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Article

Direction of arrival estimation of
Lamb waves using circular arrays

Marcus Engholm and Tadeusz Stepinski

Abstract

Uniform circular arrays (UCAs) with 360� azimuthal coverage are very useful for structural health monitoring (SHM) of

large planar structures. Difficulties encountered when working with Lamb waves include their dispersive and multi-modal

nature. In this article three different methods for estimating the direction-of-arrival (DOA) of incoming Lamb waves are

compared and verified using simulated and experimental data. The previously proposed phase-mode excitation-based

beamformer is compared with two high-resolution spectral estimation techniques, the Capon method and the multiple

signal classification method. Design consideration and guidelines for UCAs are presented. To experimentally evaluate the

performance of the considered DOA methods a prototype array consisting of 16 separate pinducers arranged in a ring

was constructed. The array was provided with an analog multiplexer that enabled recording signals received by the

individual elements using a digital oscilloscope. The array was used for the reception of ultrasonic pulses sent by

broadband piezoelectric transmitters and propagating in an aluminum plate. A selection of simulation and experimental

results is presented showing the superior performance of the Capon beamformer.

Keywords

array processing, uniform circular arrays, Lamb waves, multiple modes, wavenumber estimation, dispersion, direction of

arrival estimation

Introduction

Lamb waves (LW) offer a number of advantages in
structural health monitoring (SHM) applications,
especially in those situations where large areas of
thin-walled structures are to be monitored. LWs
can be used in active SHM schemes, where a network
of sensors–actuators is capable of detecting and locat-
ing damage as well as, in some cases, estimating its
severity. In SHM a sensor–actuator network is inte-
grated with the monitored structure to assess the state
of the structure during operation. Information about
damage can be obtained from various characteristics
of the received signals, such as, propagation time,
amplitude, or frequency content. Two main alternative
approaches can be distinguished in SHM of plate
structures, in the first a large dense grid covers the
whole area to be monitored, and in the second a few
sensor arrays are used to monitor a larger area of the
structure. A review of the use of LWs for SHM can be
found in Raghavan and Cesnik.1

Phased array instruments, that are well established
in NDE, enable rapid scanning of large inspected
volumes using transducer arrays steered by specialized
electronics both in transmission and reception. The
most common are linear phased arrays that consist of
a number of active transducers arranged in a line.

Wilcox2 presented the idea of a circular array com-
posed of six PVDF interdigital transducers with curved
fingers, each of them generating a divergent beam
enabling inspection of a pie-slice shaped area of the
plate. A more traditional phased-array approach was
presented by Wilcox et al.3 where circular arrays with
ceramic-disc actuators were investigated for long-range
LW SHM in isotropic plate structures. They found that
the area of the inspected plate to the area of the circular
array was as large as 3000:1. Each element in the array
acts as both transmitter and receiver. The approach
utilizes the complete set of data containing the received
signals from all possible combinations of transmitting
and receiving elements. Wilcox further developed those
ideas and proposed a general approach for processing
data from a LW transducer array for omnidirectional
guided wave arrays, refined for a class of circular
arrays.4 Following this line, Fromme et al.5 presented
experimental results obtained using a compact, low
power array employing piezoelectric transducer
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elements acting as sources and receivers. Velichko and
Wilcox6 proposed a more general approach to improve
the resolution of the array through post-processing of
data from all transmitter–receiver combinations. An
extension of the method to account for the presence
of multiple modes was also suggested.

Giurgiutiu and Bao7 coined the name embedded-
ultrasonic structural radar (EUSR). In the EUSR con-
cept the LWs are generated over a long-range using a
number of piezoelectric wafers arranged into a uniform
line array and integrated with the inspected plate struc-
ture. The array is used both for transmission and recep-
tion of LWs in pulse-echo mode, using electronics
operating in a delay-and-sum (DAS) scheme in time
domain. Damages detected in the structure can be loca-
lized based on the beam’s azimuth and time of arrival
of the received echoes.

Moulin et al.8 examined the beam steering properties
of a small array on transmission, and Sundararaman
et al.9 evaluated a setup using separate transmitters and
a receiving linear array. Also Giurgiutiu in his most
recent book,10 presents both simulated and experimen-
tal results concerning sensitivity of the EUSR used for
detecting cracks in plates. It appears, not unexpectedly,
that the linear array-based EUSR has certain essential
disadvantages: first, it does not cover the whole azi-
muth range (0�–360�). Since its angular resolution
depends on the steering angle, it is best in the direction
normal to the array and it is very poor at the angles
close to 0� and 180� (endfire). Second, linear arrays
suffer from front-back ambiguity (mirror effect),
which makes it impossible to discriminate targets
located in front of the array and behind it. These
problems can be reduced by the use of 2D arrays.
Different 2D array configurations are also considered
in the book.

Authors of the above-cited works assumed single
mode LWs with a priori known characteristics.
Depending on the frequency of the signal and the thick-
ness of the plate, two or more LW modes can be
excited. Both the dispersive properties of LWs as well
as the existence of multiple propagation modes create
difficulties during processing of the received data. Many
researchers have designed their measurement setups to
reduce the interference of unwanted modes.

The authors have in their previous work11–13 pro-
posed methods for array processing of elastic waves
using uniform circular arrays (UCA). A UCA is not
only omnidirectional but its beampattern in the azi-
muth plane is essentially independent of the steering
angle. Algorithms for steering UCAs have been devel-
oped mainly for electromagnetic waves. However,
when dealing with Lamb waves issues related to
their dispersive and multi-modal nature have to be
addressed. In this article, three techniques for array

processing of LWs using UCAs are presented, two
beamformers, and a technique for direction of arrival
(DOA) estimation. The first technique is a phase mode
beamformer (PMBF). Beampattern design using a
beamspace representation of the array steering vector
is explained. The two remaining techniques, the
Capon beamformer and the broadband multiple
signal classification (MUSIC) technique, are often
referred to as high-resolution spectral estimation
techniques.

The main purpose of this article is to present three
advanced array processing techniques suitable for pro-
cessing Lamb waves that until now have not gained
much attention in the Lamb wave SHM field. For
this purpose a simple setup is considered that enables
comparison of the proposed DOA techniques in a pas-
sive acoustic emission scenario where only reception of
Lamb waves is considered. In this scenario the DOAs
of a set of Lamb wave modes generated by one or two
separate transmitters are estimated. Evaluation of the
proposed techniques on both simulated and experimen-
tal data enlightens practical issues encountered in DOA
estimation of Lamb waves. A natural extension of this
work is including a transmission step to design a pulse-
echo imaging case.

In its first part, the article outlines the theoretical
description of the DOA techniques including a discus-
sion of certain aspects of the array configuration and
their implication on the performance of the system.
A review and discussion of both simulated and real
results is presented in the second part of the article.

Background

Uniform circular arrays

A UCA (shown in Figure 1) consists of a circle of M
uniformly spaced elements. Compared to many other
array configurations, UCAs have the advantage that
their beam pattern is essentially independent of azimuth
for the whole azimuthal coverage of 360�. The array
steering vector of an M-element UCA with radius R
for an incoming plane wave with wavenumber k and
incident angle � is

að�, kÞ ¼

e�jkR cos ð�Þ

e�jkR cos ð���cÞ

..

.

e�jkR cos ð��ðM�1Þ�cÞ

2
664

3
775, ð1Þ

where gc¼ 2p/M.
The performance of an array, which is to a high

degree determined by its width and element spacing,
can be analyzed using the so called array response.
This is discussed in the ‘Array design’ section.
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Simulation model

A broadband plane wave xs(t) impinging on the array is
modeled in the frequency domain as

Xð!Þ ¼ að�, kÞXsð!Þ þNð!Þ, ð2Þ

where X(!) is the M� 1 output signal vector from the
array, a(�, k) is the M� 1 array steering vector defined
by Equation (1), Xs(!) is the Fourier transform (FFT)
of the signal of interest, xs(t), and N(!), the FFT of the
stochastic variable n(t), which is a vector modeling
noise and combined interference from other propagat-
ing modes and/or directions. The noise is assumed to be
a spatially and temporarily uncorrelated Gaussian sto-
chastic process and the interfering signals are assumed
to be uncorrelated with xs(t).

Compared to bulk waves in isotropic solids, where
there are only two modes of propagation, the bound-
ary conditions of free thin plates create conditions for
the existence of two types of guided waves, Lamb
waves and horizontal shear waves. The frequency of
the received signal and the thickness of the plate
determine the number of possible Lamb modes. As
frequency or plate thickness are increased, the
number of possible modes also increases. For the
lowest frequencies on a particular plate there are
three possible propagation modes, the symmetric
mode S0, the asymmetric mode A0, and the fundamen-
tal horizontal shear mode SH0. The influence from
horizontal shear waves are assumed to be small in
the measurement setup, and are therefore not consid-
ered in this work.

The possible modes for a given frequency-thickness
product satisfy the so called Rayleigh–Lamb equa-
tions.14 Solving the Rayleigh–Lamb equations numeri-
cally enables the calculation of the phase velocity as a
function of frequency for each mode, known as dis-
persion curves. The Lamb waves have a frequency-
dependent phase velocity that will cause a propagating
wave packet to disperse. To simplify mathematical
notation, let n denote any mode. In the case
of superposition of modes,

P
n simply means summa-

tion over all existing modes. Henceforth, the mode-
dependent wavenumber is denoted kn(!) for angular
frequency !.

The wave propagation and excitation in a plate
was modeled in two dimensions (Figure 2) using the
normal mode expansion derivation presented by
Nunez et al.15 The model assumes plane strain, which
means that the strain in the y-direction in Figure 2 is
assumed to be zero. A traveling harmonic Lamb wave
mode n in the +z direction having frequency ! is
described by

Ui,nðx, z,!Þ ¼ ejknð!ÞzWi,nðx,!Þ, ð3Þ

where i is the displacement component (x or z). Wi,n is
the displacement mode shape, which can be found in
the literature, for example in Nunez et al.15 The result-
ing displacement field is the sum of all modes

Uiðx, z,!Þ ¼
X
n

Anðz,!ÞWi,nðx,!Þ, ð4Þ

where An(z, !) is the amplitude and phase of mode
n at z and frequency !. The average power flow for
mode n is

Pnð!Þ ¼
1

2
!2�VG,nð!Þ

Z d

�d

ðjWx,nðx,!Þj
2

þ jWz,nðx,!Þj
2Þdx, ð5Þ

where VG,n is the group velocity of mode n. Using Pn(!)
and assuming a harmonic surface line source acting
perpendicular to the plate at frequency ! with

R

q
gc

xs(t )

Figure 1. Incoming plane wave xs(t), on a uniform circular array.

Line source Tp(w) Array element

zy
–d

d

x

Figure 2. Illustration of the 2D model showing the source and

a receiving element on a plate having thickness 2d.
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amplitude per unit length Tp(!) at z¼ p, the amplitude
of mode n is given by

Anðz,!Þ ¼
j!

4Pnð!Þ
Wz,nðd,!ÞTpð!Þe

jknð!Þðz�pÞ: ð6Þ

Array design

When designing an array for broadband LWs it is
important to decide the frequency range of interest.
The theoretical dispersion curves for the encountered
modes can be used to determine the minimum and max-
imum wavenumber that needs to be supported. For low
frequencies the wavenumbers of the A0 and S0 modes
become small. As frequency is increased more modes
can exist and close to the cut-off frequency of each
mode the wavenumber is small.

The maximum wavenumber, kmax, sets the maximum
distance between adjacent elements, while the minimum
wavenumber kmin of interest affects primarily the dia-
meter of the array. While wavenumbers higher than
kmax can lead to spatial aliasing, small wavenumbers,
if used for the estimation, are limited by the require-
ments on resolution. Although advanced signal proces-
sing methods (e.g., Capon and MUSIC) can be more
capable of handling limitations due to array design,
such as element spacing, than standard beamformers,
the fundamental constraints set by the array will always
influence the performance. Also, other possible limita-
tions related to the design, such as the number of
elements available and the maximum array size, influ-
ence the performance of the DOA estimation. Knowing
the limitations of the array is important when selecting
the frequency and wavenumber range used for the
estimation.

For circular arrays it is not as straightforward as for
linear arrays to determine the wavenumber support
region. An important tool when evaluating array per-
formance is the array response. Wavenumbers below a
certain limit (e.g., the �3 dB width of the main lobe of
the array response) are not considered to be resolved by
the array. The maximum wavenumber is limited by the
array element density, which determines the distance to
grating sidelobes appearing due to spatial aliasing
effects. A general expression for the magnitude of the
array response is

Aðkx, kyÞ ¼
1

M2

XM
m¼1

e�j ðkxxmþkyymÞ

�����
�����
2

, ð7Þ

where M is the number of elements in the array, (xm,
ym) is the position of element m, and k¼ [kx, ky]

T is the
wavenumber vector in Cartesian coordinates. The array

response shows the sensitivity to incoming plane waves
of wavenumber (kx, ky) and unit amplitude, for
an unweighted beamformer steered to wavenumber
(0, 0). Each term in the summation in (7) corresponds
to the Fourier transform of an impulse located at the
position of element m, (xm, ym).

Due to circular arrays nonlinear element distribu-
tions, the first true grating lobes will appear at relatively
high wavenumbers. However, as will be shown, there
are several significant sidelobes at much lower wave-
number, which will be referred to as grating lobes.
The difference is that these lobes are not replicas of
the main lobe. A safe selection of wavenumber
range is to set the maximum wavenumber to half the
distance to the first significant sidelobe. Wavenumbers
above this limit will cause these grating lobes to enter
the visible wavenumber region causing false peaks to
appear in the angular power spectrum. The maximum
acceptable height of these grating lobes is of course
application dependent, but it is obvious that grating
lobes greater than �3 dB severely limit the ability to
detect weaker signals in the wavenumber space occu-
pied by these lobes.

Direction of arrival estimation

The main problem discussed in this work, DOA estima-
tion, is a special case of frequency–wavenumber estima-
tion where the incidence angle of the incoming signal is
sought. In this work the material properties and the
signal are assumed to be unknown. Since Lamb waves
are multi-modal and have nonlinear frequency–wave-
number relation, the DOA estimation has to include
two steps. First, the signal power bPð�, kÞ is estimated
over the whole �� k region of interest using either of
the three presented methods. In the second step the
direction of arrival can be found in the angular spec-
trum by summation over all k,

bPð�Þ ¼X
k

bPð�, kÞ: ð8Þ

Methods

Beamformers

Phase mode excitation-based beamformer. The stan-
dard DAS beamformer is the most widely used techni-
que in array signal processing; its main advantages are
robustness and simplicity. Its disadvantage is its poor
performance compared to more sophisticated techni-
ques in terms of resolution and sidelobe suppression.

The angular power spectrum of a beamforming
scheme expressed as a function of azimuth is referred
to as a beampattern. Beampattern design for an array
generally involves a trade-off between a number of

4 Structural Health Monitoring 0(0)
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properties, for example, the beam-width and the height
of the first sidelobe. The beam-width determines the
ability to resolve two or more simultaneously incoming
signals from closely spaced sources. The sidelobe level
determines how much off-axis signals affect the output.
For uniform linear arrays (ULAs) a standard way is to
apply weights on individual array elements to achieve
the desired beam pattern. Unfortunately, this metho-
dology cannot be directly applied to UCAs. There
exists, however, a very convenient and powerful
approach to this problem, which the authors have pre-
viously reported.11–13 After transforming the array
steering vector into so called beamspace representation,
the beampattern synthesis of the resulting virtual steer-
ing vector can be performed using the same techniques
as for ULAs.16 Mathews et al.17 provide a nice deriva-
tion of the technique.

The basis for the beamspace representation of UCAs
is phase mode excitation, which is a way of describing
the excitation of the array as a sum of phase modes. In
the same way as any signal can be represented in fre-
quency domain, any excitation of a circular array can
be described in beamspace. The phase modes are com-
ponents of a circular spatial discrete Fourier transform
(DFT) of the excitation of the array. Hence, the
received signal, or rather its corresponding array steer-
ing vector (cf. Equation (2)), is decomposed into con-
tributions from a series of phase modes. Depending on
the radius of the UCA and the wavelength of the
incoming signal the phase mode series, having theore-
tically infinite length, can be truncated to give an ade-
quate accuracy. This representation is different from
the element space representation typically used for
ULAs, were the excitation is described by the contribu-
tion from each element individually.

Following Van Trees16 and Mathews and
Zoltowski17 the weight vector

b�mp
¼

1ffiffiffiffiffi
M
p 1 ejmp

2�
M ejmp

2�
M2 � � � ejmp

2�
MðM�1Þ

� �
, ð9Þ

excites the UCA with phase mode mp, where * denotes
the conjugate transpose. Notice that the weight vectors
are the columns of a DFT matrix. The so called Butler
beamforming matrix B1 is formed using

Cj¼
4
diag j�Mp , . . . , j�1, 1, j1, . . . , jMp

� �
; ð10Þ

where Mp is the number of phase modes as

B�PM ¼ CjB
H
1 , ð11Þ

where

B1 ¼ b�Mp
� � � b0 � � � bMp

� �
: ð12Þ

The Butler matrix BPM transforms the UCA’s steer-
ing vector a(�, k) into a virtual beamspace steering
vector aBS(�, k),

B�PMað�, kÞ ¼ aBSð�, kÞ: ð13Þ

The output Y(!, �, k) from the beamformer is then
given by

Yð!, �, kÞ ¼ w�PMð�, kÞB
�
PMXð!Þ, ð14Þ

where wPM is the complex weighting vector operating
on the beamspace array steering vector. The beamspace
weighting vector can be calculated using standard
weighting (apodization) techniques.

Consider the use of a flat weight vector, wmp
¼ 1, for

an element space beamformer on a ULA, that is,
all elements are given equal weight. This corresponds
to weighting all phase modes equally in the beamspace
beamformer. This is achieved by the following
expression

w�PM,mp
¼

w�mp

jmpJmp
ð�Þ

, ð15Þ

where Jmp
is a Bessel function of the first kind, and

�¼ kR. The denominator scales each phase mode to
achieve unit weight, making the resulting beampattern
approximately the same as for a linear array with the
particular weight vector. The derivation of the denomi-
nator can be found in the references.16,17 Using an ele-
ment space ULA weight vector having only w0¼ 1 and
setting wmp

¼ 0 for all mp 6¼ 0, corresponds to using only
one element. In beamspace this corresponds to using
only phase mode 0, which has a flat beam pattern,
and hence lacks directionality. By using standard
weighting patterns, such as Hamming, the weight of
higher order phase modes can be reduced and the
desired beam pattern can thereby be achieved.

The estimated power of wavenumber k for incident
angle � is then found by summation over all frequencies

bPð�, kÞ ¼X
!

bPð!, �, kÞ ¼X
!

jYð!, �, kÞj2: ð16Þ

Capon beamformer. Compared to the data-
independent standard beamformers the data-dependent
Capon beamformer has advantages that make it appro-
priate to use for Lamb wave detection and character-
ization. A Capon beamformer steered to a certain angle
� at wavenumber k adaptively attenuates noise and
signals arriving from other directions and wavenum-
bers. More formally, the Capon beamformer minimizes
the mean output power of the noise and interference

Engholm and Stepinski 5
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while passing signals from the steered direction and
wavenumber undistorted. This can be expressed as16

argmin
w

w�Snið!Þw subject to w�að�, kÞ ¼ 1, ð17Þ

where w is the array weighting vector, a(�, k) the array
steering vector and Sni(!) is the spectral matrix of the
noise and interferences in (2). The elements of the spec-
tral matrix consist of the correlations between the sig-
nals received by the array elements. However, to
estimate the noise spectral matrix it is required that
the noise and interference is measurable in the absence
of the actual signal. This is not possible in this type of
applications. Instead the estimated data spectral matrixbSð!Þ is used, which also includes the actual signal.

The solution to (17) subject to the constraints is

w� ¼
a�ð�, kÞbS�1ð!Þ

a�ð�, kÞbS�1ð!Það�, kÞ � ð18Þ

The resulting output power from the beamformer is
given by

bPð!, �, kÞ ¼ 1

a�ð�, kÞbS�1ð!Það�, kÞ � ð19Þ

Denote the input signal from each array element m
as xm(t). Each block of xm(t) is segmented into N seg-
ments. Performing a FFT on each segment n results in
Xn,m(!). By forming Xn(!)¼ [Xn,0(!) Xn,1(!) ���
Xn,M(!)]T, the spectral matrix S(!) can then be
estimated as

bSð!Þ ¼ 1

N

XN
n¼1

Xnð!ÞX
�
nð!Þ, ð20Þ

where N is the number of segments that each block is
divided into.

The spectral leakage of the FFT can be reduced by
windowing each segment before performing the FFT.
Windowing nonoverlapping blocks of a broadband
signal is problematic, since a significant part of the
signal could be attenuated by the window. This pro-
blem is reduced by allowing the blocks to overlap.
Smaller segment lengths leads to poorer resolution in
the frequency domain. The segments should not be
larger than the pulse widths since it can reduce the
performance, for example, when multiple signals
arrives simultaneously. For short pulses this could
lead to unreasonably short segments in terms of the
number of samples used for the FFT. A common way
to address this issue is to allow the number of segments
N to be less than the number of array elements M, and
adding a diagonal loading term to the spectral matrix to
make it invertible. Diagonal loading is explained below.

In the same way as for the PMBF, the estimated
power of an incoming Lamb mode from angle � with
wavenumber k is found by summation over all
frequencies,

bPð�, kÞ ¼X
!

bPð!, �, kÞ: ð21Þ

A flow chart of the Capon method is shown in Figure 3.
For some applications it is of interest to estimate the
frequency–wavenumber dispersion curves. This is
straightforward by setting a fixed � and calculating
(19) for the range of frequencies and wavenumbers of
interest. The last simulation example in this article illus-
trates the result of such estimation.

The number of blocks N is a user design parameter
which has to be chosen appropriately for each applica-
tion. To obtain a nonsingular bSð!Þ the number of
blocks N has to be at least equal to the number of
array elements M. This, however, does not guarantee

FFT

FFT

FFT
M ean

xm,N(t)

xm,2(t)

xm,0(t)

xm,1(t)
X2(w)X2(w)*

X0(w)X0(w)*

X1(w)X1(w)*

XN(w)XN(w)*

X2(w)

X1(w)

X0(w)

XN(w)

^

S(w)

a(q, k)

^

P(w, q, k)

Equation (19)

M

FFT

Figure 3. The flow chart shows the necessary steps for calculating the output power using the Capon beamformer for frequency !,

incident angle � and wavenumber k. Selecting N and the length of the segment is a user design choice.
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that bSð!Þ is well conditioned. Further increasing the
number of segments leads to reduced variance, but
also reduces the resolution of the estimate. Increasing
the length of the block can compensate this, but it
reduces the signal to interference plus noise ratio
(SINR). A common way to handle these problems is
to add a diagonal loading term, �I, to bSð!Þ,

bPð!, �, kÞ ¼ 1

a�ð�, kÞ½bSð!Þ þ �I��1að�, kÞ � ð22Þ

The diagonal loading increases the condition
of the matrix. Selecting an appropriate value for �
is also a user design choice. Setting � too low
does not improve the condition of the matrix, setting
� too high reduces the adaptive performance of the
beamformer. A common way to set � is to make it
proportional to the power of the received signal. For
an in-depth analysis of diagonal loading see Stoica
and Wang.18

To reduce effects from, for example, differences in
the frequency response between the array elements or
the element-plate coupling, the signal coherence matrix
C can be used instead of S

bCij ¼
bSijffiffiffiffiffiffiffiffiffiffibSii
bSjj

q � ð23Þ

Two essential disadvantages of the Capon beamfor-
mer are its inability to handle correlated signals and
its limited robustness. The robustness can be improved
by diagonal loading as mentioned above. However,
the first issue has to be considered as the most
severe if the method is to be extended to active
array setups cable of imaging. Backscattered signals
in an active setup derive from the same transmit
pulse, and must therefore be considered highly corre-
lated. Several different approaches to handle corre-
lated signals have been presented in the literature,
for example, spatial smoothing19 and the use of focus-
ing matrices.20

Broadband MUSIC

The third method proposed here uses a completely dif-
ferent approach to DOA estimation compared to the
PMBF and Capon. The MUSIC technique belongs
to a class of techniques known as eigen-structure or
subspace-based methods. These techniques are based
on the principle of separation of eigenvector subspaces
spanning the spatial covariance matrix or, more com-
monly used for broadband signals, the spectral matrix.
The implementation of MUSIC used in this work was
proposed in a article by Wagner and Owens.21

Instead of working with the narrowband spectral
matrices, as done for the Capon method, this approach
uses a broadband spectral matrix formed with elements

bSij ¼
X
!

Xið!ÞX
�
j ð!Þ, ð24Þ

whereXi(!) andXj(!) are the FFTs of the signals received
by array elements i and j, respectively. This assumes that
there are one or several propagating narrowband signals,
possibly in different frequency bands. Note that the aver-
aging in (24) is performed over frequencies, compared to
(20) where the averaging is performed over time.

The next step is to calculate the eigenvalues and the
eigenvectors of bS that are divided into two subsets in
the following step. The first subset contains the largest
eigenvalues whose corresponding eigenvectors will span
the signal subspace. In the second subset the signifi-
cantly smaller eigenvalues are included whose corre-
sponding eigenvectors will span the noise subspace.
The number of eigenvalues in the signal subspace will
be equal to the number of received signals NS. By work-
ing with a single broadband spectral matrix, only one
eigendecomposition needs to be performed.

For narrowband signals (in the sense that their
envelopes can be considered constant during the pro-
pagation across the array), the number of signals, Ns,
will directly correspond to the number of significant
eigenvalues. However, a signal with larger bandwidth
will be represented by more than one eigenvector,
making additional, smaller, eigenvalues appear. This
will break the separation of noise and signal subspace,
leading to poorer performance.

For single-mode signals with known wavenumber,
the incident angle � can be determined through the stan-
dard MUSIC formulation. This involves a search for
steering vectors that are orthogonal to the noise
eigenvectors. The signals steering vectors can be found
by searching for the NS highest peaks of the function

bPpseudoð�Þ ¼
1

a�ð�ÞGG�að�Þ
; ð25Þ

where a(�) is the array steering vector and G is a matrix
consisting of the noise-subspace eigenvectors. Note thatbPpseudoð�Þ can only be used to find the direction of an
incoming signal, it is not a true power spectrum and it is
therefore often called a pseudo-spectrum.

In the same way as done in the previous methods,
mode vectors as functions of two arguments, � and k,
are considered. The signal mode vector search now
needs to be performed in two dimensions,

bPpseudoð�, kÞ ¼
1

a�ð�, kÞGG�að�, kÞ
� ð26Þ
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The incidence angles can then be found by finding the
maximum peaks, corresponding to the number of sig-
nals, over k and �. Similarly to the Capon method, the
standard MUSIC technique is unable to handle corre-
lated signals. Another limitation is that the number of
signals has to be known or estimated, and that the
number of signals is less than the number of array ele-
ments. The signal flow of the MUSIC algorithm is pre-
sented in Figure 4.

Apparatus

To experimentally evaluate the performance of the
methods a prototype UCA consisting of 16 small trans-
ducers was designed and manufactured (Figure 5). The
UCA had a diameter of 40mm and an inter-element
spacing of 7.9mm. The array transducers were of a
type called pinducers (Figure 5). The resonance fre-
quency of the pinducers was determined to be
1.1MHz using a network analyzer. Since the resonance
frequency of the pinducers was well above the range of
the incoming signals, they displayed practically linear
phase response in the frequency range used in the
experiments. The pinducers had a circular active area
of 1.5mm in diameter, which is approximately one-fifth
of the minimum wavelength of the incoming signals. In
order to reduce potential cross-talk between the array
elements, the pinducers were mounted in the array
using rubber sleeves. This also allowed for some flex-
ibility of the vertical position of the transducers,
thereby ensuring good acoustic coupling to the plate
for all elements.

The Lamb waves sensed by the UCA were generated
and transmitted using broadband contact transducers
(Figure 6). The transmitting transducers distance to the
center of the array was 0.3m, which allowed sufficient

acquisition time of the direct signal, before the arrival
of edge reflections. The transmitter was excited by
sine bursts with various frequencies (in the range of
120–350 kHz), using a RITEC Mark IV instrument
and a HP8116 function generator. The array elements
were connected through a multiplexer to an AD8335
amplifier from Analog Devices. The output from the

FFT

Noise subspace
eigenvectors G

xm(t ) Xm(w)
Equation (24)

^

S

a(q, k)

Ppsuedo(q, k)

Equation (26)

M

Eigenvalues/-vectors

^

Figure 4. The flow chart shows the MUSIC algorithm step-by-step.

Figure 6. UCA prototype and a source transducer on an

aluminum plate.

Figure 5. UCA prototype (left) and a pinducer (right).
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amplifier was digitized with sampling frequency
10MHz using a Agilent Infiniium digital oscilloscope.
The oscilloscope and the HP function generator were
triggered by the trigger output of the RITEC system.
The complete test setup is shown in Figure 7. The
RITEC instrument produces a bandlimited sinusoid
of a selectable number of cycles.

The input bursts triggered by the RITEC system had
a repetition rate of �0.1 s, which left sufficient time for
pulse attenuation before a new pulse was excited. The
receiving and exciting transducers were coupled to the
plate through a thin layer of oil.

Array response considerations

The response of the circular array used in this work,
evaluated using Equation (7), is shown in Figure 8.

A conservative rule to avoid aliasing is that the cir-
cumferential distance between two adjacent elements
should be less than �min/2.

16 From Figure 8 it can be
seen that the highest lobes are located above 850 rad/m,
which corresponds to a wavelength of approximately
7.4mm, which is slightly less than the array element
distance 7.9mm. The �3 dB width of the main lobe
sets a limit for the minimum resolvable wavenumber
to about 60 rad/m. This establishes a wavenumber
support region of 60–450 rad/m, which corresponds to
wavelengths from approx. 105–14mm, respectively.
The performance of the three methods when violating
the 450 rad/m limit is shown in the ‘Measuremens’
section.

Note that the high lobes above 450 rad/s are not
replicas of the main lobe in terms of shape and
height. This is due to the UCA’s nonlinear element
positions. In the case of a ULA, a grating lobe will
exactly match the steering vector of a signal from the

angle and wavenumber it appears at. However, the
grating lobes seen in Figure 8 do not match the steering
vector of a signal with the particular wavenumber and
angle. Hence, high resolution methods, such as the
Capon and MUSIC approaches, may resolve signals
in the vicinity of these lobes.

Plate dispersion characteristics

From a computation effort perspective, the most effi-
cient approach is to limit the DOA estimation by
including only those wavenumbers for each frequency
that are given by the dispersion curves. This, however,
requires good estimates of the material properties so
that the dispersion curves can be accurately calculated,

Agilent Infiium
Oscilloscope

trigger in     signal in

HP 8116
trigger in   signal out

RITEC Mark IV SNAP
trigger out    signal out

Transducer 2

Array

AD8335
amplifier

MUX

AI plate
Transducer 1

Figure 7. The setup used in the experiments.
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of 4 cm. Contour plot with 15 levels.
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which can be particularly difficult for anisotropic or
inhomogeneous materials.

The theoretical dispersion curves for a 6mm alumi-
num plate, as used in the results, are shown in Figure 9.
The dispersion curves were calculated using a longitu-
dinal wave velocity of 6420m/s and a transversal wave
velocity of 3040m/s. Sensitivity of the transducers to
certain Lamb modes and frequencies depends on the
shape of the Lamb mode. The out-of-plane displace-
ment for a particular mode depends on plate thickness
and frequency. All three expected Lamb modes for the
frequency and wavenumber region used in the experi-
ments (S0, A0, and A1) were detected in the experimen-
tal setup.

Results

This section presents results from the processing of
simulated and measured data. The results are presented
as estimates of the angular power spectrum from
Equation (8). Unless stated otherwise, each figure
shows the power spectrum of a signal impinging
from 0�. For the Capon method, each block of data
was divided into 16 segments with 50% overlap. No
apodization was used for the results of the PMBF.
A Hamming window was applied on each segment
before performing the FFT. The DOA estimation was
performed over a frequency range of 150–500 kHz and
a wavenumber range from 60 to 450 rad/m.

Different window functions were evaluated for the
PMBF. However, due to the small diameter of the
array, application of standard window functions lead
to an unreasonably wide main lobe. Thus, no apodiza-
tion was used for the results of the PMBF.

Simulations

In this section, a selection of simulated results is
presented to compare the performance of the three
techniques under various conditions. The simulated
signals amplitudes were generated using the model
presented in the section ‘Simulation model’, using
the theoretically calculated dispersion curves in
Figure 9. A multi-cycle sinusoid was passed through a
bandpass filter with a 30% bandwidth, which was
determined to be the bandwidth of the signals gener-
ated by the RITEC instrument. A small amount of
bandpass (50–500 kHz) filtered uncorrelated additive
Gaussian white noise was added to each channel
giving a SNR of approximately 30 dB. The data used
for the algorithms consists of a block of 0.2ms starting
when the first signal reaches the array. For the simula-
tion results from the Capon method, the spectral
matrices were calculated by dividing the block into
16, 50% overlapping segments of 25 ms, which is in
the order of half the width of the received A0 mode.

Figure 10 shows the angular power spectrum of a
120 kHz, 5-cycle signal. The processing was performed
on frequencies between 50 and 150 kHz, for which
aliasing effects should be insignificant. Figure 11
shows the power spectrum of a 3-cycle 250 kHz S0–A1

signal. Figure 12 shows the power spectrum of the
3-cycle 250 kHz signal with also the A0 mode included.
The main power of the A0 mode were above the
450 rad/m limit of the array, which leads to the severe
aliasing effects seen in the spectrum of the PMBF.

In Figure 13 the resolving abilities of the
algorithms are compared for two S0–A1 signals
arriving simultaneously to the array from different

200 400 600 800
0

500

1000

1500

Frequency (kHz)

W
av

en
um

be
r 

(r
ad

/m
)

A0

S0

A1

S1

A2S2

Figure 9. Theoretical dispersion curves for 6 mm aluminum

plate used for the results. Solid lines – symmetric modes, dashed

lines – asymmetric modes.

−135 −90 −45 0 45 90 135

−30

−25

−20

−15

−10

−5

0

Incident angle (φ)

A
m

pl
itu

de
 (

dB
)

PMBF

Capon

MUSIC

Figure 10. Angular spectrums of simulated 120 kHz signal with

modes S0 and A0.

10 Structural Health Monitoring 0(0)

 at Uppsala Universitetsbibliotek on October 27, 2010shm.sagepub.comDownloaded from 

http://shm.sagepub.com/


angles (0� (3-cycle 250 kHz) and �20� (1-cycle
350 kHz)). The power of the signal impinging from 0�

was twice the power of the signal from �20�.
An example of using Capon’s technique for Lamb

wave characterization is presented in Figure 14. The
input signal consists of 2.3ms of white Gaussian
noise, bandpass filtered to 200–1200 kHz. The resulting
A0–S0 mode signal is received by a 32 element linear
array from a predetermined angle. Measurement noise
is simulated by adding white Gaussian noise to each
channel. Instead of summing over all k, the plot
shows frequency–wavenumber estimates. A clear
separation of the two modes can be seen and the

frequency–wavenumber estimates from the noisy mea-
surement agree well with the true values.

Measurements

In this section a selection of representative experimental
results corresponding to the ideal conditions of the
simulations in the previous section is presented. The
signals are limited in time to the direct signal from
the transmitter to the array, excluding any edge reflec-
tions. The lengths of the blocks used for estimating the
spectral matrix was limited by the signal arriving at the
first element and the edge reflections. A single block
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was used from each measurement setup. This resulted
in block lengths of 70–180 ms for the different measure-
ment scenarios. For the Capon approach the blocks
were divided into 16, 50% overlapping, segments.
The resulting segments were less than half the received
pulse widths of the A0 mode.

As in the simulated results, Figure 15 shows the
power spectrum obtained from the signals received by
the prototype UCA when the transmitting transducer
was excited by a 5-cycle 120 kHz signal from the
HP8116 and only frequencies between 50 and 150 kHz
were used in the estimation. The power spectrums for a
3-cycle 250 kHz signal from the RITEC are presented in
Figure 16.

Figure 17 shows the power spectrums obtained when
using two separate transmitting transducers at 0�

(RITEC, 3-cycle 250 kHz), and �20� (HP8116, 1-cycle
350 kHz), respectively, with an estimated relative
power of 2:1.

To compare the performance of the algorithms for
wavenumbers above the 450 rad/m limit, Figure 18
shows the power spectrum for a 3-cycle 250 kHz
signal, including wavenumbers up to 1200 rad/m.

Discussion

Figures 10 and 15 show the power spectrums for a
frequency range (50–150 kHz) where little aliasing is
to be expected. For frequencies between 150 and
500 kHz, the wavenumbers of the A0 mode exceed the
450 rad/m limit over most of the interval. When exclud-
ing the A0 mode in the simulations, as shown in
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Figure 11, the aliasing effects are insignificant. When
the A0 mode is included in the simulation (Figure 12) it
causes severe aliasing for the PMBF. The reason is that
the A0 mode’s wavenumbers are above the 450 rad/m
limit, and only grating lobes are seen in the visible
wavenumber range. Capon and MUSIC produce
much better results in these conditions. The aliasing
issues are not as severe in the experimental results
(Figure 16), leading to the conclusion that the A0

mode has much smaller amplitude in the measure-
ments. To compare the performance for wavenumbers
greater than 450 rad/m for the measured data Figure 18
shows the result obtained for an increased wavenumber
range (k	 1200). The Capon and MUSIC methods per-
form well since the high sidelobes are not replicas of the
main lobe, while the PMBF performs significantly
worse, which is to be expected.

The PMBF fails to resolve the two simultaneously
incoming signals on both simulated (Figure 13) and
experimental (Figure 17) data while MUSIC and
Capon resolves both the simulated and experimental
signals. Capon underestimates the power of the simu-
lated �20� signal and the experimental 0� signal.
Reducing the amount of noise leads to a more accurate
power estimate for Capon. The two separately gener-
ated signals with different frequencies are intended to
simulate the case where two different acoustic events
occur simultaneously, in which the signals can be con-
sidered as uncorrelated. Inability to handle correlated
signals is one of the major drawbacks that both Capon
and MUSIC share with many other advanced array
processing approaches. As mentioned earlier, several
methods to address this limitation has been proposed
in the literature.

Another well-known weakness of the Capon method
is its lack of robustness toward uncertainties in the ele-
ment position. A commonly used way to increase
robustness is diagonal loading. Since this problem
was not observed in the measurements performed
using the experimental setup, no diagonal loading was
applied when computing the above results.

Performing the FFT on the individual blocks of the
measured data xn,m without any windowing resulted in
spurious peaks at the floor of the power spectrum.
These peaks were not pronounced in the simulation
results but were visible when processing the measure-
ment data. In an attempt to explain the reason for those
peaks a linear array was used, for which similar pro-
blems were not encountered. This lead to the conclu-
sion that the peaks were at least partly due to the
scattering by UCA elements located closer to the
source, which affects the elements on the far side of
the array.

It was empirically determined that a 50% overlap
between the blocks and a Hamming window applied

to each segment before performing the FFT lowered
the spurious peaks. Since windowing reduces the
weight of samples at the beginning and end of each
segment, the overlap allows more efficient use of the
data. The windowing and overlapping also reduces
the variance of the estimated spectral matrix, which
could also explain the reduction of the spurious
peaks. As mentioned earlier, the overlapping is also
useful for broadband signals, where short pulses
could be severely attenuated by the window. A draw-
back is that it leads to correlation between the blocks
which can potentially cause the spectral matrix to be
poorly conditioned. This problem, however, has not
been observed in the results reported here.

Conclusions

Three different methods for direction-of-arrival (DOA)
estimation of Lamb waves using UCAs were presented
and compared experimentally. A PMBF operating in
beamspace and thereby simplifying beampattern
design was presented. The more sophisticated Capon
beamformer and MUSIC method, were shown to out-
perform the PMBF. The Capon beamformer adaptively
sets the beamformer’s weight vector to suppress unde-
sired modes and incident angles. The MUSIC method
utilizes a separation of the eigenvectors of the spectral
matrix into a noise and a signal subspace. A search for
array steering vectors orthogonal to the noise subspace
reveals the incident angle and wavenumber of the
incoming signal.

Array design considerations were outlined showing
the limits of the UCA in terms of the wavenumber
support region. The Capon and MUSIC approaches
were shown to potentially support higher wavenumbers
due to the fact that the first grating lobes of the UCA
are not true grating lobes.

The performance of all three methods was compared
using both simulated and experimental data. In general
the Capon approach proved to be the best of the three.
The UCA problems with spurious peaks in the noise
floor was concluded to partly originate from scattering
caused by the elements. The spurious peaks could be
reduced through the use of windowing and a 50% over-
lap between the signal blocks when estimating the spec-
tral matrix bSð!Þ.

A limitation of the methods as presented here is that
Capon and MUSIC are unable to handle highly corre-
lated sources, which is necessary if the application of
these methods are to be extended from the passive
acoustic emission setup, to active imaging. Several
methods have been proposed, and successfully applied,
to address this problem for active applications in, for
example, SONAR22 and medical ultrasound.23 The
authors are currently working on a follow-up article
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showing a complete active array imaging approach for
Lamb waves based on the Capon method.
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