdt=sim time.
As seen the average distance will increase in absolute numbers

when the model is scaled up, but it will decrease in relative terms.
This gives another view of the deterministic model, which cannot
reflect the variations, but at least gives a reasonable average for the
variations when the scale ‘grants’ no extinction.
Fig. 5. Phase planes for the scaled variables x1/(d/c) and x2/(a/b � kd/bc) with a = 0.2, b =
starting at the deterministic equilibrium x1(0) = d/c and x2 = a/b � kd/bc hits the absorb
x2 = a/b � kd/bc from all points within the first quadrant of the phase plane. Starting on t
axis it will proceed to the origin.
In the stochastic model variations are continuously generated
by demographic stochasticity but these variations are damped by
the competition coefficient k. In the deterministic model only the
damping remains and takes the model to an equilibrium. The
magnitude of k is crucial for possible extinction, and thus affects
when a deterministic model might be useful.
5. Large flows where the local linearised dynamics is
asymptotically stable

Now to one of our main questions: Can a population model with
demographic stochasticity be simplified into a system of deterministic
difference equations without producing biased state variables? The
answer is affirmative for two different cases, discussed in this
and the following section.

The first case where deterministic modelling generates unbi-
ased state variables is when the flows stay so large that they can
always be considered continuous, and where the dynamics around
its trajectory is also locally asymptotically stable. A large flow of
entities expressed by Po[m] will then have small and symmetrical
0.005, c = 0.005, d = 0.3, k = 0.001. (a) A stochastic trajectory from a simulation run
ing x1-axes. (b) A deterministic trajectory seeks its equilibrium point: x1 = d/c and
he x1-axis it will continue logistically to x1/dc = ac/kd = 3.33, and starting on the x2-



Table 1
Results from 1000 simulation runs over 1000 time units of the stochastic model with parameters a and d doubled and quadrupled.

ðd=c; a=b� kd=bcÞ Stochastic
average

Average distance from
ðd=c; a=b� kd=bcÞ

P (extinction before 1000 time
units)

Average simulation time (until extinction or 1000
time units)

ð60;28Þ (61.5, 26.4) 24.6 88.6% 439.8
ð120;56Þ (122.8, 54.7) 35.7 9.8% 949.0
ð240;112Þ (242.5, 110.8) 49.6 0.1% 999.8
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variations around the mean value m. This is directly seen in that
Po[m] approaches N[m,

p
m] (in N[l,r] notation) when m increases.

The relative variations
p

m/m will then approach zero and the nor-
mal distribution approaches a point distribution.

More specifically, for one class of models it can be shown that
there exist non-linear deterministic models for which xd � E[xs(t)]
for large flows. These models have asymptotically stable, local lin-
earised dynamics that govern perturbations around the trajectory
produced by the deterministic model. For large flows and fixed
stopping time criteria, the difference between trajectories of the
stochastic and the deterministic models can then be approximated
as being generated by a set of relatively small zero mean Gaussian
disturbances, acting on a stable, linearised perturbation model. The
resulting perturbations then have approximately zero means. See
Appendix A.

In the literature, a (sufficiently) large population or large sub-
populations are sometimes taken as a justification for using a
deterministic model [6,11]. The concept ‘large population’ is
avoided in this paper in favour of ‘large flows’, for two reasons. First,
the size of a flow, Po[m], decides whether the variations around m
can be regarded as relatively small. Second, although ‘a sufficiently
large population’ may also scale the flows to be large, a focus on
population size is misleading. A population can be very large, but
a flow to, from or between compartments may still be small be-
cause of a small transition probability or a small subpopulation.
What might happen when one compartment holds a small subpop-
ulation, although the total population is large, is demonstrated by
the following example.

Example 4 (An epidemic SIR model). Models of infectious diseases
are often based on a sequence of the three consecutive stages:
Susceptible, Infectious and Recovered. Such a model is therefore
denoted an SIR model. The first SIR model was published by
Kermack and McKendrick in 1927 [31].

The model has the following setting: The population, consisting
of N individuals, is exposed to an infectious disease. Every
individual of the population meets every other under equal
conditions in each time unit. When a susceptible individual meets
an infectious, the risk per time unit that the former becomes
infected is b and the expected sojourn time in the infectious stage
has an exponential distribution with the average of T time units.
Using the Euler algorithm, the stochastic model takes the form:

Sðt þ DtÞ ¼ SðtÞ � Dt � f 1ðtÞ
Iðt þ DtÞ ¼ IðtÞ þ Dt � f 1ðtÞ � Dt � f 2ðtÞ
Rðt þ DtÞ ¼ RðtÞ þ Dt � f 2ðtÞ
Dt � f 1ðtÞ ¼ Po½Dt � b � SðtÞ � IðtÞ�
Dt � f 2ðtÞ ¼ Po½Dt � IðtÞ=T�:

The embedded, deterministic model is easily obtained by eliminat-
ing the Po[] operators of the last two equations.

The initial population N = S + I + R here consists of 1000 sus-
ceptible individuals, a single infectious individual and no recovered
individuals. The infection rate parameter is set to b = 0.0003 per
individual and time unit and the sojourn time in the infectious
compartment is T = 4 time units.
Simulations of the stochastic SIR model to study the number of
susceptible individuals being infected, S(0)�S(1), give an ensem-
ble of results with the average value of 53.1 [95% C.I. 50.8–55.5]
individuals falling ill. However, the corresponding deterministic
model produces 318.5 individuals. Thus the large relative error
[(Deterministic result–Stochastic estimate)/Stochastic estimate] is
500 percent.

The reason why the deterministic model distorts the results is
because the initial infectious subpopulation I(0) is small, although
the total population N is large. There is then a large chance that the
single infectious individual will recover before infecting another
susceptible, so that no epidemic will occur. The probability of such
an ‘extinction of an outbreak’ is P[extinction] � R�Ið0Þ;

0 (and gives
P½outbreak� � 1� R�Ið0Þ

0 ); where R0 = b � S(0) � T is ‘the basic repro-
duction number’. For R0 = 1.2 we get P[outbreak] � 0.1667. Con-
sidering this we can adjust the deterministic results by
P[outbreak] � Deterministic_result � 0.1667 � 318.5 = 53.08. This for-
mula gives a good adjustment for large N and small I(0) and when
R0 > 1.

The parameter values and the initial conditions chosen in this
example created a very large relative error. Now we will investi-
gate what happens for other parameter values of R0 = b � S(0) � T
and initial values I(0) of the initial number of infectious.

To explain what happens for different I(0) and R0, we regard the
state space of S versus I in Fig. 6. (The number of recovered, R, is not
of interest here since it does not intervene in the equations of S and
I. R can afterwards be calculated algebraically by R = N � S � I.)

To study the scale effect of different sizes of the population, N,
we can rewrite b = b/N (e.g. b = 3 and N � S). Then when starting
with I(0)/N the fraction of the population acquiring the disease is
the same for e.g. N � S = 1000, 10000, 100000 and 1000000 as well
as the trajectories in the phase space of S/N versus I/N.

The relative errors of the number of infected individuals
(S(0) � S(End) � R � I(0)) caused by using a deterministic model
are shown in Table 2 for R0 = 1, 1.2, 2, 5 and 10 (obtained by
varying b) and for I(0) = 1, 2, 5 and 10.

As seen from Table 2, the error from using a deterministic
model is significant if one of R0 and I(0) is not large. Remember that
an epidemic in a population usually starts with one or a few
infectious individuals. h

The stochastic model (3) presented in Section 2 updates xs,i(t)
over the time interval (t,t + Dt) by the terms Po[Dt � gi(xs(t), t)]
and Po[Dt � hi(xs(t),t)], where Dt for dynamic reasons has to be suf-
ficiently smaller than the smallest time constant of the model.
However, Dt can be arbitrarily small to increase precision and
E[Po[Dt � f]] = E[Po[1

2Dt � f] + Po[1
2Dt � f]] so Dt � f is not a good mea-

sure of the size of m when evaluating how Po[m] approaches
N[m,

p
m]. The size of f(xs(t),t) is also not a suitable option because

its dimension is the number of entities per time unit, and we can
use any period (century, month, second) as time unit.

Therefore, the size of m should be the number transferred dur-
ing a time interval (t,t + Ds), where Ds is the time during which
f(xs(t),t) can be regarded as sufficiently constant. It is not a trivial
task to estimate when the stochastic flows are large enough to
be approximated by deterministic flows without producing too
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much bias in the state variables. This complexity is best avoided by
testing whether the stochastic model and its embedded determin-
istic model will produce sufficiently similar results for the particu-
lar question at study. See Section 10.

For locally unstable non-linear deterministic models, it is possi-
ble to construct simple stochastic models of arbitrarily large popula-
tions and flows where the embedded deterministic model produces
large biases in the state variables, as shown by the next example.

Example 5 (Lotka–Volterra model). The stochastic model of Exam-
ple 3, but without the competition term, is given by:

x1ðt þ DtÞ ¼ x1ðtÞ þ Po½Dt � a � x1ðtÞ� � Po½Dt � b � x1ðtÞx2ðtÞ�
x2ðt þ DtÞ ¼ x2ðtÞ þ Po½Dt � c � x1ðtÞx2ðtÞ� � Po½Dt � d � x2ðtÞ�

and its embedded deterministic model is:

x1ðt þ DtÞ ¼ x1ðtÞ þ Dt � a � x1ðtÞ � Dt � b � x1ðtÞx2ðtÞ
x2ðt þ DtÞ ¼ x2ðtÞ þ Dt � c � x1ðtÞx2ðtÞ � Dt � d � x2ðtÞ

Both models orbit in x1 � x2 space around the equilibrium point
x1eq = d/c, x2eq = a/b. For the deterministic model, the local linearised
dynamics governing perturbations will not be asymptotically stable
over the whole orbit cycle.

Now, we can choose the parameters a, b, c and d so that x1eq and
x2eq take any large values. Then by choosing x1(0) and x2(0), the
trajectory is an orbit that has e.g. x1min = x1eq/2 and x2min = x2eq/2 so
that both x1(t) and x2(t) and all flows remain very large for all t.
However, this will not grant unbiased state variables. The stochas-
tic model will sometimes jump outwards and sometimes inwards
in a random-walk like fashion, but larger orbits require somewhat
longer orbit times than smaller orbits. Therefore, the phase of the
stochastic orbits will drift somewhat relative to that of the
deterministic orbit. This drift will accumulate over time.

Now, consider the state variable x1(T) after a long time T. Then
E[x1s(T)] will be close to x1eq, while the deterministic state variable
x1d(T) can take any value between 0.5x1eq and (about) 1.5x1eq. In
particular, if x1d(T) is a peak value, the bias can be as large as 1/
2x1eq. h
6 The concept ‘positive system’ includes both the case xi > 0 and the case xi P 0. In
this paper we are mainly interested in the non-negative case xi P 0.
6. Positive linear systems studied over a fixed time interval

We now investigate whether any class of embedded determin-
istic models will produce unbiased state variables (relative to a
demographically stochastic population model) when the flows
are not large. For a subclass of linear systems the answer is yes,
provided that the question under study can be answered by simu-
lation over a fixed time interval.

6.1. Heuristic discussion of conditions for unbiased state variables

Consider one equation of the demographically stochastic model
given by the system of Eq. (3) where the index i is dropped:

xsðt þ DtÞ ¼ xsðtÞ þ Po½Dt � gðxsðtÞ; tÞ� � Po½Dt � hðxsðtÞ; tÞ�:

Consider the corresponding equation of the embedded determinis-
tic model (4):

xdðt þ DtÞ ¼ xdðtÞ þ Dt � gðxdðtÞ; tÞ � Dt � hðxdðtÞ; tÞ:

Now assume that the deterministic model has produced unbiased
state variables up to time t. Then to remain unbiased, it is required
that:

E½xsðt þ DtÞ� ¼ xdðt þ DtÞ; E½xsðt þ 2DtÞ� ¼ xdðt þ 2DtÞ; . . .

Since x is only updated by inflows (i.e. by Po[Dt � g(xs(t),t)] and
Dt � g(xd(t),t)) and/or by outflows (i.e. by Po[Dt � h(xs(t),t)] and
Dt � h(xd(t),t)), unbiasedness requires that:
E½Po½Dt � gðxðtÞ; tÞ�� � E½Po½Dt � hðxðtÞ; tÞ��
¼ Dt � gðxðtÞ; tÞ � Dt � hðxðtÞ; tÞ is true for all t:

A sufficient condition for this to hold is that:

E½Po½Dt � gðxðtÞ; tÞ�� ¼ Dt � gðxðtÞ; tÞ and E½Po½Dt � hðxðtÞ; tÞ��
¼ Dt � hðxðtÞ; tÞ; for all t:
6.1.1. Reason for requiring linearity
When Po[Dt � f(xs(t),t)] (where f denotes g or h) is executed, the

argument is sent to a random number generator returning a Pois-
son-distributed outcome that (provided the argument is nonnega-
tive) on average equals the argument; i.e. E[Po[Dt � f(xs(t), t)]] =
Dt � f(xs(t), t). This means that if xs(t) = xd(t) then E[xs(t + Dt)] = xd(-
t + Dt). However, the result of the Poisson sampling from many
simulation runs is an ensemble of dispersed outcomes of xs(t + Dt).
This ensemble dispersion will create bias for the next time-step
t + 2Dt unless the argument is a linear function of the state vari-
ables. Thus, linearity is a necessary condition to keep exact unbi-
asedness of the state variables from time t + 2Dt onwards.

6.1.2. Reason for requiring positivity6

A real population or subpopulation can, of course, not be smal-
ler than zero. However, for a model (not guarded by xi P 0) the size
of a sub-population xi may become negative. (This can happen in
the linear Lanchester’s model of warfare, see Example 2 in Section 4).
One then has the choice of either including a guarding mechanism
that after extinction prevents further reduction of the subpopula-
tion or of ending the analysis/simulation run when extinction hap-
pens. If one wants to continue the solution/execution of the model
beyond the time of extinction of the subpopulation, the guarding
mechanism will introduce a non-linearity. On the other hand, if
the analysis/simulation run is ended when the extinction occurs,
one cannot use a fixed stopping time criterion. In both cases, the
unbiasedness is lost. Thus, positivity is a necessary condition for
unbiasedness of the state variables.

6.1.3. Reason for requiring a fixed stopping time criterion
That linearity and positivity together are not sufficient to secure

unbiased results is shown by the following example.

Example 6 (Time independent failure rate). Consider a simple first
order, positive, linear model describing the failure of N entities, e.g.
lamps in a room. Let x(t) represent the number of functioning (or
surviving) entities at time t, with the failure rate constant a per
time unit. The stochastic population model: x(t + Dt) =
x(t) � Po[Dt � a � x(t)] and the embedded deterministic model:
x(t + Dt) = x(t) � Dt � a � x(t) of x(0) = N functioning entities are
studied. For all fixed time intervals, 0 to T, the expected number
of functioning entities E[x(T)] in a stochastic model will then be
equal to the state variable value of the deterministic model.

However, the answer to questions such as ‘When does there
remain M functioning entities?’ (M < N) will produce different
answers for the stochastic and the deterministic models. For a = 0.1
time units�1 and N = 10, the deterministic model will have M = 1
remaining functioning entities at 23.0 time units, while the
stochastic model gives an estimated 19.3 time units until M = 1
(95% C.I. 19.1 to 19.4). The deterministic result is thus here 19
percent too large. The time until all entities fail is 29.3 time units
(95% C.I. 29.0 to 29.5) according to the stochastic model, rather than
infinity (obtained from the deterministic model).



Fig. 6. A phase plane over S and I of the SIR model. (a) Six replications of the stochastic model (whereof three with extinction). (b) Trajectories for the deterministic model
with S(0) = 1000 and I(0) = 1, 50 and 100 infectious individuals with Ro = 1.2 and also for I(0) = 1 with Ro = 1.2, 2 and 5 are shown.

Table 2
Relative errors caused by the use of a deterministic model for some R0 and I(0). The
table area where the relative errors from using a deterministic model is below 5
percent is given in bold.

Ið0Þ

1 2 5 10

R0

1 2.42 1.44 0.66 0.32
1.2 5.00 2.26 0.72 0.28
2 0.95 0.33 0.03 0.003
5 0.24 0.04 0.001 0.000
10 0.11 0.014 0.000 0.000
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We see that the size of the error from the deterministic model is
related to the final number of functioning entities when using a
time-indefinite stopping criterion. The error is only large when this
final number is small or zero. h
6.2. Positive linear deterministic and stochastic models studied over a
fixed time interval

So far, we have found that non-linearity, populations that must
be protected from being negative, or criteria other than those
based on a fixed study time will produce biased state variables in
a deterministic model, in cases where flows cannot be ensured to
be large at all times. In this subsection we therefore restrict the
study to the class of so-called positive (non-negative) linear sys-
tems studied under a fixed stopping time criterion. The following
theorem relates the solutions of a stochastic model and its embed-
ded deterministic model.

Theorem 1. For a stochastic system of the linear form

xs;iðt þ DtÞ ¼ xs;iðtÞ þ RjPo½Dt � aij � xs;jðtÞ� þ Po½Dt � biðtÞ�
� RjPo½Dt � cij � xs;jðtÞ� � Po½Dt � diðtÞ�; i ¼ 1 . . . n ð5Þ
where all aij, bi, cij and di P 0, the expected value of the solution over
time equals the solution of the embedded deterministic system

xd;iðt þ DtÞ ¼ xd;iðtÞ þ RjDt � aij � xd;;jðtÞ þ Dt � biðtÞ
� RjDt � cijxd;jðtÞ � Dt � diðtÞ; i ¼ 1 . . . n ð6Þ

as long as all state variables xs,i and xd,i remain non-negative.

For a proof, see Appendix B.
The task now is to characterise when the system has the prop-

erty that its state variables, xi, will remain non-negative. This issue
is first examined for the deterministic model, for which there exist
necessary and sufficient conditions. For the stochastic model, suf-
ficient conditions exist but are stricter than those for the corre-
sponding deterministic model.

6.2.1. Positivity for deterministic linear models
A model (4) that is linear implies that: g = Ax + b and h = Cx + d,

where g = (g1(x(t),t), . . . ,gn(x(t),t))T and h = (h1(x(t),t),. . . ,hn(x(t),t))T.
Then the deterministic model in vector form (without the guard
to keep xi P 0) is:

xdðt þ DtÞ ¼ xdðtÞ þ Dt � ½ðA� CÞxdðtÞ þ ðb� dÞ�
¼ xdðtÞ þ Dt � ½QxdðtÞ þ r�: ð7Þ

Linear systems dx/dt = Qx + r that remain non-negative, i.e. where
all xi P 0 for all time, are denoted positive (non-negative) linear
systems.

For positive linear systems there exists a number of powerful
theorems for analysis. For example, dominant eigenvalues simplify
the analysis of long-term behaviour. Furthermore, there is a direct
correspondence between the existence of a positive equilibrium
point and stability. For a stable system at rest at its equilibrium
point, there are powerful statements about what happens when
some parameter of the system is slightly modified, see [8].

A homogeneous nth order linear differential equation has the
form: dx(t)/dt = Qx(t); where Q is a real n � n system matrix with
the elements qij. If qij P 0 for all i – j, in other words if all non-
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diagonal elements are non-negative, then Q is called a Metzler
matrix. This is a necessary and sufficient condition for the homoge-
neous linear system to be non-negative.

Example 6 continued: A deterministic model of entities with
time independent failure rate is: dx/dt = �ax. Since only the diago-
nal element ‘ � a’ is negative, Q = [�a] is a Metzler matrix and the
model is a positive (non-negative) linear system, so x will always
remain non-negative. h

Example 2 continued: Lanchester’s model of warfare is a linear
system but the matrix Q is not a Metzler matrix since the elements
q12 = �b and q21 = �a are negative, so this system is not a non-neg-
ative one. h

A non-homogeneous linear differential equation has an addi-
tional external driving force vector r of n components ri;
i = 1,2, . . . ,n. The system then has the form: dx(t)/dt = Qx(t) + r. This
system is positive if and only if Q is a Metzler matrix and the vector
r is non-negative (all ri P 0).
6.2.2. Positivity for stochastic linear models
For a stochastic linear model

xsðt þ DtÞ ¼ xsðtÞ þ Po½Dt � AxsðtÞ� þ Po½Dt � b� � Po½Dt � CxsðtÞ�
� Po½Dt � d�; ð8Þ

chance may still produce a larger number of departures than of
arrivals causing a component of xs to be negative, even when the
corresponding deterministic model remains positive.

To ensure that all sub-populations in (8) remain non-negative,
inflows by A and b will cause no problem, but the C-matrix must
be limited to diagonal elements and the vector d must be removed.

The sub-class of linear stochastic models (8) that will grant pos-
itivity (non-negativity) in a general case is very restricted. How-
ever, a specific model where the C-matrix has non-zero elements
off the diagonal, or where the d-vector has non-zero elements,
may in practice stay positive during a specified time interval of
study. However, this must then be tested for that specific model
under given initial and parameter values and the actual stopping
criterion, as outlined in Section 10.
7 Of course, the initial distribution must cover only positive values. For example a
Normal[l,r] distribution always has a (perhaps theoretical) risk of returning negative
values!
7. Bias from neglecting initial value stochasticity

So far, only the consequences of removing demographic sto-
chasticity have been examined. Stochastics can also enter into ini-
tial values (1E). Consideration of initial value stochasticity may be
important in a number of situations. For example:

� The initial situation is unclear because of lacking information,
bad measurements, etc.
� In a randomised cohort trial, one cohort of n cases to be exposed

and another of m reference cases to remain unexposed are ran-
domly sampled from a population to see whether they will
develop a certain disease during a follow-up period. However,
a certain fraction p of the population already has the disease,
although not diagnosed. If p is not negligibly small, the exposed
and unexposed cohorts must be initialised by Bi[n,p] and
Bi[m,p] distributions, respectively. Otherwise, the variations
and thus the confidence intervals around the results will
become too small.
� There are also cases where the distributions of initial values are

theoretically known. A linear population system (without phys-
ical feedback) starting in a stationary state is being studied. The
state variables are then Poisson-distributed around an average
value [26,27,32,33]. To not disturb the stationary situation,
the initial values must also be drawn from these distributions.
In this section the issue is what might happen when stochastic
initial values are replaced by deterministic averages in terms of
bias in state variables.

Theorem 1 states that for positive linear models, the determin-
istic model will follow the average of the demographic stochastic
model, even though the solution of the latter model for each step
is split up in a dispersed distribution. In the proof of this theorem
(Appendix B), this split-up after one time-step can be taken as a
distribution of initial values, although here it is based on the Pois-
son distribution. However, ‘Step II’ of this proof does not depend on
a particular distribution. It requires only that the split-up distribu-
tion has the same average as the deterministic model, and that this
distribution is normalised to unity. Thus, stochasticity in initial val-
ues will not create biased state variables in a linear model as long
as the state variables remain nonnegative.7

However, for a non-linear model, the situation is different.

Example 7 (SIR epidemics with random initial values). Assume that
a group of n = 3 persons are returning after visiting an infected
area. For simplicity, we assume equal probabilities of 0, 1, 2 and 3
persons returning infected.

With four models we investigate a possible epidemic among the
population of 1000 individuals: (1) A stochastic model where
demographic and initial value stochasticity are included. (2) A
model with only demographic stochasticity. (3) A model with only
initial value stochasticity. (4) A deterministic model.

Assumptions from Example 4 are used: b = 0.0003 per individ-
ual and time unit, T = 4 time units. Further, in the cases of
deterministic initial values, the average initial number of infectious
persons, Av_I0 = 1.5, is used. To keep the total population constant
at 1000 persons, the number of susceptibles, S, is initiated to:
S0 = 1000 � Av_I0.

As can be seen from Table 3, removing initial value stochasticity
increases the expected number of persons (including the originally
infected) getting the disease from 71.5 to 98. Using the ‘fully
stochastic model ’(1) as reference this gives a relative error of 37%.
Keeping the initial values stochastic but instead removing the
demographic stochasticity changes the number of infected persons
to 239.5 (a relative error of 235%), and removing both demographic
and initial value stochasticity changes it to 317 (a relative error of
343%). The deterministic model may thus obtain a considerable
bias, and neglecting initial value stochasticity contributes to this
bias. h
8. Bias from neglecting environmental stochasticity

The concept ‘environmental stochasticity’ [1,2] is somewhat va-
gue. Here it is used as synonymous with parametric stochasticity.
Environmental stochasticities are introduced in the parameter
equations (1F) by making parameters stochastic.

Unlike the intrinsic demographic stochasticity, which is com-
pletely specified by the model structure and the actual number
of entities, environmental stochasticity is used to describe lack of
knowledge about various types of influences and irregularities
from the environment. Such irregularities may be variations in
temperature, wind, precipitation, food supply, pollution, noise, or
disturbances of any kind. To include such external irregularities
in a model, the value of a parameter is sampled from an appropri-
ate statistical distribution to describe the variations in e.g. fertility,
mortality, risk, reaction speed, etc. This statistical distribution may
have several parameters. When and how often a new sample from
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the distribution should be drawn may also be described by some
statistical function. There may also be correlation between consec-
utive sample values.

Here we are interested in whether elimination of environmental
stochastics might introduce bias in state variables. Using (3), elim-
ination of environmental stochastics would produce a vanishing
approximation error in the state variables if

xs;iðt þ DtÞ ¼ xs;iðtÞ þ Po½Dt � giðxsðtÞ;psðtÞ; tÞ�
� Po½Dt � hiðxsðtÞ;psðtÞ; tÞ� and xi P 0; i ¼ 1 . . . n;

� xs;iðtÞ þ Po½Dt � E½giðxsðtÞ;psðtÞ; tÞ��
� Po½Dt � E½hiðxsðtÞ;psðtÞ; tÞ�� and xi P 0; i ¼ 1 . . . n; ð9Þ

where E[.] represents averaging with respect to the parameter vec-
tor ps(t) with the components ps,j, j = 1 . . .q. (Removal of also the
demographic stochasticity would then result in the deterministic
model (4).)

Approximation of solutions of difference, or differential equa-
tions, by averaging over some of the variables, in particular averag-
ing over high-frequency periodic functions, has a long tradition.
Averaging over stochastic parameters has been used e.g. in the
analysis of recursive parameter estimation algorithms [34–36].
While not directly applicable to the present problem, these meth-
ods and results indicate that one can only hope to attain the
approximations (9) asymptotically, in the limit of fast time vari-
ability of the parameters ps,j(t) relative to the variability of all state
variables. Furthermore, it would in general lead to erroneous re-
sults to average the parameters directly, by using pav,j = E[ps,j(t)].
These points are illustrated below.

8.1. Averaging over fast time-varying parameters

Example 8 (An exponential growth model with fast time-varying
environmental stochasticity). Let a population x(t) grow according
to the first order equation:

xðt þ DtÞ ¼ xðtÞ þ Po½Dt � xðtÞ=sðtÞ�; xð0Þ ¼ 1; ð10Þ

where the time constant s(t) is a randomly varying parameter. This
linear model is studied during the fixed time interval 0 . . .T, where
Table 3
The number of susceptible individuals falling ill, S(0)–S(1), with 95% C.I. based on
10,000 simulation runs.

Model type Number of infected

(1) Demographic and initial value stochasticity 71.5 (68.8–74.2)
(2) Only demographic stochasticity 98.0 (95.0–100.9)
(3) Only initial value stochasticity 239.5 (236.7–242.2)
(4) Deterministic 317.0

Table 4
The value of x(T) with 95% C.I. based on 10,000 simulation runs.

Fixed s for Models 2 and 3 Model 1 (xss): environmental and demographic stochasti

sav = 1.8205 235.7(231.1–240.2)
saa = 2 same as above

Table 5
The expected value of x(T) with 95% C.I. based on 10,000 simulation runs.

Sampling interval Model 1: environmental and demographic stochasticity

d = 0.02 time units 235.7 (231.1–240.2)
d = 1 time unit 276.9 (269.4–284.3)
d = 5 time units 575.9 (540.6–611.2)
d = 10 = T time units 1358.8 (1262.7–1454.9)
T = 10 time units. Assuming s(t) to have a uniform distribution be-
tween 1 and 3 time units, U[1,3] so that the pdf f(s) has the value 1/
2 for 1 6 s 6 3 and zero otherwise. It is assumed here that s(t) var-
ies over time very much faster than the time constant of the process
(1 to 3 time units); say a new sample after each interval of d = 0.02
time units.

Three models are compared. Model 1 has both demographic
and environmental stochasticity, Model 2 only demographic
stochasticity and model 3 is deterministic. Averaging of Model 1
by (9) gives the model with demographic stochasticity only:

xðt þ DtÞ ¼ xðtÞ þ Po½Dt � xðtÞE½1=sðtÞ�� ¼ xðtÞ þ Po½Dt � xðtÞ½1=s�av �;

where

½1=s�av ¼
Z 3

1

1
sðtÞ

� �
f ðsÞds ¼ lnð3Þ

2
� 1

1:8205
;

corresponding to an effective average: sav = 1.8205.
As a comparison, a direct arithmetic average over the U[1,3]

distribution of s(t) would give the fixed parameter value saa = 2.
The expected values of x(T) based on 10,000 simulation runs are
shown in Table 4.

With appropriately performed averaging of the very fast time-
varying parameter s, very good agreement is obtained. Using the
arithmetic average saa = 2 gives very biased state variables (about
39 percent too small). h
8.2. Slow parameter variations

We proceed with more realistic cases where the parameter s(t)
changes slowly or remains constant within a simulation run
.

Example 8 continued: The population x(t) grows according to
(10) where s(t) is sampled from a U[1,3] distribution. We investi-
gate the omission of environmental stochasticity when the values
of s(t) are to be resampled with different sampling intervals, d: The
cases d	 the (varying) time constant, d � the time constant, and
d
 the time constant (the last case implying a new, fixed value of
s only for each simulation run) are considered. The average value
of sav is set to 2/ln(3) � 1.8205 when environmental stochasticity
is omitted. The expected values of x(T) of the three models with
different sampling intervals d are summarised in Table 5.

The expected value of x(T) of the model with both environmen-
tal and demographic stochasticity varies strongly with the resam-
pling interval d. This is also the case for a model with only
environmental stochasticity (not shown) giving values close to
those of Model 1 in Table 5. However the deterministic model
and the model with only demographic stochasticity produce very
biased estimates of x(T) when the sampling time is not very short.
The relative error for the deterministic model is negligible for
city Model 2 (xs): only demographic stochasticity Model 3 (xd): deterministic

236.0 (231.4–240.6) 235.8
143.7 (140.9–146.5) 144.8

Model 2: only demographic stochasticity Model 3: deterministic

236.0 (231.4–240.6) 235.8
same as above same as above
same as above same as above
same as above same as above
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d = 0.02 time units but rises to �15% for d = 1, to �59% for d = 5, and
to �83% for d = 10 time units.

Thus, neglecting environmental stochasticity, especially stoch-
astics that produce slow time variations of parameters of the sim-
ulation models, may cause large bias. A linear model simulated
over a fixed time interval was selected to emphasise that bias
due to neglecting environmental stochasticity is not a phenome-
non restricted to non-linear dynamics. An unstable model was se-
lected in these examples to amplify the studied effects, but similar
phenomena can be observed for locally stable models. h

This is just one example of the hazard of relying on determinis-
tic models. The hidden danger is that the modeller will not see the
implicit and often erroneous simplifications of using average val-
ues, because of lacking a reference model with environmental
stochasticity.
9. Biased results caused by non-linear output functions

Now, we discuss the coupling between state variables and study
results defined in terms of the output functions. The output func-
tion may create or increase bias from unbiased or little biased state
variables. The question is here technically formulated as: When
does a deterministic model with unbiased state variables also pro-
duce unbiased results?

The algebraic and deterministic output equations in the models
(3) and (4) are:

ys;kðtÞ ¼ ckðxsðtÞ; tÞ; k ¼ 1 . . . m ð11Þ

and

yd;kðtÞ ¼ ckðxdðtÞ; tÞ; k ¼ 1 . . . m ð12Þ

The output can e.g. be a state variable of interest, y = x2, or the bio-
mass of three species, y = w1x1 + w2x2 + w3x3, where wi are average
weights for the species. It can be a ratio (y = x1/x2), a fraction
(y = x1/(x1 + x2)) or a non-linear cost function y = f(x,t). The output
y can be a counter of specific events. For example, dx/dt = ax � bx2

will approach a/b logistically. If then y is a counter for the number
of times x(t) will exceed a/b + 1, very different results may be ob-
tained by the deterministic and the corresponding stochastic model.

Assume linear output functions, ys,k, of the state variables:

ys;k ¼ ckðxsðtÞ; tÞ ¼ RtðRiaikðtÞxs;iðtÞ þ bkðtÞÞ; i ¼ 1 . . . n; t

¼ 0;Dt;2Dt . . . T ð13Þ

for deterministic parameters aik(t) and bk(t) 2 R, and similarily for
yd,k. If the deterministic state variables are unbiased (xd,i(t) = E[xs,i(-
t)]), then this will also secure unbiased results:

E½ys;kðtÞ� ¼ E½ckðxsðtÞ; tÞ� ¼ RtðRiaikðtÞE½xs;iðtÞ� þ bkðtÞÞ
¼ RtðRiaikðtÞxd;iðtÞ þ bkðtÞÞ ¼ yd;kðtÞ; i ¼ 1 . . . n; t

¼ 0;Dt;2Dt . . . T: ð14Þ

On the other hand, if an output function ck(x(t),t) is non-linear in x,
then the output yd will deviate from E[ys]. Say that two simulation
runs of the stochastic model give the results n + Dn and n � Dn,
respectively, and that the deterministic model gives n. If the output
function is y = x2, then the stochastic result will be E[ys] = 1/
2[(n + Dn)2 + (n � Dn)2] = n2 + Dn2, while yd = n2. For e.g. n = 4 and
Dn = 2 this gives yd = 16 instead of E[ys] = 20 (a relative error of
�20%).

Thus unbiased state variables will produce an unbiased result if
and only if the output function utilised is linear in the state
variables.
10. A pragmatic approach requires testing of the specific model

This paper highlights the phenomena that cause results from a
deterministic model of a population to be biased.

In Sections 5 and 6 two mathematical classes of embedded
deterministic models securing unbiased state variables, obtained
by removing demographic stochasticity, were identified. However,
the applicability of these results to a specific simulation study is
not completely straightforward. For example, what a ‘sufficiently
large’ flow is has to be answered in a pragmatic setting. Further-
more, the class of linear positive systems is very restricted and
models outside this class may remain non-negative given the spe-
cific initial conditions and time interval of the study. In particular,
Theorem 1 states more general conditions for how long a linear
deterministic model will remain unbiased. When also considering
environmental stochasticity to be omitted in the corresponding
deterministic model, some bias seems almost inevitable. Therefore,
a complete theoretical approach to the question of unbiasedness
remains out of reach.

From a pragmatic viewpoint, exact unbiasedness may not be re-
quired. A deterministic model with a sufficiently small bias may
still be useful. A pragmatic approach, therefore, should consider a
defined model under given conditions and issues to be answered
rather than a mathematical class of models. A practical way to test
whether a deterministic model will produce sufficiently unbiased
results is the following:

Run the stochastic model for, say, 10,000 simulation runs. Then run
the deterministic model once and compare whether the outcome is
within the confidence interval of the stochastic results. This must be
done for every specified purpose of the study.
11. Discussion and conclusions

There is an evident need for a comprehensive theory of popula-
tion modelling and simulation. The importance of such a theory
and of pragmatic guidelines is also magnified because of the very
many fields where population modelling and simulation is used.
The evolving theory described in [3] explains the relationships be-
tween stochastic entity-based (e.g. Discrete Event Simulation),
compartment-based (e.g. Poisson Simulation) and state-based
(e.g. Markov) population models and formulates the conditions
for these types of models to be mutually consistent. These types
of stochastic population models all incorporate demographic sto-
chasticity as an intrinsic property.

The current paper first expands this theory by exploring the
conditions for when demographic stochasticity can be omitted
without creating biased state variables. Then the consequences of
omitting initial value and environmental stochasticity are studied,
but in less detail. Finally it is shown that the output function, relat-
ing the state variables to study results, may also create bias.

A main conclusion is that no deterministic model of a popula-
tion will produce fully unbiased results for all possible questions
under study. Whether a deterministic model under the actual con-
ditions will produce insignificantly biased or unbiased results
should therefore usually be tested, by comparing its results with
those of a corresponding stochastic model.

The restricted classes of population models that have been
found where various types of stochasticity can be removed without
biasing the state variables or the results can be summarised as
follows:

� If the flows in a model with demographic stochastics only stay
large and if the local linearised dynamics is asymptotically sta-
ble, then unbiased state variables are approached in the limit of
large flows, over a fixed time interval.
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� For the class of linear dynamic systems, Theorem 1 states that a
deterministic model will produce unbiased state variables as
long as all state variables remain non-negative in the determin-
istic and in the demographically stochastic model. This also
requires that the question under study is compatible with a
solution over a fixed time interval. Unbiasedness here holds
for demographic stochasticity and initial value stochasticity.
� Unbiased state variables will produce unbiased results if, and

only if, the output function utilised is linear in the state
variables.

A deterministic model remains useful for special tasks, provided
that (sufficiently) unbiased results are produced. Such tasks can be
to obtain insights from mathematical analysis of average behav-
iour or to simplify parameter estimation, optimisation or sensitiv-
ity analysis.

Broadening the scope beyond this study to a pragmatic situa-
tion where the type of population model is to be selected (the
whole of Fig. 1), we advocate the use of a stochastic model. The
main reason (except for possible bias) is that a deterministic mod-
el, even when it produces unbiased results, will not say anything
about the variations. Even when an average of many simulation
runs of a stochastic model lies close to that from a deterministic
model, a single simulation run may well differ quite markedly from
it. If there is knowledge about the structure of the system under
study (and for population models there usually is),8 at least demo-
graphic stochasticity should usually be included (model (1) instead
of model (2)) to give some hint of the size of the stochastic
variations.

Regarding this from another angle, it may be argued that a sin-
gle set of observations is not sufficient to build and adjust a sto-
chastic model. However, the use of a single set of observations to
determine the properties and parameters of a deterministic model
is also problematic. The observed system behaviour may represent
an extreme outcome given the circumstances. A deterministic
model has to take these (possible extreme) observations as hard
facts, while a stochastic model will at least span a distribution of
outcomes. A similar conclusion is drawn by Renshaw in [13]: ‘‘In
practice inference is often drawn from a single set of observations,
and blind obedience to deterministic results is clearly courting
trouble. A deterministic model should always be conducted in par-
allel with a simulation study of a corresponding stochastic model.’’

This investigation shows the treacherous nature of determinis-
tic modelling of populations. One fundamental problem is that the
deterministic concepts force us to make a profound distortion of
reality by replacing entities by continuous quantities and irregu-
larly occurring events by smooth flows. Although this strongly sim-
plifies the modelling, it often excludes a number of real aspects and
phenomena and creates more or less biased results. In Table C.1 in
Appendix C the examples in this paper, demonstrating the various
reasons for bias, are listed.

From within the conceptual framework of deterministic model-
ling, the distortion of the entity concept and the omission of sto-
chasticity with subsequent effects on model behaviour is
invisible, so the effects of omitting stochasticity may fall outside
the scope of a deterministic modelling approach. Therefore, the
conclusion is that the modeller must be aware of the quagmire
of potential problems and that for all but the most trivial models,
the behaviour and results of a deterministic model of populations
must be tested against a corresponding stochastic model.

An important practical conclusion of this paper is that model-
lers should be very restrictive in their use of deterministic model-
8 Structural information such as: who eats whom, the successive sequence of
stages, what stages are infectious, etc. is usually known.
ling of populations. Disciplines dealing with population models
(ecology, epidemiology, etc.) should not base theories and studies
only on deterministic models.

Appendix A. Sufficient conditions for existence of deterministic
models with large flows creating asymptotically unbiased
results

Consider the stochastic population model (3) and the corre-
sponding embedded deterministic model (4) in vector form,
assuming xi(t) > 0 for all i = 1, . . . ,n for a fixed simulation time inter-
val t 2 [0,T]. Also let Ds represent the largest time-step acceptable
from a dynamic perspective:9

xdðt þ DsÞ ¼ xdðtÞ þ Ds � gðxdðtÞ; tÞ � Ds � hðxdðtÞ; tÞ; ðA:1Þ
xsðt þ DsÞ ¼ xsðtÞ þ Po½Ds � gðxsðtÞ; tÞ� � Po½Ds � hðxsðtÞ; tÞ�; ðA:2Þ
where xd(t) = (xd,1, . . . ,xd,n)T and xs(t) = (xs,1, . . . ,xs,n)T while
g = (g1(�), . . . ,gn(�))T, Po[Ds � g] = (Po[Ds � g1], . . . ,Po[Ds � gn])T and
likewise for h(�). The two models (A.1) and (A.2) are assumed to
be initialised at the same state vector x(0), with xi(0) P 0, i = 1, . . . ,n.

The dynamics of small perturbations Dx(t) of the state variables
in the deterministic model (A.1), so that x(t) = xd(t) + Dx(t), are gi-
ven by the local linearised dynamic system:

Dxðt þ DsÞ ¼ DxðtÞ þ Ds � AðtÞDxðtÞ � Ds � CðtÞDxðtÞ þwðtÞ; ðA:3Þ
where the matrices have components [A(t)]ij = @gi(x(t),t)/@xj(t) and
[C(t)]ij = @hi(x(t), t)/@xj(t), all evaluated at x(t) = xd(t), where all deriv-
atives are assumed to exist for all t 2 [0,T]. In Eq. (A.3) we have in-
cluded an additive external perturbation vector w(t) acting at time
t. This perturbation must be small relative to x(t) for the linearisa-
tion approximation (A.3) to remain valid.

Now assume the following conditions:

1. All components of the flows Ds�g(�) and Ds�h(�) in (A.1) have
very large numerical values for all t 2 [0,T].

2. The local linearised dynamics for a perturbation Dx(t),
described by (A.3), around xd(t), described by (A.1), exists and
is asymptotically stable for all t 2 [0,T].

Then we show that E[xs(t)] � xd(t), for all t 2 [0,T]. This is dem-
onstrated as follows. We focus on component i of the state variable
vectors in (A.1), (A.2) and (A.3), below denoted xd,i, xs,i and Dxi,
respectively. Under Condition 1, all flows stay large and are then
approximately normally distributed since:

Po½m� ! N½m;pm� as m !1:

Therefore, in the following we assume that:

Po½Ds � giðxsðtÞ; tÞ� � Ds � giðxsðtÞ; tÞ þ ðDs � giðxsðtÞ; tÞÞ1=2e1ðtÞ
¼ m1ðtÞ þm1=2

1 e1ðtÞ ðA:4Þ
Po½Ds � hiðxsðtÞ; tÞ� � Ds � hiðxsðtÞ; tÞ þ ðDs � hiðxsðtÞ; tÞÞ1=2e2ðtÞ

¼ m2ðtÞ þm1=2
2 e2ðtÞ; ðA:5Þ

where e1(t) and e2(t) are mutually uncorrelated zero mean Gaussian
real-valued variables with unit variance, and where m1(t) and m2(t)
are assumed to be large for all t 2 [0,T].

Both (A.1) and (A.2) are now assumed to be initialised at the
same state, so xd,i(0) = xs,i(0) for all i. At the first time-step (0,Ds),
(A.4) and (A.5) give:

xs;iðDsÞ ¼ xs;ið0Þ þ Po½m1ð0Þ� � Po½m2ð0Þ� � xd;ið0Þ þm1ð0Þ
�m2ð0Þ þm1ð0Þ1=2e1ð0Þ �m2ð0Þ1=2e2ð0Þ: ðA:6Þ
9 In simulation there is no restriction on using any shorter time-step Dt, see also
‘Comments’ at the end of this appendix.
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Since xd,i(Ds) = xd,i(0) + m1(0) �m2(0) by (A.1), equation (A.6) de-
scribes the state of the stochastic model as a perturbation of the
state of the deterministic model:

xs;iðDsÞ � xd;iðDsÞ þ DxiðDsÞ; ðA:7Þ

where

DxiðDsÞ ¼ m1ð0Þ1=2e1ð0Þ �m2ð0Þ1=2e2ð0Þ:

Note that E[Dxi(Ds)] = 0, when the average is taken w.r.t. e1(0) and
e2(0). While the perturbation Dxi(Ds) may be numerically large, it
represents a small relative perturbation, since m1=2

j are small relative
to mj for large mj, where j = 1 or 2. For sufficiently small relative per-
turbations Dxi (Ds)/xd,i(Ds), the state variable perturbation Dxi(Ds)
will remain within the range of validity of the perturbation model
(A.3). Use of this model at time Ds gives:

giðxsðDsÞ;DsÞ ¼ giðxdðDsÞ þ DxðDsÞ;DsÞ
� giðxdðDsÞ;DsÞ þ AiðDsÞDxðDsÞ

hiðxsðDsÞ;DsÞ ¼ hiðxdðDsÞ þ DxðDsÞ;DsÞ
� hiðxdðDsÞ;DsÞ þ C iðDsÞDxðDsÞ;

ðA:8Þ

where the row vectors Ai(Ds) and Ci(Ds) represent the ith rows
of A(Ds) and C(Ds) in (A.3), respectively, and where
Dx(Ds) = (Dx1(Ds), . . . ,Dxn(Ds))T.

The state variable i of the stochastic model at the next time-
step, xs,i(2Ds), can then again be expressed as a perturbation Dxi(2-
Ds) of the same state variable of the deterministic model:

xs;ið2DsÞ ¼ xs;iðDsÞ þ Po½m1ðDsÞ� � Po½m2ðDsÞ�
� xd;iðDsÞ þ DxiðDsÞ þm1ðDsÞ �m2ðDsÞ
þm1ðDsÞ1=2e1ðDsÞ �m2ðDsÞ1=2e2ðDsÞ
� xd;iðDsÞ þ DxiðDsÞ þ Ds½giðxdðDsÞ;DsÞ þ AiðDsÞDxðDsÞ�
� Ds½hiðxdðDsÞ;DsÞ þ C iðDsÞDxðDsÞ� þwiðDsÞ
¼ xd;iðDsÞ þ Dt � giðxdðDsÞ;DsÞ � Ds � hiðxdðDsÞ;DsÞ
þ DxiðDsÞ þ Ds � AiðDsÞDxðDsÞ � Ds � C iðDsÞDxðDsÞ þwiðDsÞ

ðA:9Þ
¼ xd;ið2DsÞ þ Dxið2DsÞ: ðA:10Þ

Here, (A.7) and the approximations (A.4) and (A.5) were used in the
second line. The linearisation approximations (A.8) were then used,
followed by use of (A.1) and (A.3) in the last line. The perturbation
term wi(Ds) represents some of the terms of the second line in (A.9):

wiðDsÞ ¼ m1ðDsÞ1=2e1ðDsÞ þm2ðDsÞ1=2e2ðDsÞ: ðA:11Þ

We note by (A.11) that E[wi(Ds)] = 0, with the average taken w.r.t.
e1(Ds) and e2(Ds).

As in (A.7), the term Dxi(2Ds) in (A.10) then has zero mean,
since it is generated by a zero-mean Gaussian input to a linear dy-
namic system (A.3). Therefore:

E½xs;ið2DsÞ� � xd;ið2DsÞ þ E½Dxið2DsÞ� ¼ xd;ið2DsÞ; for all i

¼ 1;2; . . . ;n: ðA:12Þ

This reasoning can be repeated for the whole solution.
Essentially, we have a zero mean (and approximately symmet-

rically distributed) perturbation vector w(t) = (w1(t), . . . ,wn(t))T

that affects the linear perturbation model (A.3) which describes
the deviation of the stochastic model trajectory from the determin-
istic model trajectory. If E[Dx(t)] = 0 from the previous step, then
by (A.3):

E½Dxðt þ DsÞ� ¼ ðI þ DsAðtÞ � DsCðtÞÞE½DxðtÞ� þ E½wðtÞ� ¼ 0;

as long as the perturbation trajectories are in a region of the state
space in which the local linearisation remains valid. By induction,
E[xs(t)] � xd(t) then holds for all t 2 [0,T].
A.1. Comments

The Condition 2 for asymptotic stability of the linearised equa-
tions is required to ensure bounded results of perturbations. Locally
unstable dynamics may otherwise amplify small perturbations so
they end up outside the range of validity of the linearisation.

Asymptotic stability implies bounded-input-bounded-output
stability [37]. In a deterministic setting, this will ensure that the
perturbed state trajectory will remain within a domain of (approx-
imate) validity of the linearised model if the relative perturbations
are sufficiently small. In our present stochastic setting, asymptotic
stability cannot exclude the possibility that the accumulated effect
of perturbations will push the state outside of this validity range.
The probability for this can, however, be made arbitrarily small
by reducing the variance of the perturbations relative to the other
right-hand side terms of the difference equations.

However, the time-step must be limited so that the vectors g(�)
and h(�) are approximately constant within Ds. In practice, a much
smaller simulation time-step, Dt = Ds/k, might be used for numer-
ical reasons. This would reduce the flows per time-step Dt by a fac-
tor of k, on average. However, in the reasoning above we may collect
the accumulated flows from k such smaller time-steps to aggre-
gated flows during a larger step Ds = k � Dt since, in distribution:

Po½Dt � giðxðDtÞ;DtÞ� þ Po½Dt � giðxð2DtÞ;2DtÞ� þ � � � þ Po½Dt

� giðxðkDtÞ; kDtÞ�
¼ k � Po½Dt � giðxðkDtÞ; kDtÞ� ¼ Po½k � Dt � giðxðkDtÞ; kDtÞ�
¼ Po½Ds � giðxðDsÞ;DsÞ�;

as long as the function gi( � ) remains constant over the time interval
Ds. Therefore, Ds can be interpreted here as the largest dynamically
useful time-step, but not necessarily the time-step that would actu-
ally be used in a simulation.

Appendix B. Proof of Theorem 1

The proof is performed in two steps, after which the result fol-
lows by induction.

Because all the n stochastic difference equations of system (5)
have the same form, we only study the ith equation and drop the
index i. Furthermore, in Step I of the proof we use the simplified
notation Rj gj for Rj[aj � xj + b] and Rj hj for Rj[cj � xj + d]. Eq. (5) is
then expressed as:

xsðt þ DtÞ ¼ xsðtÞ þ RjPo½Dt � gjðxs; tÞ� � RjPo½Dt � hjðxs; tÞ�: ðB:1Þ

Step I. First study how the expected value, E[xs(t + Dt)] by (B.1) will
differ from xd(t + Dt), obtained from the embedded deterministic
equation:

xdðt þ DtÞ ¼ xdðtÞ þ RjDt � gjðxd; tÞ � RjDt � hjðxd; tÞ; ðB:2Þ

when both equations are initiated at time t, where xs(t) = xd(t) P 0
(i.e. all state variables are non-negative).

Since a population model must start with non-negative num-
bers of entities for all components of xs and xd, and since aj, b, cj

and d P 0, the linear functions gj and hj are at that point in time
also non-negative.

Then, from (B.1),

E½xsðt þ DtÞ� ¼ E½xsðtÞ� þ RjE½Po½Dt � gjðxs; tÞ�� � RjE½Po½Dt

� hjðxs; tÞ��
¼ xsðtÞ þ RjDt � gjðxs; tÞ � RjDt � hjðxs; tÞ
¼ xdðtÞ þ RjDt � gjðxd; tÞ � RjDt � hjðxd; tÞ
¼ xdðt þ DtÞ; ðB:3Þ



Table C.1
List of the examples in this paper demonstrating the various reasons for bias.

Example Comments Deterministic problems

1. Queuing system M/M/1 Demographic stochasticity False ‘‘synchronisation’’
2. Lanchester’s model of warfare Demographic stochasticity and linear

model
Cannot reflect stochastic battle times, which in the stochastic case
requires a time-indeterminate stopping criterion

3. Prey-predator model (Lotka–Volterra model with
interspecies competition)

Demographic stochasticity Cannot follow stochastic switching to other areas of the phase space – e.g.
extinction

4. SIR model Demographic stochasticity and large
total population

Can give huge errors for R0 close to 1 and small I(0) because of excluding
possible early extinction of the disease in the population

5. Lotka–Volterra model Demographic stochasticity and large
numbers

The ‘‘phase’’ in the oscillation cycle may be e.g. a peak in the deterministic
case at final simulation time

6. Time-independent failure rate Demographic stochasticity and linear
model

Indefinite stopping criteria may create problems even for a linear model

7. SIR model with random initial values Initial value stochasticity Averaging stochastic initial values might create errors

8. Exponential growth with a stochastic parameter Environmental stochasticity Errors created by removing environmental stochasticities

Chapter 9. Non-linear output functions Non-linear output function Also linear output functions are required to avoid bias.
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where E[Po[m]] = m was used in the second equality and the initiali-
sation xs(t) = xd(t) was used in the third equality.

Step II. The effect of the first time-step was that the stochastic
solution, xs(t + Dt), was split up into a set of possible outcomes
k = 0,1,2 , . . . with a spectrum (pdf) of probabilities
p(0), p(1), p(2), . . .; where Rkp(k) = 1. This pdf represents the set
of starting points for the next time-step of the stochastic solution.

For the second time-step it is first demonstrated that since gj

and hj are linear and non-negative, the expected result of the sto-
chastic solution E[xs(t + 2Dt)] will be the same if the calculation
is started from E[xs(t + Dt)] or if it is started from the dispersed
spectrum (pdf) of solutions at t + Dt (where the probability for each
outcome is taken into account).

Thus, starting from E[xs(t + Dt)] and calculating one time-step
forward for linear and non-negative flows gj = Rj � aj � xs,j + b and
hj = Rj � cj � xs,j + d gives:

xsðt þ 2DtÞ ¼ E½xsðt þ DtÞ� þ RjPo½Dt � aj � E½xs;jðt þ DtÞ�� þ Po½Dt � b�
� RjPo½Dt � cj � E½xs;jðt þ DtÞ�� � Po½D t � d�;

where aj, cj, and b and d P 0. Then we have:

E½xsðt þ 2DtÞ� ¼ EfE½xsðt þ DtÞ� þ RjPo½Dt � aj � E½xs;jðt þ DtÞ��
þ Po½Dt � b� � RjPo½Dt � cj � E½xs;jðt þ DtÞ��
� Po½Dt � d�g ðB:4Þ

Utilising that the expected value E[xs(t + Dt)] equals Rk k � p(k) and
Rkp(k) = 1 gives:

E½xsðt þ 2DtÞ� ¼ EfRkk � pðkÞ þ RjPo½Dt � aj � Rkk � pðkÞ�
þ Po½Dt � RkpðkÞ � b� � RjPo½Dt � cj � Rkk � pðkÞ�
� Po½Dt � RkpðkÞ � d�g ¼ Ef0 � pð0Þ
þ RjPo½Dt � aj � 0 � pð0Þ� þ Po½Dt � pð0Þ � b�
� RjPo½Dt � cj � 0 � pð0Þ� � Po½Dt � pð0Þ � d� þ 1 � pð1Þ
þ RjPo½Dt � aj � 1 � pð1Þ� þ Po½Dt � pð1Þ � b�
� RjPo½Dt � cj � 1 � pð1Þ� � Po½Dt � pð1Þ � d� þ 2 � pð2Þ
þ RjPo½Dt � aj � 2 � pð2Þ� þ Po½Dt � pð2Þ � b�
� RjPo½Dt � cj � 2 � pð2Þ� � Po½Dt � pð2Þ � d� þ � � �g:

However, E[Po[n � x]] = E[Po[x] + � � � + Po[x]] = E[Po[x]] + � � � + E[Po[x]]
= n � E[Po[x]]. Thus:
E½xsðtþ2DtÞ�
¼ pð0Þ � f0þRjPo½Dt �aj �0�þPo½Dt �b��RjPo½Dt �cj �0��Po½Dt �d�g
þpð1Þ � f1þRjPo½Dt �aj �1�þPo½Dt �b��RjPo½Dt �cj �1��Po½Dt �d�g
þpð2Þ � f2þRjPo½Dt �aj �2�þPo½Dt �b��RjPo½Dt �cj �2��Po½Dt �d�g
þ �� �
¼ pð0Þ �xsðtþ2DtÞ starting from xsðtþDtÞ¼0
þpð1Þ �xsðtþ2DtÞ starting from xsðtþDtÞ¼1
þpð2Þ �xsðtþ2DtÞ starting from xsðtþDtÞ¼2
þ���

ðB:5Þ

Thus, it is shown that for the stochastic equation there is no differ-
ence with respect to the expected value, E[xs(t + 2Dt)], if the second
time-step starts from the expected value, E[xs(t + Dt)] (by Eq. (B.4)),
or if it starts from the split-up spectrum of values obtained from the
first time-step and weighted by the pdf (by Eq. (B.5)). Thus, the
splitting up will not affect the unbiasedness if gj and hj are linear
in x and non-negative.

Furthermore, if the stochastic and deterministic equations start
from the same value at t + Dt then the results at t + 2Dt, E[xs(-
t + 2Dt)] and xd(t + 2Dt), will be equal (by (B.3)).

Thus, E[xs(t + 2Dt)] starting from the pdf generated in the previ-
ous time-step equals E[xs(t + 2Dt)] starting from E[xs(t + Dt)] which
also equals xd(t + 2Dt) starting from xd(t + Dt).

These arguments can be continued by induction over the whole
time interval T.
Appendix C. The examples in this paper

In Table C.1 the examples in this paper, demonstrating the var-
ious reasons for bias, are listed.
References

[1] J.W. Haefner, Modelling Biological Systems: Principles and Applications,
Chapman & Hall, International Thomson Publishing, New York, 1996.

[2] R. Lande, S. Engen, B-E. Sæther, Stochastic Population Dynamics in Ecology and
Conservation, Oxford University Press, U.K., 2003.

[3] L. Gustafsson, M. Sternad, Consistent micro, macro and state-based population
modelling, Math. Biosci. 225 (2010) 94.

[4] R.M. Anderson (Ed.), Population Dynamics of Infectious Diseases, Theory and
Applications, Chapman and Hall, London, 1982.

[5] B. Hannon, M. Ruth, Modeling Dynamic Biological Systems, Springer Verlag,
New York, 1997.

[6] F. Brauer, C. Castillo-Chávez, Mathematical Models in Population Biology and
Epidemiology, Springer-Verlag, New York, 2001.

[7] M. Braun, Differential Equations and Their Applications, Springer-Verlag, New
York, 1993.



L. Gustafsson, M. Sternad / Mathematical Biosciences 243 (2013) 28–45 45
[8] D.G. Luenberger, Introduction to Dynamic Systems, Theory, Models and
Applications, John Wiley & Sons Inc., New York, 1979.

[9] A.G. McKendrick, Applications of Mathematics to Medical Problems, Proc. Edin.
Math. Soc. 14 (1926) 98.

[10] M.S. Bartlet, Stochastic Population Models in Ecology and Epidemiology,
Wiley, New York, 1960.

[11] N.T.J. Bailey, The Mathematical Theory of Infectious Diseases and its
Applications, Griffin, London, 1975.

[12] R.M. Nisbet, W.C.S. Gurney, Modelling Fluctuating Populations, The Blackburn
Press, NJ, 1982.

[13] E. Renshaw, Modelling Biological Populations in Space and Time, Cambridge
University Press, Cambridge, 1991.

[14] M.J. Keeling, P. Rohani, Modeling Infectious Diseases in Humans and Animals,
Princeton University Press, NJ, 2008.

[15] E. Vynnycky, R.G. White, An Introduction to Infectious Disease Modelling,
University Press, Oxford, 2010.

[16] D. Claessen, J. Andersson, L. Persson, A.M. de Roos, Delayed evolution
branching in small populations, Evol. Ecol. Res. 9 (2007) 51.

[17] L. Fahse, C. Wissel, V. Grimm, Reconciling classical and individual-based
approaches in theoretical population ecology: A protocol for extracting
population parameters from individual-based models, Am. Nat. 152 (1988)
838.

[18] P. Gómez-Mourelo, From individual-based models to partial differential
equations. An application to the upstream movement of elvers, Ecol. Model.
188 (2005) 93.

[19] V. Grimm, Ten years of individual-based modelling in ecology: What have we
learned and what can we learn in the future?, Ecol Model. 115 (1999) 129.

[20] W.G. Wilson, Resolving discrepancies between deterministic population
models and individual-based simulations, Am Nat. 151 (1998) 116.

[21] L.J.S. Allen, A.M. Burgin, Comparison of deterministic and stochastic SIS and SIR
models in discrete time, Math. Biosci. 163 (2000) 1.

[22] M.J. Keeling, J.V. Ross, On methods for studying stochastic disease dynamics, J.
R. Soc. Interface 5 (2008) 171.
[23] L. Gustafsson, M. Sternad, Bringing consistency to simulation of population
models – Poisson Simulation as a bridge between micro and macro simulation,
Math. Biosci. 209 (2007) 361.

[24] L. Gustafsson, Poisson Simulation – A Method for Generating Stochastic
Variations in Continuous System Simulation, Simulation 74 (5) (2000) 264.

[25] D.T. Gillespie, Approximate accelerated stochastic simulation of chemically
reacting systems, J. Chem. Phys. 115 (2001) 1716.

[26] L. Kleinrock, Queueing Systems, Theory, Vol. 1, John Wiley & Sons, New York,
1975.

[27] L. Gustafsson, Poisson Simulation as an Extension of Continuous System
Simulation for the Modeling of Queuing Systems, Simulation 79 (9) (2003)
528.

[28] F.W. Lanchester, Aircraft in Warfare, the Dawn of the Fourth Arm, Tiptree,
Constable and Co., Ltd., London, 1916.

[29] V. Volterra, Fluctuations in the abundance of a species considered
mathematically, Nature 118 (1926) 558.

[30] L. Gustafsson, Studying Dynamic and Stochastic Systems Using Poisson
Simulation, in: H. Liljenström, U. Svedin (Eds.), Micro–Meso–Macro:
Addressing Complex Systems Couplings, World Scientific Publishing
Company, Singapore, 2005, p. 131.

[31] W.O. Kermack, A.G. McKendrick, Contributions to the mathematical theory of
epidemics, Proc. Royal Soc. A 115 (1927) 700.

[32] P.J. Burke, The Output of a Queueing System, Oper. Res. 4 (1956) 699.
[33] J.R. Jackson, Networks of Waiting Lines, Oper. Res. 5 (1957) 518.
[34] L. Ljung, Analysis of recursive stochastic algorithms, IEEE Transactions on

Automatic Control AC-22 (1977) 551.
[35] L. Ljung, T. Söderström, Theory and Practice of Recursive Identification, MIT

Press, Cambridge, MA, 1983.
[36] H. Kushner, Approximation and Weak Convergence Methods of Random

Processes, MIT Press, Cambridge, MA, 1984.
[37] M. Vidyasagar, Nonlinear Systems Analysis, Prentice-Hall, Englewood Cliffs, NJ,

1978.


	When can a deterministic model of a population system reveal what will happen  on average?
	1 Introduction
	1.1 Stochastic population models – representation and time handling
	1.2 Deterministic models of a population
	1.3 Objective and overview of the paper

	2 Methods
	2.1 Introduction
	2.2 The models to be compared
	2.3 Simplifications

	3 Fundamental differences
	4 Illustrative examples of omitting demographic stochasticity
	5 Large flows where the local linearised dynamics is asymptotically stable
	6 Positive linear systems studied over a fixed time interval
	6.1 Heuristic discussion of conditions for unbiased state variables
	6.1.1 Reason for requiring linearity
	6.1.2 Reason for requiring positivity6
	6.1.3 Reason for requiring a fixed stopping time criterion

	6.2 Positive linear deterministic and stochastic models studied over a fixed time interval
	6.2.1 Positivity for deterministic linear models
	6.2.2 Positivity for stochastic linear models


	7 Bias from neglecting initial value stochasticity
	8 Bias from neglecting environmental stochasticity
	8.1 Averaging over fast time-varying parameters
	8.2 Slow parameter variations

	9 Biased results caused by non-linear output functions
	10 A pragmatic approach requires testing of the specific model
	11 Discussion and conclusions
	Appendix A Sufficient conditions for existence of deterministic models with large flows creating asymptotically unbiased results
	A.1 Comments

	Appendix B Proof of Theorem 1
	Appendix C The examples in this paper
	References


