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Abstract
Lamb waves have proven to be very useful for plate inspection because large areas of a plate can
be covered from a fixed position. This capability makes them suitable for both inspection and
structural health monitoring (SHM) applications. During the last decade, research on the use of
active arrays in combination with beamforming techniques has shown that a fixed array can be
used to perform omni-directional monitoring of a plate structure. The dispersion and multiple
propagating modes are issues that need to be addressed when working with Lamb waves.
Previous work has mainly focused on conventional, delay-and-sum (DAS) beamforming, while
reducing the effects of multiple modes through frequency selectivity and transducer design.

The paper describes an adaptive beamforming technique using a minimum variance
distortionless response beamforming (MVBF) approach for spatial Lamb wave filtering with
multiple-transmitter–multiple-receiver arrays. Dispersion is compensated for by using
theoretically calculated dispersion curves.

Simulations are used for evaluating the performance of the technique for suppression of
interfering Lamb modes, both with and without the presence of mode conversion using different
array configurations. A simple simulation model of the plate is used to compare the
performance of different sizes of active arrays. An aluminum plate with artificial defects is used
for the experimental evaluation.

The results show that the MVBF approach performs a lot better in terms of resolution and
suppression of interfering modes than the widely used standard beamformer.

1. Introduction

Guided waves in structures allow the inspection of large
areas from a fixed position. Areas which are not accessible
using traditional NDT methods, such as eddy current or bulk
wave pulse–echo ultrasound, can potentially be inspected or
monitored using guided waves. Examples of applications for
guided waves are the inspection of piping [1] and plates [2].

Guided waves in plates, also known as Lamb waves,
share fundamental properties with other types of guided waves,
such as dispersion and the existence of multiple propagating
modes. Dispersion causes the signal to spread out, which
reduces the spatial and temporal resolution of the received
unprocessed data, a significant issue in applications where
range is to be estimated. Furthermore, Lamb modes differ in
dispersion characteristics and propagate at different velocities
making interpretation of backscattered signals complicated in
the presence of multiple modes. Overlapping modes can make

the identification of small defects and time-of-flight estimation
difficult.

During the last decade the use of active Lamb wave
arrays for the imaging of larger plate areas has been
proposed by several authors. There are two options to
achieve the directionality required for imaging applications,
physical or electronic array steering. Different approaches
to electronic steering, that is typically performed in post-
processing, have been treated in numerous publications [3–8].
Examples of physically directional arrays include the CLoVER
transducer [9], which consists of a circle of angularly
directional elements, each covering an angular sector. This
paper focuses on electronic steering using algorithms for post-
processing of array data. One or more elements in the
array generate a pulse that propagates along the plate. The
backscattered signals from defects and other discontinuities are
received by the array and post-processed to form an image
of the reflectors in the plate. As for other guided wave
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applications, reduction of interference from other modes is
of major importance. Proper design of transducers used for
excitation and detection in combination with careful frequency
selection can significantly reduce the influence of interfering
modes. Some examples presented in the field include the
use of electromechanical acoustic transducers (EMAT) [5, 10]
and piezoelectric transducers [6, 11]. The drawback of these
approaches is that they require limited bandwidth input signals
to work efficiently. Limited bandwidth leads to reduced spatial
resolution since the length of the signal increases.

The effect of dispersion can be reduced by selecting
a frequency region with relatively low dispersion. Wilcox
showed that by using theoretically calculated dispersion
curves, time domain data can be transformed into dispersion
compensated spatial domain data over a wider frequency range
for a single mode [5, 12].

The above cited works, in common with most other
work presented in the literature concerning array processing
of Lamb waves, focused on the standard beamformer (SBF).
The standard beamformer is robust, easy to implement,
and computationally simple. However, compared to more
advanced array processing methods it suffers from poor
resolution and high sidelobes. In [5] a deconvolution approach
based on the theoretical point spread function was used to
reduce the sidelobe level. A more general approach to
beamformer design was proposed by Velichko and Wilcox
in [13]. However, neither of these methods is data dependent
and will therefore assume a worst case scenario: signals are
assumed to impinge from all directions. This will lead to
a suboptimal use of the available degrees of freedom in the
beamformer. If knowledge of the actual interferers were
available, an optimal beamformer could be derived to cancel
interferers much more efficiently. Such beamformers are
known as adaptive beamformers, and have not been extensively
used in Lamb wave applications.

Adaptive beamformers have been successfully utilized in,
for example, radar, sonar, and medical ultrasound applications,
resulting in improved resolution and interference suppression
compared to the SBF. Contrary to the SBF, an adaptive
beamformer is optimized based on some data criterion, such as
minimizing the influence of interfering signals in the received
data. One of the most commonly used adaptive beamformers
is based on the minimum variance distortionless response
(MVDR) approach. Previous work on the MVDR approach
in the medical ultrasound field include Wang et al [14], Sasso
and Cohen-Bacrie [15], and Synnevåg et al [16]. Another, but
not entirely related, approach using the MVDR method for
Lamb wave processing was proposed by Michaels et al [17]
for processing change based data from a distributed array in a
tomographic setup.

In [18–21], the MVDR approach was compared to a SBF
for passive direction-of-arrival (DOA) estimation of Lamb
waves, which showed that the MVDR approach performs
much better in terms of resolution and sidelobe level. The
work was extended to a complete active imaging procedure
in [21, 22], where a single transmitter and a fixed array
of receivers was used to inspect a plate. The MVDR
beamformer (MVBF) showed much better resolution and

suppression of interfering Lamb modes compared to the SBF.
Improved suppression of interfering Lamb modes may relax
requirements on array element design and bandwidth of the
input signals. Increasing the bandwidth of the probing pulse
improves range resolution. However, the most significant
drawback of the MVDR approach is its inability to handle
correlated sources. This is especially true for active imaging
setups, where the backscattered signals are likely to be highly
correlated. Due to this, the previous approach [22], employing
a single transmitter, requires certain preprocessing to achieve
the desired result. This in turn puts some constraints on the
geometry of the array and limits the effective aperture size.

In this paper a setup with multiple transmitters is
considered. The use of multiple transmitters avoids the need
for preprocessing, which enables more flexibility in array
design, and can lead to improved performance compared to
single transmitter setups [21]. The paper is organized as
follows: the problem is stated in section 2, followed in
section 3 by a short overview of the relevant properties of
Lamb waves. Its implications for Lamb wave imaging are
discussed in section 4. The performance of the proposed
method compared to both a single transmitter setup and
the SBF is evaluated in section 5. The SBF comparison
considers two scenarios: first, simulation results of the mode
suppression capabilities of three different array configurations
are presented, followed by simulation and experimental results
of a plate inspection scenario. A discussion and conclusions
are given in sections 6 and 7, respectively. More background
information concerning the use of the MVDR approach for
Lamb waves can be found in the authors previous paper [22].

2. Problem formulation

The objective is to detect and estimate the size of defects
in a plate structure by means of a 2D array capable of
generating and receiving Lamb waves. Data acquired through
successive excitation of transmitting elements in the array, and
reception performed using all the receiving array elements,
allow estimation of the reflected power in each point z =
[x, y]T in an area in the vicinity of the array, the region of
interest (ROI). The dispersive and multi-modal properties of
the propagating Lamb waves need to be addressed to achieve
adequate results. Omni-directional coverage in both near- and
far-field of the array is desirable to fully utilize the array.
The results presented in the paper have been acquired using
uniform rectangular arrays (URAs). However, the method is
not restricted to any particular array configuration.

The setup and geometrical notations are illustrated in
figure 1. Let gp,m(t) denote the received signal for the pth
transmitter and mth receiver. Each of the P transmitting
elements is excited separately, but the backscattered signals
are received by all M receiving elements either simultaneously
or multiplexed through repeated transmitter excitation. The
approach is general in the sense that either an active array
(pulse–echo mode) or a combination of transmitting and
receiving arrays (pitch–catch) can be considered. It is assumed
that gp,m(t) is an analytic (complex) signal, hence, all negative
frequency components are zero.
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Figure 1. A 4 × 4 rectangular active array with current transmitter zp

and receiver zm . A defect is assumed to be present at zr .

3. Theoretical background

3.1. Lamb waves

3.1.1. Lamb modes. To perform imaging using Lamb
waves over a wide frequency band, the dispersive properties
of the Lamb waves need to be addressed. A necessary
step in both simulation and compensation of dispersion is
the estimation of the theoretical dispersion characteristics
of the monitored structure. If accurate estimates of the
material properties of the object are available, the dispersion
characteristics can be determined by solving the Rayleigh–
Lamb frequency equations [23]. Another possibility is to
experimentally estimate the dispersion using, for example, the
2D fast Fourier transform (FFT) approach proposed by Alleyne
and Cawley [24]. This can be particularly valuable for complex
structures, and for evaluating the response of the array elements
in terms of mode excitation.

Depending on the frequency of the signal and the thickness
of the plate, the number of Lamb modes may range from
two to infinity. The Lamb modes are named S0, S1, . . . for
symmetric modes, and A0, A1, . . . for antisymmetric modes.
In the following sections a simple index, n = 0, 1, 2, 3, . . ., is
used to identify modes S0, A0, S1, A1, . . .. The wavenumber
for the frequency ω of the nth mode is denoted kn(ω).

3.1.2. Directionality of arrays. Arrays are commonly used as
spatial filters enabling directional resolution. One-dimensional
(1D) arrays, such as uniform linear arrays (ULA), where all
array elements are uniformly distributed on a line, offer at best
180◦ azimuthal coverage. Furthermore, the performance of a
ULA in terms of angular resolution is highly dependent on the
azimuth. Two-dimensional (2D) arrays on the other hand offer
360◦ azimuthal coverage. Examples of the most common 2D
array configurations are circular and rectangular arrays.

For Lamb waves, array steering is performed by matching
the phase shifts corresponding to a particular mode’s dispersion
characteristics for a given frequency. This is modeled using
the so-called array steering vector. The signals from the array
elements are aligned to coherently sum signals matching a
selected direction and mode. Other modes and directions
will not add up constructively, which will result in their
suppression.

Beamforming of broadband signals is performed either
in time domain, where delays are used to align the signals

Figure 2. Two Lamb modes with different wavenumber impinging
on a ULA.

from a particular direction, or by processing each frequency
component separately and superimposing the results.

3.1.3. Mode suppression. Besides dispersion, the inter-
ference from multiple propagating modes creates difficulties
when interpreting Lamb wave measurement data. The
backscattered signal from a defect can consist of multiple
dispersed modes arriving at different times, which could be
misinterpreted as defects, overlap weaker defects, and make
time-of-flight estimation difficult.

As discussed earlier, a 2D array is required for 360◦
coverage, but as will be explained below, 2D arrays offer
another advantage over 1D arrays which is highly relevant for
Lamb waves.

Consider two different overlapping plane wave Lamb
modes impinging on a ULA from 0◦, as illustrated in figure 2.
The modes have different wavenumbers and propagate at
different velocities. Unless there is a priori information
available concerning the shape and propagation of the modes,
these are obviously impossible to separate for any beamformer.
The reason is that all the array elements are at approximately
the same distance from the source, in other words, all modes
have the same steering vector for this angle: the unit vector
1. A 2D array, on the other hand, allows separation since its
elements are at different distances from the target and non-
focused modes will therefore not add up coherently. SBFs
rely completely on this concept which, to work efficiently,
requires relatively many array elements. The benefit of using
an adaptive beamformer is that they allow much more efficient
use of the limited array size. Examples illustrating this are
presented in section 5.

3.1.4. Mode conversion. When a Lamb wave is reflected or
transmitted at a boundary, some of the energy of the particular
incoming Lamb mode may be converted into other modes.
Depending on the characteristics of the boundary and the
frequency content of the impinging Lamb wave, the conversion
could occur between modes of different order, e.g. A0 to A1,
as well as between antisymmetric and symmetric modes [23].
Thus, a signal received as a particular mode may be the result
of another mode propagating from the transmitting transducer
to the boundary at a different velocity. A few simulation
examples featuring mode conversion will also be presented in
section 5.

3.1.5. Simulation model. To enable evaluation of the MVBF
compared to the SBF under ideal conditions, a simplified
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simulation model has been used. The model simulates multiple
reflections of two propagating modes impinging on the array,
the S0 and A0 modes.

In practice, the excitation of a particular mode depends
both on the transducer and the excitation frequency. Here it
is simply assumed that both modes have been excited and the
resulting out-of-plane surface displacement is T (ω) for both
modes. Further assume that there are R point scatterers in
the plate that scatter incident waves equally in all directions
and that no secondary scattering occurs. The transmitting
elements p = 1 · · · P act as omni-directional point sources,
and are excited individually. Let G p,m(ω) denote the signal
received by array element m from an excitation of transmitter
p. The received signals from a scatterer are given by the sum
of the two modes and the corresponding phase shifts due to
dispersion in the path from the transmitting array element p,
to the reflector r , and back to the receiving element m. The
resulting signals are superpositions of the contributions from
the R reflectors

Gm(ω) =
R∑

r=1

1∑

n=0

1√
zr,pzr,m

Rr,n T (ω)e−jkn (ω)(zr,p+zr,m ) (1)

where the distances zr,p = ‖zr − zp‖ and zr,m = ‖zr − zm‖
are the scatterer–transmitter and scatterer–receiver distance,
respectively, and zr , zm , and zp, shown in figure 1, are the
positions of the scatterer, the receiver, and the transmitter,
respectively. The frequency independent reflection coefficient
for reflector r and mode n is denoted Rr,n . The first factor in (1)
is due to the divergence of the cylindrical waves from the point
sources and point scatterers.

For the case with mode conversion, where some of the
power of mode n is converted into another mode n′ at the
reflector, the expression in the sum (1) becomes

Rr,nn′ T (ω)e−j(kn (ω)zr,p+kn′ (ω)zr,m ) (2)

where Rr,nn′ is the amplitude of the converted mode at reflector
r , and kn′(ω) the wavenumber of mode n′.

3.2. Minimum variance distortionless response beamformer

Contrary to the SBF, the MVBF beamformer is capable
of adaptive suppression of interfering signals and modes.
To achieve this it requires information on the noise and
interference environment in the form of the spatial covariance
matrix, denoted R. The elements of the spatial covariance
matrix are the interelement covariance estimates of the signals
received by the array. The estimation of the covariance matrix
is the most critical step in the MVDR approach and its accuracy
has significant impact on the final result.

The MVBF in its standard form, similar to many other
advanced array processing methods, assumes narrowband
signals. Furthermore, it is not able to separate backscattered
signals, since they are typically correlated, which may result in
so-called signal cancelation [25]. This manifests itself as the
suppression and spatial perturbation of the relevant signal by
the beamformer. Another major disadvantage of the MVBF is
that it is sensitive to errors in the steering vector, where even
small errors can lead to suppression of the desired signal [26].
The following sections will address those issues.

4. Methods

Generally, there are two ways of obtaining high range
resolution in imaging: either using short pulses or long pseudo-
random sequences. The first, which is most commonly used
in ultrasonic imaging, requires the transmission of broadband
signals that, when scattered, are received by the array elements.
However, many array processing methods, such as MVBF,
are formulated for narrowband signals. Thus, the most
straightforward and most commonly used approach to handle
broadband signals is to perform the estimation for each
frequency separately using the frequency domain version of the
covariance matrix, that is, the spectral matrix. The drawback
of such an approach is that the correlation between different
frequencies of the signal is not utilized. Additionally, a
poor signal-to-noise ratio (SNR) leads to high variance in the
estimates of the individual narrowband spectral matrices [27].
Furthermore, since broadband signals are typically limited in
time there is a trade-off between the frequency resolution and
the number of snapshots used for averaging, which also has
a negative impact on the individual spectral matrix estimates.
To utilize the broadband nature of the signal a number of
preprocessing procedures have been proposed in the literature,
for example the coherent subspace approach [28] and the
steered covariance matrix [27].

Signal cancelation can be reduced by using, for example,
spatial smoothing [29], which decorrelates the signals and
also reduces the variance of the estimated covariance matrix.
Spatial smoothing can only be applied on arrays with regular
geometries that can be divided into a set of identical subarrays.
This process reduces the effective aperture size to that of the
subarray.

The decorrelating preprocessing step is necessary in
passive scenarios, and for setups consisting of only one
transmitter. In [22], using only a single transmitter, this was
performed using spatial smoothing. This requires the array
to be divided into subarrays. For each subarray a covariance
matrix is estimated. The covariance matrices for the subarrays
are then averaged to perform the so-called spatial smoothing.
The drawback with this approach is that effective aperture
size is reduced to the size of the subarrays. For active
array setups, where each element can be excited separately,
this problem is avoided. The multiple and slightly different
snapshots created by the separate element excitations have the
same effect as the subarray averaging of the spatial smoothing
approach [30], without the reduction in effective aperture
size. For setups having significantly fewer transmitters than
receivers, a combination of multiple transmitters and spatial
smoothing may be considered. A comparison between a
single transmitter setup using spatial smoothing and a multiple
transmitter setup is given in section 5.

4.1. Steered pseudo-covariance matrix

To take advantage of the bandwidth of broadband signals,
the steered covariance matrix approach was introduced by
Krolik [27] for far-field broadband source localization. The
idea is to pre-steer the data before estimating the covariance
matrix. What is gained by doing so is that all frequency
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components of a potential broadband signal from the steered
direction will have a unit steering vector, 1, which allows for
direct application of MVDR to calculate a broadband adaptive
weight vector.

The basic concept of this approach has been applied on
near-field data for adaptive beamforming of linear arrays in
medical ultrasound by Wang [14] et al, Sasso and Cohen-
Bacrie [15] and Synnevåg et al [16]. In this work the approach
is extended to 2D arrays and dispersive signals.

For non-dispersive signals, such as those in the acoustical
environment of medical ultrasound, the steering of the received
signals prior to calculation of the covariance matrix is
performed using time delays. Using delays for broadband
dispersive Lamb waves will not lead to coherent alignment
of the signals since the frequency components propagate at
different phase velocities. In the same manner as [22], the
alignment is obtained by backpropagating the signal gp,m(t),
for a particular mode n, as [12]

h p,m,n(z) = √
zr,pzr,m

∑

ωs

G p,m(ωs)e
jkn(ωs)(zr,p+zr,m ) (3)

where G p,m(ωs) is the Fourier transform of the received signal,
gp,m(t), p denotes the transmitter, and zr,p = ‖zr − zp‖
and zr,m = ‖zr − zm‖. The first factor compensates for the
divergence and the exponential introduces the proper phase
shift to compensate for the dispersion and propagation.

The procedure only compensates for the dispersion and
propagation of one mode. Other modes are not aligned. In the
sequel it is assumed that a particular mode is selected, hence
the mode index, n, is dropped for notional convenience. To
avoid spatial aliasing the frequencies used in (3) should be
limited so that the minimum wavelength for any mode is more
than twice the element distance in the array. Assuming that
gp,m(t) is a complex (analytical) signal, spectral components
above the Nyquist frequency in the discrete Fourier transform
are zero. Note that there is a risk that other modes wrap-around
due to the phase shifts; in such cases the received signals
should be zero-padded before processing.

Potential wave attenuation is not compensated for since
it is assumed to be small. However, if the attenuation
is significant and known, it is straightforward to include a
compensating factor in (3).

To estimate the reflected power from a focus point
z, the received signals from all array elements are phase-
shifted according to (3) to compensate for the propagation
and dispersion corresponding to the distance between the
transmitter p, the focus point z, and the receiver m. This results
in a focused vector

hp(z) = [h p,1(z)h p,2(z) · · · h p,M(z)]T, (4)

for each transmitter p. A rank one covariance matrix for
transmitter p is formed as

R̂p(z) = hp(z)hH
p (z). (5)

In order to get a proper estimate of the covariance matrix it is
necessary to have several snapshots. One option is to average
over nearby points. However, since broadband signals are

considered, which will be spatially confined around the actual
scatterer, this may not improve the estimate. A better approach
is to utilize the multiple snapshots acquired over the successive
transmitter excitations. In addition to improving the estimate
of the covariance matrix, it will lead to a decorrelation of the
backscattered signals, which was discussed at the beginning of
this section.

Let the matrix H(z) be defined as

H(z) = [h1(z) h2(z) · · · hP (z)]. (6)

The focused covariance matrix can then be estimated
as the average of all rank 1 covariance matrices from each
transmitter, hp(z)hH

p (z), as

R̂(z) = 1

P
H(z)HH (z). (7)

Thus, each point in the ROI requires a separate covariance
matrix which results in more computational effort compared
to a conventional covariance matrix. The advantage, however,
is that this approach enables processing of dispersed near-
field broadband signals which is not possible with the standard
MVDR approach.

4.2. MVBF

Since the proper phase shifts for steering and dispersion
compensation for each frequency are already applied in the
steered covariance matrix R̂(z), the steering vector for point
z takes simply the form of the unit vector 1, which results in
the following MVBF weight vector

w(z) = R̂−1(z)1

1TR̂−1(z)1
. (8)

Note that if the number of transmitters P is less than the
number of receivers M , the covariance matrix (7) will be non-
invertible. This will be addressed in section 4.4.

The weight vector w(z) is then applied on the received
signals from each excitation and the outputs are subsequently
averaged

y(z) = 1

P

P∑

p=1

wH(z)hp(z). (9)

The backpropagation step in (3) has already aligned the
signals for the particular mode, making the SBF output simply
the average of the focused signals

y(z) = 1

P

P∑

p=1

1Hhp(z). (10)

Apodization can be applied to the SBF by replacing the unit
vector by a suitable weight vector.

The steering vector for the steered covariance matrix is
constructed with an assumption of equal amplitude over the
array elements for the signal of interest. This assumption
will affect the behavior of the MVBF approach compared to
the SBF in the presence of near-field defects that reflect the
transmitted waves in a way that leads to significantly different
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Figure 3. Elliptic focusing regions for 2 × 1 (a) and 4 × 4 (b) array.

(This figure is in colour only in the electronic version)

amplitudes over the array elements. This could typically occur
when a defect is oriented in such a way that the reflected
energy only reaches some array elements. The SBF will
simply produce an output based on the average over the array,
while the MVBF could in the worst case cancel the signal.
The diagonal loading approach described below will to some
degree increase the MVBF’s tolerance to such signals.

4.3. Focusing regions

When performing the focusing operation for each element pair
h p,m,n(z), (i.e. transmitter–receiver and receiver–transmitter),
the focused range forms an ellipse intersecting the focus point
z, where the elements are located in the focal points of each
ellipse. Each pair of elements forms a different ellipse, which
leads to the problem that the focused signals from different
element pairs can potentially contain contributions from
different defects. Furthermore, because of the different angles
between the transmitters, the scatterers, and the receivers it is
possible that a single interfering defect spreads out spatially,
which limits the performance of the MVBF. Therefore, the
near-field covariance matrices, R̂p(z), from each transmitter
p, are not realizations of the same interference environment,
which calls for a more appropriate name, a pseudo-covariance
matrix. Two examples of such ellipses are illustrated in
figure 3.

Although each transmission improves the estimate of the
covariance matrix close to the point in focus, the resulting data
could include more interferers that could actually reduce the
performance of the MVBF. The MVBF is most efficient when
there are only a few spatially confined interferers. When the
number of interferers increases, the adaptive performance is
reduced. This effect can be seen in the simulation results.

Since this issue is aggravated by an increase in the number
of transmitters used for averaging in (7), one approach to
mitigate the problem is to divide the transmitters into L
subarrays and perform the estimation using each transmitting
subarray l separately. Thus, a weight vector wl(z) is calculated
using a covariance matrix estimate from only a subset of the
transmitters. The outputs, using received data and the weights

from the covariance matrix estimates of each subarray, are then
averaged

y(z) =
L∑

l=1

yl(z). (11)

4.4. Robustness and rank issues

It is well known that steering vector errors, caused by for
example array calibration errors, can have a severe effect on
the estimate of the MVDR algorithm [26]. This can cause the
resulting weight vector to suppress the actual signal instead of
the intended unit gain. Using the same approach as in [16, 22],
the robustness is increased through diagonal loading

R̂load = R̂ + αI (12)

with

α = 1

εM
tr{R̂(z)} (13)

where ε scales the amount of loading and tr{} is the trace. The
increase in robustness comes at the cost of lower adaptivity.
The diagonal loading also makes the MVBF less sensitive to
differences in amplitude over the array caused by directional
near-field defects.

Another issue which is common in practical applications is
that the covariance matrix does not have full rank or is poorly
conditioned. Rank deficiency occurs, for example, when the
number of transmitters is less than the number of receivers.
Sufficient diagonal loading ensures that the pseudo-covariance
matrix is well conditioned.

4.5. The algorithm

The previous sections explained in detail the proposed method.
The whole procedure can be summarized in the following steps
performed for each point z in the region of interest and for a
particular Lamb mode n:

(i) Compensate for dispersion using the dispersion character-
istics of mode n, kn(ω) (3).

6
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Figure 4. Left: performance comparison between the multiple
transmitter approach and different single transmitter configurations
using a 5 × 5 URA. Right: the subarrays used for the example: the
top figure shows one of the 3 × 3 element subarrays and the bottom
figure shows one of the 4 × 4 element subarrays.

(ii) Create a focused vector for point z (6).
(iii) Calculate the averaged covariance matrix (7).
(iv) Apply diagonal loading (12) and (13).
(v) Calculate the MVBF weight vector and estimate the

power (8) and (9).

Forming a dispersion compensated SBF only requires
steps 1 and 2 and its output estimate is then given by (10).

5. Results

The results are separated into two parts, a simulation study
comparing the current approach to spatial smoothing and
evaluating the mode suppression capabilities of the proposed
method compared to the dispersion compensated SBF. Finally,
both simulated and experimental results are used to compare
the imaging performance of the MVBF and SBF. Discussions
and conclusions concerning the results are given in subsequent
sections.

5.1. Advantages over spatial smoothing

Preprocessing using spatial smoothing as performed in [22]
requires certain design considerations in the trade-off between
the decorrelation effect and the resolution. To demonstrate how
the single transmitter approach in [22] affects the accuracy
and resolution compared to a multiple transmitter setup, a
5 × 5 element URA is used in a simulation example. This
array is slightly smaller than the arrays used in the other
examples to illustrate the drawbacks of the single transmitter
setup, which become more apparent for small arrays than
for large arrays. For the single transmitter case only the
center element of the first row is used for excitation, while
all elements are used for the multiple transmitter case. Two
scatterers, 20◦ apart and 0.3 m from the center of the first
row of the array, reflect the transmitted waves. Figure 4

Figure 5. Array configurations used for mode suppression
evaluation.

shows the result from the simulation. Three examples of
a single transmitter case are shown illustrating the effects
from the decorrelation step. Without spatial smoothing the
two scatterers appear as a single scatterer. Dividing the
array into four overlapping quadratic subarrays, with 4 × 4
elements in each subarray, resolves the two scatterers but
underestimates the angle between them. With nine overlapping
quadratic subarrays, having 3 × 3 elements in each subarray,
both the resolution and angle estimates become very poor.
To the right in figure 4 one of the subarrays from each
example is shown. From the figure it can be seen that using
multiple transmitters results in superior resolution and scatterer
separation.

5.2. Mode suppression

The mode suppression performance of the SBF and MVBF
was evaluated using simulated datasets from the three different,
fully active, array configurations illustrated in figure 5. The
array configurations are subsets of the 8 × 8 array, where the
1 × 8 and 2 × 8 are the top rows of the larger array. The
datasets were generated using the model in section 3.1.5 with
the dispersion characteristics of the 6 mm aluminum plate in
section 5.3.

Two Lamb modes were simulated, the A0 and S0 modes,
which were reflected on a single reflector located 375 mm from
the center of the 8 × 8 array. Both modes were reflected with
unit reflection coefficient. All array elements were excited
sequentially and the backscattered signals were calculated for
each array element. The element spacing was 3.5 mm, which
was approximately half the minimum wavelength of the A0

mode in the frequency range used. The input signal was a
one-cycle 300 kHz sinusoid which was bandpass filtered to a
bandwidth of 260 kHz. No apodization was applied on the
SBF.

In the first example no mode conversions were simulated.
The focusing was performed using the A0 and S0 mode
dispersion characteristics. The results obtained using a single
eight-element linear array, a 2 × 8 array and the full 8 × 8
array when focusing on the A0 and S0 mode are presented in
figures 6 and 7, respectively. In the frequency range of the
simulated signals, the A0 mode is only slightly dispersive. By
contrast, the S0 mode is highly dispersive, which can be seen
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Figure 6. Simulated results illustrating the capability of suppressing the S0 mode when focusing on the A0 mode of reflected S0 − A0 modes
using 1 × 8, 2 × 8 and 8 × 8 arrays. MVBF (left) and SBF (right) in each pair. The MVBF performs well using only two rows.

Figure 7. Simulated results illustrating the capability of suppressing the A0 mode when focusing on the S0 mode of reflected S0 − A0 modes
using 1 × 8, 2 × 8 and 8 × 8 arrays. MVBF (left) and SBF (right) in each pair.

in figure 6 where it is smeared over a wide range. In figure 7
the dispersion compensation of the S0 has the reverse effect on
the A0 mode; it becomes dispersed.

The second example evaluates the suppression capabilities
of the compared methods when including mode conversion
in the simulation. The same array configurations as in the
previous results were used but this time a single reflection
caused mode conversion between the S0 and A0 modes.
Figure 8 shows the results for the three array configurations
of two reflected modes. The S0 mode was converted into a S0

and an A0 mode, where the power was divided equally between
both modes. For simplicity the A0 mode was assumed to result
in a pure A0 mode on reflection.

5.3. Plate imaging

The plate imaging evaluations were performed on a 6 mm
thick, 750 × 750 mm aluminum plate (6082-T6). A number
of artificial defects were created on the plate: pairs of drilled
through holes, a 1 cm wide notch, and some artificial pits with
depths of 1–3 mm. The layout of the defects and the positions
of the receiving and transmitting arrays are shown in figure 9.
The pairs of holes are labeled A, B, and C. Pair A consists of
two holes, 7 mm in diameter, 28 mm apart while pairs B and C
consist of two 5 mm holes each, located 21 and 10 mm apart,
respectively.

8
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Figure 8. Simulated results of suppression capabilities of the S0 mode and mode converted S0 − A0 mode when focusing on the A0 mode
using 1 × 8, 2 × 8 and 8 × 8 arrays. MVBF (left) and SBF (right) in each pair. Again, the MVBF performs very well compared to the SBF.

Figure 9. Layout of the aluminum plate. The labels A, B, and C
identify three pairs of closely spaced holes.

The frequency range used when processing the backscat-
tered signals was limited to 50–450 kHz, which allows the
existence of three Lamb modes, the A0, S0, and A1 modes,
and the fundamental horizontal shear mode, SH0. Due to the
transducer’s axi-symmetrical excitation and liquid coupling,
the contribution from the SH0 mode was expected to be
negligible. Because of its shorter wavelength, which allows
for higher resolution, the A0 mode was selected for this
scenario. The dispersion curves of the aluminum plate
were determined experimentally by performing a 2D FFT
of a broadband signal on a range of distances from the
transmitter [24]. The resulting frequency–wavenumber plot
showed significant excitation and reception of both the S0

and A0 modes. However, the A1 mode was not detected

in the frequency range. The longitudinal and shear wave
velocities were tuned manually until good agreement between
the theoretically and experimentally determined dispersion
curves was achieved for the A0 mode. The tuning resulted
in a longitudinal wave velocity of 6198 m s−1 and a shear
wave velocity of 3158 m s−1. The images were formed using
a grid of points, 2 mm apart. No interpolation was performed
between the grid points.

The experimental setup did not allow array elements
to work as both transmitters and receivers. This required
a separate transmitting array, as illustrated in figure 9.
Furthermore, a limited number of available transducers used
as array elements required the acquisition to be performed by
manual repositioning of a single transmitter and a reduced
number of receivers. This will be described in detail below.
The simulations are naturally not limited by this and could
therefore be performed assuming a fully active array setup
where all array elements acted as both transmitters and
receivers.

5.3.1. Simulation results. Again, the simplified simulation
model in section 3.1.5 was used along with the estimated
dispersion characteristics to create datasets, here for three
different active array sizes, a 4 × 4, a 6 × 6, and an 8 × 8
rectangular array, positioned at the center of the plate in
the geometrical setup in figure 9. Only the holes, edges,
and corners, were included and were simulated as point
scatterers, with a positive real frequency independent reflection
coefficient proportional to the diameter of the holes. For
simplicity, the edge and corner reflections were also simulated
as point scatterers, with reflection coefficients 10 times that
of the smallest holes. It was also assumed that there was no
multiple scattering or mode conversion. Using full simulated
datasets of transmitter–receiver combinations figures 10, 11
and 12 show the resulting images for the active uniform
rectangular arrays. No apodization was applied on the SBF.
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Figure 10. Simulated results using a 4 × 4 array: MVBF (left) and SBF (right).

Figure 11. Simulated results using a 6 × 6 array: MVBF (left) and SBF (right).

Figure 12. Simulated results using a 8 × 8 array: MVBF (left) and SBF (right).

Since the focusing was performed using the A0 mode
dispersion characteristics, the interfering dispersed S0 mode
from edge and corner reflections can be seen at even 45◦
angles, particularly for the 4 × 4 array. The larger arrays yield
higher resolution and weaker S0 mode, which is to be expected.
Hole pair B was not resolved by any of the arrays. A false echo
can be seen in the lower right quadrant of the images. It is not
caused by aliasing, but is due to the combined contributions
from the defects and the corner reflected S0 mode. This is
related to the discussion on focusing effects in section 4.3
above, and will be discussed in section 6.

The MVBF was not capable of suppressing the false echo,
and even though it appears less smeared than that for the SBF, it
has, at least relatively, slightly higher amplitude. The problem
could be reduced by using only a subset of the transmitters in
each covariance matrix estimate.

If no reciprocity between the transmit–receive pairs is
assumed, the 8 × 8 array will produce 64 × 64 combinations.
The 8 × 8 array was divided into four 4 × 4 non-overlapping
transmit subarrays. Using only the transmitters from each
subarray for estimation lead to four sets of 16 × 64 received
signals. This results in four weight vectors calculated using
the covariance matrices from each transmitting subarray. The
outputs from the array using the different weight vectors were
then averaged. The results from the procedure are shown in
figure 13.

5.4. Experimental results

The transducers used as transmitting and receiving elements
in the arrays were pinducers from Valpey Fisher Corp. The
pinducers had a diameter of 1.5 mm and a resonance frequency
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Figure 13. Simulated results using an 8 × 8 array with four transmitter subarrays: MVBF (left) and SBF (right).

Figure 14. Measurement results from a 6 mm plate, ε = 20: MVBF (a) and DAS (b) focusing on the A0 mode. True positions of the defects
are indicated by white crosses (holes, lower part of the image), and dashed lines (pittings and notch, at 0◦ and 180◦, respectively). In the
MVBF results, the holes are indicated by arrows to improve visibility. Log scale cut at −20 dB.

of 1.1 MHz, which was well above the frequency range used in
the results yielding an approximately linear phase response in
the frequency range of interest. The pinducers were coupled to
the plate through a thin layer of oil which limited the detection
and generation to out-of-plane displacement. To limit the
influence of spatial aliasing, the element spacing in the array
should be no larger than 3.5 mm. However, the shape of
the pinducers allowed a minimum element distance of 7 mm,
which is comparable to the minimum wavelength of the A0

mode. Furthermore, limitations in the number of available
pinducers and the electronics allowed only an eight-element
linear array and a single transmitter to be used simultaneously
in the setup. Thus, the measurements had to be repeated with
the transmitting transducer at nine different positions, and the
backscattered signal received by the eight-element linear array
at eight different positions for each transmitter position. This
simulated a 3 × 3 rectangular transmitting array with 3.5 mm
element distance, and an 8 × 8 receiving array with 7 mm
element distance, as seen in figure 9. The distance between
the array centers was 50.5 mm. Since the element spacing
in the receiving array by far exceeded half the minimum
wavelength of the signals, aliasing effects could be expected in
the experimental results. The reason for using smaller spacing
between the elements in the transmitting array was to reduce
the risk of near-field effects (cf section 4.3).

The input signal, a single square pulse, 1 μs long
with amplitude 16 V, was generated by a HP8116 function

generator. The receiving pinducers were connected to
an Agilent Infiniium oscilloscope through a custom built
multiplexing box followed by an AD8335 amplifier from
Analog Devices. The sampling rate of the oscilloscope was set
to 25 MHz. Due to the limited resolution of the oscilloscope
(8 bits), the received edge reflections had to be saturated to
get sufficient resolution of the weaker defect reflections. The
received signal from each element was averaged 16 times. The
direct signal from the transmitter to the array was removed
before processing. Diagonal loading was applied to all MVBF
results according to (12).

A comparison between the SBF and the MVBF can be
seen in figure 14. Again, no apodization was applied on the
SBF. The log scale is cut at −20 dB. The holes are well
pronounced in the lower part of the images where their true
positions are marked with white crosses, or where necessary
arrows. The pit and the notch are seen close to 0◦ and at 180◦,
respectively.

6. Discussion

An examination of the results in figure 4 shows the advantage
of using multiple transmitters over a single transmitter. The
use of four subarrays is apparently the optimal choice of
subarray size since it manages to decorrelate the signal and
simultaneously yields a reasonable resolution with an effective
array size of 4 × 4 elements. Increasing the number of
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subarrays to nine leads to a significantly worse performance
since the effective array size is reduced to only 3 × 3 elements.
The multiple transmitter setup does not suffer from these
drawbacks since the full array size can be utilized due to
the decorrelation effect achieved by averaging over multiple
transmitters instead of multiple subarrays.

The simulated results in figures 6–8 show that the MVBF
can be very efficient in suppressing interfering modes. In terms
of angular resolution, the MVBF clearly outperforms the SBF.
As expected, the single row array completely failed to suppress
the interfering mode, but with only a two-row array, the MVBF
performed very well in suppressing the interfering mode.
For the eight-row array, both approaches showed reasonable
performance in mode suppression, although the MVBF offers
much better resolution.

The mode converted signals in figure 8 proved to be
more difficult to suppress and the SBF performed significantly
worse in this case. From the point of view of the algorithm,
mode conversion is no different from the non-converted case.
However, in this case there are two interfering signals to
suppress, the unconverted and the converted S0 mode, which
leads to poorer performance when only two rows are available.

From the simulated results of the plate inspection it is
apparent that the MVBF approach performs much better than
the DAS, especially in terms of resolution. For the 4 × 4
array in figure 10, the effects from edge and corner reflections
of the S0 mode can be clearly seen at 45◦ intervals for both
the SBF and the MVBF, although the MVBF is much more
efficient in suppressing these effects. In the ideal simulation
environment, where there is no uncertainty about element
positions or dispersion characteristics, even the 4 × 4 array
using the MVBF outperforms the 8 × 8 array using SBF in
terms of resolution. Because of the relatively small array sizes,
the holes in pair B were not resolved in any of the simulation
examples. However, the holes in pair C were resolved on all
array sizes for the MVBF, and on the 6 × 6 and 8 × 8 arrays
for the SBF, even though the distance between the holes in
pair C was less than in pair B. This is simply because pair C
are at different distances from the center of the array and are
therefore resolved in time.

The false echo seen in the center of the lower right
quadrant of all the simulated image results, except for
figure 13, is due to multiple transmitter excitation. As
discussed in section 4.3, the covariance matrices formed
by each transmission do not cover the same interference
environment. It can be seen in the images that the false echo is
in approximately the same range as the other defects, which is
the reason for its appearance. Figure 13 shows that using fewer
transmitters for each estimation can reduce these problems, at
the cost of increased signal cancelation. Furthermore, hole pair
B was underestimated compared to the SBF, and also compared
to the images in figures 10–12, where the full set of transmitters
were used.

The experimental results in figure 14 were not as
conclusive as the simulated results. The notch is shown with
higher resolution using the MVBF. Fewer artifacts are seen
overall, especially close to the holes. However, the MVBF gave
lower amplitude estimates of the holes than the SBF. It is likely

that the MVBF underestimated the amplitudes of the holes,
which made the difference between the holes and the artifacts
lower. Possible reasons could be signal cancelation due to
the limited number of transmitters compared to the number of
receivers, or steering vector errors. Steering vector errors could
be caused by inaccuracies in the dispersion characteristics or
errors in the array element positions. The pits are clearly seen
using both methods. Hole pair C was not resolved using either
method. It should be noted that an array with 7 mm element
spacing was used for the experimental results, which allowed
hole pair B to be resolved in the experimental data due to the
increased array width. No aliasing effects were identified in
the results due to the spatial undersampling of the A0 mode.

The saturation of the edge reflections created a significant
amount of noise in post-processed data from both algorithms
in the areas closer than 100 mm to the edges, which is
the reason for not showing images covering the whole plate.
After increasing the amplitude range of the oscilloscope,
and thereby avoiding saturation, these problems disappeared.
Unfortunately, the insufficient dynamic range made the much
weaker signals from the defects undetectable using either of
the algorithms.

An obvious limitation of the measurement setup is the
simultaneous use of only eight array elements, which hindered
assessment of the potential effects of interelement scattering
that may be encountered for a full 2D array.

7. Conclusions

The previously proposed adaptive approach for Lamb wave
imaging [22] using a single transmitter has been extended
to cover the multiple transmitter case. Multiple transmitter
setups do not suffer from the drawbacks caused by the spatial
smoothing preprocessing step required in single transmitter
setups. The interfering mode suppression capabilities of the
new MVBF approach was shown to outperform the SBF
on simulated data. The simulated results showed that the
resolution of the proposed approach is significantly better
compared to the SBF, especially for small arrays. The approach
also performed better than the SBF on experimental data.

Signal cancelation that may result in the underestimation
of the signal amplitudes is an issue that needs to be addressed
when working with the MVDR algorithm. Underestimation
could be seen in the results for several defects. The
implications of using multiple transmitters have been described
and investigated. Using as many transmitters as there are
receivers reduces the problem of signal cancelation. However,
the results showed that the performance of the MVBF with
regard to interferer cancelation can be reduced for certain cases
when the number of transmitters are equal or close to the
number of receivers and multiple scatterers are in the same
range. A simple approach to mitigate such problems was
proposed.

The proposed method can be used on non-homogeneous
and anisotropic plates as long as accurate dispersion
characteristics are available.
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