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A population system can be modelled using a micro model focusing on the individual entities, a macro
model where the entities are aggregated into compartments, or a state-based model where each possible
discrete state in which the system can exist is represented. However, the concepts, building blocks, pro-
cedural mechanisms and the time handling for these approaches are very different. For the results and
conclusions from studies based on micro, macro and state-based models to be consistent (contradic-
tion-free), a number of modelling issues must be understood and appropriate modelling procedures be
applied. This paper presents a uniform approach to micro, macro and state-based population modelling
so that these different types of models produce consistent results and conclusions. In particular, we dem-
onstrate the procedures (distribution, attribute and combinatorial expansions) necessary to keep these
three types of models consistent. We also show that the different time handling methods usually used
in micro, macro and state-based models can be regarded as different integration methods that can be
applied to any of these modelling categories. The result is free choice in selecting the modelling approach
and the time handling method most appropriate for the study without distorting the results and
conclusions.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

This paper focuses on population models – which are defined as
models of dynamic systems with an integer number of discrete
entities (individuals) such as plants, animals, patients, vehicles,
molecules, atoms, data packages or entities of any kind. Such mod-
els are frequently used in ecology, epidemiology, demography and
queuing systems, and are also important in physics, chemistry,
biology, traffic planning, production and many other fields.

The crucial task in modelling is to preserve the characteristics of
interest of the system under study. Four fundamental properties of
a population system under study are of special interest for preser-
vation in the model:

� The integer non-negative quality of the entities in the
population.

� The continuous nature of time, which should at least be suffi-
ciently well approximated in the model.

� The structural and temporal relations creating the dynamics of
the system.

� Important irregularly occurring events of the system. These have
to be characterised by an appropriate probabilistic representa-
tion in the model, because they cannot be described in detail.
ll rights reserved.

fsson).
This list could be extended with spatial aspects – but we restrict
this paper to non-spatial models.

A system of interacting entities, a population system, can be
modelled in three different but related ways: by a micro approach
where each entity is separately described, by a macro approach
where similar entities are lumped into compartments so only the
number of entities in each compartment is recorded, or by a
state-based approach where each discrete state in which the system
can exist is explicitly represented and every transition between
these states is specified by a conditional probability. The behaviour
of micro and macro models is typically calculated by a numerical
method (simulation), while state-based models, if sufficiently sim-
ple, can also be analysed analytically.

In various applications it is often found that e.g. a micro model
produces results that are inconsistent with those from a macro
model based on stochastic differential (or difference) equations.
Furthermore, an analytic approach based on a state-based model
may produce still other results. A number of studies compare the
results from different approaches of modelling the same system
and discuss the pros and cons of these approaches [1–6]. However,
a vast number of studies in which the results and conclusions are
dependent on the modelling approach lack such a discussion. Little
has been done to explain how different approaches are related and
what is needed for different approaches to produce consistent
results.

The purpose of this paper is to provide a base for consistent
(contradiction-free) micro, macro and state-based population

http://dx.doi.org/10.1016/j.mbs.2010.02.003
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modelling and simulation. Two models will here be said to be con-
sistent if their outputs in terms of probability distribution/density
functions are contradiction-free for relevant output quantities. This
means that we allow for comparison between a micro model based
on identifiable individuals that can be studied individually and
macro or state-based models that only produce aggregated results.
In particular, we will demonstrate the procedures (distribution,
attribute and combinatorial expansions) necessary to keep these
three types of models consistent. We will also show that the differ-
ent time handling methods usually used in micro, macro and state-
based models can be regarded as different integration methods
that can be applied to any of these modelling categories.

An advantage of having consistency between micro, macro and
state-based population modelling is that it allows for an appropri-
ate choice of type of model instead of selecting it by routine. There
are many aspects to this choice such as: nature of the system, pur-
pose of the study, size of the model, execution time in computer
simulation, possibility of including both discrete and continuous
quantities, simplicity, transparency and communicability of the
model, parameterisation and possibility of estimating parameters,
validation, and possibility of simplifying the model without dis-
torting the results and conclusions. Some of these issues are dis-
cussed later on. Furthermore, consistency between the three
model types provides a powerful context where different ap-
proaches can contribute different types of insights to a study (see
Fig. 1).

The possibility of combining theory and practice in a consistent
way for micro and macro population modelling and simulation and
having access to important results from the theory of stochastic
processes are major advantages. In some cases deterministic mod-
els, embedded in the stochastic model, can be of value for e.g.
mathematical analysis, model fitting, optimisation and sensitivity
analysis – see [7].

To avoid making the presentation longer and more detailed
than necessary, no distinction is made between the continuous time
of the system under study and the almost continuous time using
sufficiently small time-steps in the numerical model. Therefore,
the notation x(t) is usually used rather than xt. So, for the sake of
simplicity, this paper refers to exponential distributions even in
the case of models with almost continuous time. To avoid the lin-
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Fig. 1. Consistency brings a situation where theory and different simulation approache
when simplifications can be made. However, the simplification to a deterministic mode
guistic similarity between ‘state variable’ in a macro model and
‘state’ in a state-based model, the term compartment is in this pa-
per used instead of state variable.

This paper is organised in the following way. In Section 2, micro,
macro and state-based modelling are presented, while in Section 3
three possible time handling principles are introduced and consis-
tency is discussed. In Section 4 we consider the merits and demer-
its of the three approaches. Finally, in Section 5 the findings are
discussed in a broader perspective.

2. Micro, macro and state-based modelling

2.1. Introduction

A system under study is in general composed of so many pieces
(e.g. atoms), has so many characteristics and is so complicated that
it can never be modelled in all its details. The very essence of mod-
elling is to build a parallel description, called the model, which is
much simpler but otherwise preserves important characteristics
and mechanisms of the system under study.

For population systems in general, the nature of the system un-
der study includes discrete entities that interact irregularly in a dy-
namic context over a continuous time. This nature has to be
preserved in the model unless it can be shown that further simpli-
fications can perform the task in accordance with the overall aim.

Before scrutinising the different approaches it is necessary to
use distinct terminology for the entities, their characteristics and
changes over time. In the literature there are many synonyms
and homonyms, but we use the following:

The system under study consists of entities of the same or differ-
ent kinds. These entities may have a number of characteristics that
are permanent or can be changed. The entities may interact with
other entities and with the environment so that changes occur, or
they may remain in a situation for a longer or shorter time.

A conceptual model is a specification of what to include or ex-
clude from the system under study in accordance with the purpose
of the study and practical considerations. This is a complete spec-
ification, but the conceptual model cannot be executed. The task is
then to map the properties of the conceptual model into an execut-
able micro, macro or state-based model.
g 
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A micro model is based on the main concepts of entities and
events. Each entity here becomes an individual unit with its attri-
butes and behavioural procedures. Entities can compete for re-
sources of different kinds, or wait in a ‘queue’ for a resource.
They can also cooperate with each other, etc. A change is called
an event and affects at least one of the entities. An event occurs
at a point in time called the event time. The entity may remain in
a certain condition (stage) for a certain period of time. This time
period is called the sojourn time and may be stochastic according
to any specified distribution.1

A macro model is based on considerably fewer concepts than a
micro model. It is composed mainly of compartments (state vari-
ables) holding the entities, and flows into, out of or between com-
partments. Entities with the same characteristics are here lumped
together and the model describes changes in the compartments
caused by the flows. The individual entity can no longer be distin-
guished. Only the number of entities in a compartment is recorded.

Finally, a state-based model is composed of states and transitions
between these states. This type of model is closely related to the
macro model. The main difference is that every combination of val-
ues (number of entities) that the compartments of a macro model
can take has to be explicitly represented as a separate state in the
state-based model. This usually means that the state-based model
is a huge disaggregation of the macro model.

Below, the micro model is compared with the macro model and
the state-based model. Section 2.2 discusses the mapping of a con-
ceptual model of the system under study into a micro model. In
Section 2.3, the micro model is transformed into a macro model
and in Section 2.4 the macro model is transformed into a state-
based model. The reason for these successive transformations is
to focus on what is necessary in order to keep the consistency, to
simplify the presentation and to avoid repetition.
2.2. Micro modelling

Micro modelling is the approach that is by far the closest to a
direct mapping of the original problem. The individual entities
with their attributes and behaviours are directly mapped in a
straightforward manner from the conceptual model of the system
under study to the model in almost a one-to-one way. These enti-
ties might represent plants and animals in ecosystems, vehicles in
traffic, people in crowds, patients with a disease, data packets in a
network, genes in a population, etc. A frequently used metaphor
for micro simulation is a theatrical performance on a stage. Actors
arrive on this stage, act together with other actors, wait for and use
resources in the form of props, change their characteristics, leave
the stage, etc.

There are many settings and different terminologies of the mi-
cro approach, e.g. Micro-simulation, Discrete Event Simulation,
Individual-based Modelling, Agent-based Modelling, Multi-agent
Based Modelling, etc. The expression micro modelling is used in
this paper.

Modelling individual entities with their interactions, queuing
for resources, competing, co-operating, etc. first became possible
with the advent of digital computers and has mainly been devel-
oped along two lines: The first line includes passive entities with
attributes that travel in a network of stations where they may have
to wait for resources. Examples of this type are GPSS [8], SIM-
SCRIPT [9], SIMAN [10] and Arena [11] to mention but a few. An
1 Sojourn, residence or dwell time are often used as synonyms. In most instances in
this paper this is the case as well. However, in queuing theory the waiting time before
service and the time in service (residence time) has to be separated. The sojourn time
then stands for the sum of the waiting and residence times. We follow this latter
convention. By using the term sojourn time we allow for – but do not require –
‘waiting before service’.
alternative line started with the object-orientated programming
language Simula with its class Simulation [12,13], and later on
the more user-friendly class DEMOS [14]. Here the entity is an ob-
ject that has both attributes and internal procedures controlling its
behaviour. The concept agent is an extension of the object concept.

Micro modelling naturally includes the four fundamental prop-
erties presented in Section 1. The entities are discrete and dynam-
ics occur when the entities interact in continuous (or almost
continuous) time. Probabilistic descriptions of the properties are
implemented in a straightforward way by including appropriate
statistical distributions from which random numbers are drawn.
In this way it is possible to describe, e.g. the actor’s chance of suc-
cess in a situation, its choice between options, or the sojourn time
during which it will remain in a certain condition. In particular, the
possibility of directly using any statistical distribution (possibly
empirical) for the sojourn time in a stage is a powerful asset in mi-
cro modelling.

The micro approach is versatile since sample paths and statisti-
cal estimates of unique individuals as well as aggregated estimates
and distributions can be obtained. In micro modelling, variations
among individuals, local interactions, complete life cycles, utilisa-
tion of resources, how properties emerge from the behaviour of
individuals and how the system affects the individuals of a popu-
lation can be studied. Therefore, a number of counters, clocks, tal-
lies, etc. are included to record what happens, The result is usually
presented as statistics in the form of mean, standard variation, min,
max, confidence interval, histogram, etc. of performance, numbers,
transit times, utilisation of resources, etc.

2.3. Macro modelling

A macro model is composed mainly of compartments (state vari-
ables) holding all entities in the same condition, and flows into, out
of or between compartments. The structure of a compartmental
stochastic population model is the same as for a deterministic
compartment model, but the content of a compartment is an inte-
ger number and the flows are stochastically controlled. Examples
of such models are Poisson Simulation models [15] and compart-
mental models controlled by the Stochastic Simulation Algorithm
[16,17].

2.3.1. Distribution and attribute expansions
The aggregation of entities into compartments has two

consequences:

1. The individual entities cannot be observed and they have no
personal attributes. Instead, each compartment is defined by a
set of attribute values (e.g. female and elderly) that its entities
must possess. Therefore, the value (content) of the compart-
ment represents only the total number of entities with the spe-
cific set of attribute values. The number of compartments has to
be large if many attributes are to be included (attribute
expansion).

2. A compartment has no counterpart to the general sojourn time
distribution of a stage in a micro model. In the case of an outflow
equation that is linear in the state and time-invariant, the com-
partment is bound to produce an exponential sojourn time. A
desired sojourn time distribution, therefore, has to be generated
by a structure of compartments in series, parallel and/or feed-
back (distribution expansion).

2.3.2. Modelling aspects
Since only the numbers of entities in the compartments are re-

corded, the data needed for a macro model and the information
from such a model are usually considerably smaller than for a
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corresponding micro model. This also means that a macro model
does not answer micro questions about individual entities.

The macro model is well suited for a comprehensive graphical
representation of compartments and flows. For example a model
with three successive compartments and two flows can be repre-
sented in a Forrester diagram [18] as shown in Fig. 2. The flows
in this figure are in general dynamically dependent and time-var-
iable functions. For a deterministic model, the flow intensities
could be expressed as F1 ¼ kðx; y; z; tÞ and F2 ¼ lðx; y; z; tÞ. During
a sufficiently short time interval, the flows can be regarded as con-
stant. In the stochastic case a probabilistic mechanism is needed
for generating random and integer numbers of entities to the flows
for each time-step. Such a probabilistic mechanism is an integral
part of time handling and is discussed in Section 3.

2.4. State-based modelling

State-based population models are based on the two concepts:
state and transition. Such models can be of many different kinds,
e.g. Markov chain models, continuous-time Markov models,
semi-Markov models, generalised semi-Markov process models,
chain-binomial models, etc. [19–22].

The theory of state-based models provides a powerful analytical
device with a number of useful results. However, from a practical
aspect, construction and simulation using a state-based model is
inferior to using a macro model [23].

2.4.1. Theoretical value of state-based models
The analytical power of, e.g. a Markov chain model originates

from the fact that matrix calculations operate on the complete
probability distribution function (pdf) of the state vector. This con-
trasts with a simulation of a stochastic model. Analytically, the
transition matrix P is used to update the initial distribution row

vector pð0Þ ¼ pð0Þ1 ; pð0Þ2 ; . . .
� �

that represents the probabilities pð0Þj of

being in state j at time t=0, so that p(1)=p(0)P. The pdf of the state
distribution at integer time index n is then obtained according to
p(n) =p(0)Pn.

A number of issues can be analytically examined within Markov
theory. For example if the process has a stationary distribution p, it
is obtained by solving the eigenvector equation: p = pP.

Another example is from the field of queuing theory. Here pow-
erful results for M/M/c queuing systems (where the M/M stands for
exponential inter-arrival-time distribution and exponential ser-
vice–time distribution and c represents the number of existing par-
allel service channels) are directly applicable. In particular, for
c =1 there is no waiting for service [22].

Furthermore, Burke’s theorem and feedforward Jackson net-
works in queuing theory can be used to reveal when flows are
independent and Poisson-distributed [24,25] for a stationary situ-
ation. If so we have a network of M/M/c nodes. The content of enti-
ties in an M/M/c node when entities that cannot be served directly
are rejected is given by the Erlang’s loss formula [26]. For the case
c =1 there are no rejections or waiting for service and the content
of entities in the node is Poisson distributed in the stationary case.

In particular, the stationary results of an M/M/1 node are also
valid for a compartment in a linear macro model in e.g. Poisson
Simulation [27]. They can therefore be used for assigning initial
x y z 
F1 F2

Fig. 2. Backbone of a Forrester diagram of three successive compartments, x, y and
z, and two flows, F1 and F2. (In a complete diagram, single line arrows are used to
indicate the quantities that will affect each flow.)
values to corresponding compartmental or state-based population
models starting from a stationary situation [27,28].
2.4.2. Distribution and attribute expansions
When constructing a state-based model, it is necessary to in-

clude the distribution and attribute expansions previously discussed
in Section 2.3.1.2 A practical way to accomplish this is to start with a
compartmental model where these expansions are already
implemented.
2.4.3. Combinatorial expansion
Combinatorial expansion is the process of constructing a state-

space, starting from a given macro model. The k compartments of a
macro model correspond to k dimensions of a state-space and the
prescribed number n of entities bounds the size of the state-space.
The state-space then represents all possible combinations of n enti-
ties distributed over k compartments. Each state of a state-based
model then corresponds to a k-tuple (n1,n2, . . . ,nk), where the inte-
gers n1,n2, . . . ,nk add up to n.

For example, consider the model with three compartments x, y
and z as shown in Fig. 2. In the special case when there is only one
entity in the model, it is located in compartment x, y or z. The pos-
sible states are then ð1;0;0Þ, ð0;1;0Þ and ð0; 0;1Þ and the number of
states equals the number of compartments in a corresponding
macro model. With 10 entities distributed over the three-compart-
ment model there will be 66 states in a state-based model. In the
general case with n entities in k compartments, there will be

nþ k� 1
k� 1

� �
states, which is a huge number unless n or k is small.

For all but the smallest systems, it is a formidable task to explic-
itly represent each state of the state-space in a state-based model.
Furthermore, in a growth model the modeller cannot say how
many entities there will be during a simulation, so provision has
to be made for the worst case. In addition, the probability of every
possible transition has to be quantified in the transition matrix P

with nþ k� 1
k� 1

� �
� nþ k� 1

k� 1

� �
elements, which in the best case

is sparse. Because of complexity, the values of the transition prob-
abilities are difficult to analytically deduce, nor is it easy to fit a
large number of transition elements to data from the system under
study. To make the modelling problem still worse, the values of the
transition probabilities are generally functions of the time-step
used. There are further disadvantages of using a state-based model
instead of a stochastic macro population model, such as the diffi-
culty in modifying or extending the state-based model, the intui-
tive distance between the transition matrix and the model
structure, the lack of a smooth way to adjust the implicit time-step
used, etc. See [23].
3. Stochastic time handling principles

The non-executable conceptual model should define the appro-
priate probability distribution/density functions that describe the
probability of any relevant event under given conditions. To obtain
an executable simulation model, there is a need for a mechanism
that generates time evolution that is in accordance with the
assumptions in the conceptual model.
2 In practice, state-based models are often heavily simplified in order to keep the
model within a reasonable size. For example the sojourn time of a stage in the real
system is often erroneously represented by the equivalence of a single compartment
and thus an exponential sojourn time distribution (in the linear case) is implicitly
assumed. In addition, different characteristics (attributes) of e.g. different age groups
are often ignored.
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Such a mechanism is obtained by regarding the simulation
model as a generator of interacting stochastic processes.3 Events
are then generated randomly, with an intensity k that may be con-
stant, time-varying or dynamically dependent. Repeated replications
of the stochastic processes should give different event sequences,
but the statistics of these multiple replications should be in accor-
dance with the pdfs specified by the conceptual model.

The fundamental issue for updating (simulating) a population
model over time is to handle the sequence of events that is gener-
ated by the dynamic model structure and/or originates from exter-
nal influence. This updating can be performed in different ways,
that can be thought of as different integration methods of stochas-
tic models.

3.1. Stationary and non-stationary Poisson processes

To understand how stochastic micro, macro and state-based
population models are related, it is necessary to understand how
time can be handled when event times may not be predetermined,
but must occur randomly with a given intensity. The natural start-
ing point and mathematical foundation of this presentation is the
stationary Poisson process.

Definition 1. A stationary Poisson process is defined in the follow-
ing way:

Let X(t), t P 0 be the number of times an event occurs in the
time interval (0, t). If the stochastic process {X(t), t P 0} has the
properties:

(1) The process has independent increments.
(2) P[an event occurs exactly once in the interval (t, t + h)] =

k �h + o(h).
(3) P[an event occurs more than once in the interval

(t, t + h)] = o(h).

then the process is a stationary Poisson process with intensity k.

A stationary Poisson process (constant intensity k) has a number
of useful properties [29]:

� The number of events during a time interval (t1, t2) is Poisson-dis-
tributed, i.e. X(t1, t2) 2 Po(k � (t2 � t1)). In particular, for a time-
step of length Dt we have X(t, t + Dt) 2 Po(k �Dt).

� If X 2 Po(m) then E[X] = m and Var[X] = m.
� If X 2 Po(m1) and Y 2 Po(m2), where X and Y are independent,

then X + Y 2 Po(m1 + m2). Therefore, independent Poisson pro-
cesses can be superimposed or subdivided.
� If X 2 Po(m1) and Y 2 Po(m2), where X and Y are independent
processes, then the next event originates from the X process
with probability m1/(m1 + m2) and from the Y process with the
probability m2/(m1 + m2).

� For a Poisson process with intensity k the time between consecu-
tive events is exponentially distributed with expected value 1/k.

In a dynamic relationship, the intensity is in general a function
k(x), where x = (x1,x2, . . . ,xn)T is a vector of entities/compartments/
states affecting the intensity. The intensity may also vary in time
because of factors external to the model as k = k(t). So in the gen-
eral case the intensity is given by k(x(t), t).

In this paper a pragmatic approach, relying on numerical meth-
ods, is employed. The idea is to use the stationary Poisson process
as an approximation during appropriately short time intervals,
3 A stochastic process is a sequence of stochastic variables, separated by an index t
and defined on a sample space X. The process is denoted {X(t,x),t 2 T,x 2X}. If t is
fixed one obtains a stochastic variable and if x is fixed a realisation/replication.
even when the intensity k changes because dynamics or time are
involved. The powerful properties of the stationary Poisson process
can thereby be maintained as good approximations within each
updating time-step.

3.2. Principles for generating and handling irregularly occurring events

Four different ways of generating time sequences of irregularly
occurring events with a stationary intensity of k events per time
unit are illustrated in Fig. 3. They provide a key for understanding
our subsequent discussion of consistency between different mod-
elling approaches and are further discussed below. Of these, meth-
ods (i), (ii) and (iii) can be used in a dynamic non-stationary case
by regarding the process as stepwise stationary.

� Uniform: A simple way to obtain randomly distributed events
over the time interval (t1, t2) is to draw a number of
N = INT[k � (t2 � t1)] uniformly distributed random numbers
between t1 and t2. (To also get the number of events random
one can e.g. use a longer time interval and keep a midsection
of length t2 � t1.) This method is included only for pedagogic
reasons. It is never used in dynamic simulation because the
locations of the events in a simulation depend on the model
evolution and cannot be known in advance.

(i) Bernoulli: According to the definition of the stationary Pois-
son process, the probability of an event occurring during a very
short time interval is proportional to the length of the interval.
When the time increment is a very small time-step (h), time is up-
dated as: time :¼ time + h. A sequence of events can then be located
by a sequence of points in time where single events that may hap-
pen are handled at the time increments.

In a numerical context the Bernoulli distribution with probability
k �h is used to decide whether an event will happen during (t, t + h).
For example, by introducing a stochastic variable X that accumu-
lates the number of events, the second condition in the Poisson
process definition can be reformulated as P[X(t + h) = i +
1 jX(t) = i] = k �h. This displays a similarity to the likewise memory-
less Markov chain of a birth process. This method of time handling
also works for micro and macro modelling.

However, in a numerical context the Bernoulli method is a very
inefficient way of handling time, because if several events occur
during (t, t + h) the model only captures one of them. Therefore, h
has to be so short that it guarantees that more than one event al-
most never occurs during an interval (t, t + h), which can be ex-
pressed as k �h� 1. This very short time-step implies that the
vast majority of intervals will be empty.

(ii) Exponential: The temporal distances between successive
random events of a stationary Poisson process are distributed
according to an exponential probability density function given
by ke�kt where t P 0. By drawing a number from an exponential
random number generator Expo[1/k] with this probability den-
sity function, the next event is scheduled at time :¼ time + Ex-
po[1/k].4

This method is often used in micro simulation. For example, in
Discrete Event Simulation it is the standard method, where e.g. an
actor schedules his successor [11,13,30]. For macro models this
was the idea behind the first stochastic integration algorithm, pre-
sented by Daniel Gillespie in 1976 [16]. The time interval to the
next event, Expo[1/k], may be long. This generates no problem from
a dynamic point of view since nothing is dynamically changed until
4 Technically, this can be realised by drawing a uniformly distributed random
number (u) between 0 and 1, and applying the inverse transform method [30]. The
inter-event time is then obtained from: Expo[1/k] = �ln[u]/k [30,31].
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Uniform (random) 
distribution over time.

  3 events      1 event       2 events      3 events      0 events      3 events 

Δt 

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Fig. 3. A stationary Poisson process with intensity k can be generated in different ways. Events are marked by ‘�’ on the time axis. Note that the stochastic mechanisms are
calls to random number generators with the argument given in the brackets. In particular, Expo[mean] (where mean = 1/k) calls a random number generator with an
exponential probability density function given by: ke�kt.
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the next event occurs. For models where the external conditions do
not change, this is an exact integration method – although slow
when there are many events during a simulation. Only if the exter-
nal conditions have changed k(., t) considerably, a problem arises,
but technical solutions for such problems exist.5 For state-based
models this method of time-steps of irregular size gives a simpler
model structure and significantly speeds up the simulation com-
pared with using a short fixed time-step h. Another great advantage
is that there is no time-step to adjust. However, it requires the model
to be defined for continuous time rather than for discrete, equally
spaced points in time [20].

(iii) Poisson: An efficient time-driven schedule is time :¼ ti-
me + Dt, where Dt may be so large that many events can occur dur-
ing a time-step. However, the step Dt must be constrained to be
sufficiently shorter than the shortest dynamic time-constant of
the system. Otherwise the dynamics of the model, which influence
the number of events during the time-step, are too much changed
during the time-step.

When a set of events can be described as mutually independent
within a time interval Dt and occur with intensity k, then the num-
ber of events during Dt will be Poisson distributed Po[Dt �k]. Ran-
dom number generators that generate Poisson distributed
numbers of events can then be used for relatively large time-steps
Dt, if the intensity k can be approximated as constant within the
time-step.

The underlying idea for this time-handling method is the same
as when solving a deterministic differential equation model using
e.g. Euler difference equations:

xiðt þ DtÞ ¼ xiðtÞ þ Dt � kiðxðtÞ; tÞ � Dt � liðxðtÞ; tÞ for i ¼ 1::n;

where x = (x1,x2, . . . ,xn)T. Then the equations can be stepwise calcu-
lated by assuming the input intensity ki(x(t), t) and the output inten-
sity li(x(t), t) fixed during the time interval (t, t+Dt). In the stochastic
case the Euler difference equations take the form

xiðt þ DtÞ ¼ xiðtÞ þ Po½Dt � kiðxðtÞ; tÞ� � Po½Dt � liðxðtÞ; tÞ�;
5 For example if the intensity k(t1) of customers arriving at a lunch restaurant is
very low before lunch, then the next customer, scheduled to arrive at t2 = t1 + Expo(1/
k(t1)) may come late in the afternoon, implying that the peak of lunch customers is
missed. This can be handled by e.g. techniques for over-sampling and thinning
[11,30,32].
where the values of the Po[] terms are obtained from a random
number generator [15,33].

For the sake of clarity and simplicity, the Euler integration
scheme is used throughout this paper. Other single-step integra-
tion methods, such as the Runge–Kutta methods, are also possible.
A Runge–Kutta algorithm is then used to estimate the argument of
the stochastic function. Thereafter, a Poisson-distributed random
number is drawn using the estimated argument.

As just demonstrated, compartmental macro modelling can use
this scheme smoothly. Then any number of events in each of any
number of flows can be handled during a time-step [15]. It can also
be used in micro modelling and, in principle, also in state-based
modelling [23].
3.3. Implementation of time handling in micro, macro and state-based
models

3.3.1. Time handling in micro models
For micro models the exponential form of time handling is

usually the most efficient. The simulation process dynamically
generates new events that are sorted in an event list. The exe-
cution proceeds by jumping to the point in time for the next
event and the consequences of the event are then executed.
[11,13,34]

Time control by time : = time + h, where h is very small, is possi-
ble, but would be very inefficient. A Poisson approach using
time : = time + Dt is also possible, but nothing would be gained
compared with the exponential approach, since every entity
concerned would still have to be individually updated.

3.3.2. Time handling in macro models
In order to illustrate the consequences of different time han-

dling approaches in a macro model, the structure in Fig. 2 and an
example of bacterial growth are used.

3.3.2.1. Bernoulli time handling in a macro model.

Example 1 (a three-compartment model). Assume events to be
handled by the Bernoulli mechanism for a population model with
the structure described by Fig. 2, where the flows are assumed to
be random sequences of events. Using a very small time-step h, an
accurate model that describes the time evolution at the three
compartments would then be given by
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xðt þ hÞ ¼ xðtÞ � h � F1;
yðt þ hÞ ¼ yðtÞ þ h � F1� h � F2;
zðt þ hÞ ¼ zðtÞ þ h � F2;
h � F1ðtÞ ¼ Ber½h � kðx; y; z; tÞ�;
h � F2ðtÞ ¼ Ber½h � lðx; y; z; tÞ�;

8>>>>><
>>>>>:
where time is updated according to t :¼ t + h. The Bernoulli distribu-
tion Ber[h �k] can e.g. be implemented as

If Uniform½0;1� < h � k then Event:j
This approach is of only theoretical interest. Numerically, it is extre-
mely inefficient since the time-step h has to be so small that an
event rarely occurs. Otherwise the risk becomes non-negligible that
more than one event per time-step should – but cannot – happen in
the model, which gives biased results. Such a case is demonstrated
in Example 2.

Example 2 (bacterial growth). Assume that a single bacterium
starts breeding with on average one cell division per hour. To make
matters simple (but not very realistic) in order to get a rough
estimate of the numerical consequences, we reason deterministi-
cally here. After three days (72 h) there will be about 272 �
5 � 1021 bacteria. Now, assume that Bernoulli time handling with a
time-step of 0.1 h (a 10th of the time constant) is used in a
compartment model. Because the Bernoulli outcome is restricted
to zero or one for each time-step, the model would produce a
maximum of 72 � 10 = 720 bacteria. To get an accurate result it
would be necessary to use a time-step less than 10�22 h so that
h �k� 1 (where k = k(x(t)) is an increasing intensity). Then about
72 � 1022 time-steps are needed!j
3.3.2.2. Exponential time handling in a macro model. This method
was first published by Gillespie [16] and is known as the Stochastic
Simulation Algorithm (SSA). The idea is to divide the algorithm into
two parts by answering the questions: 1. When does the next event
occur? and 2. Where does it occur (i.e. which flow will produce the
next event)?

Example 1 (revisited). The model in Fig. 2 will handle exactly one
entity transfer in either F1 or F2 for each event. This can be
implemented as
F1 : x! x� 1 & y! yþ 1 ðoccurs with intensity kðx; y; z; tÞÞ;
F2 : y! y� 1 & z! zþ 1 ðoccurs with intensity lðx; y; z; tÞÞ:

The events will then occur with a total intensity of k + l. Therefore,
the next event comes at t :¼ t + Expo[1/(k + l)]. Furthermore, the
probability that this event belongs to F1 is k/(k + l). Thus the ran-
domisation between F1 and F2 can be done by

If Uniform½0;1� < k=ðkþ lÞ then execute F1 else execute F2:

The method can be extended to any number of flows with intensi-
ties k,l,m, . . . [16,35].j

This method is surprisingly efficient for small intensities. It also
has the advantage of being exact if the external conditions do not
change (i.e. when k(x, t) = k(x) only). Also the time-step (h or Dt) is
eliminated from the model. This works since the dynamics are fro-
zen until the next event.

Example 2 (revisited). The bacterial growth will be correctly
handled by the exponential time-handling method, but the time
to run the model over some 5 � 1021 events (time-steps) will be
considerable.j
3.3.2.3. Poisson time handling in a macro model. Poisson Simulation
was first described by Gustafsson in 2000 [15] and in the following
year by Gillespie [33] under the name ‘tau-leaping’. (The tau is the
Dt leaping over many events.)
The fundamental idea is that during a sufficiently short time-step,
each intensity can be considered constant and can therefore be mod-
elled by a Poisson process. The simulation can then be regarded as
sequences of Poisson processes. Furthermore, the number of events
in each flow is realised by drawing a Poisson-distributed random
number of the form Po[Dt � intensity] from a random number gener-
ator for every time-step, Dt.

Example 1 (revisited). When time is updated with a time-step Dt
and flows between compartments are described by the Poisson
distribution mechanism, the model of Fig. 2 becomes

xðt þ DtÞ ¼ xðtÞ � Dt � F1;
yðt þ DtÞ ¼ yðtÞ þ Dt � F1� Dt � F2;
zðt þ DtÞ ¼ zðtÞ þ Dt � F2;
Dt � F1ðtÞ ¼ Po½Dt � kðx; y; z; tÞ�;
Dt � F2ðtÞ ¼ Po½Dt � lðx; y; z; tÞ�;

8>>>>>><
>>>>>>:
where time is updated according to t :¼ t + Dt.j

Example 2 (revisited). The bacterial growth is easily simulated
with Poisson time handling using e.g. Dt = 0.01 h. Then 7200
time-steps are needed, compared with some 72 � 1022 for the Ber-
noullian or 5 � 1021 for the exponential time-handling approaches.
This represents an improvement of the order of 1020 or 1018-fold
for this example.j

The Poisson Simulation approach can handle any number of
events in any number of flows for each time-step. It largely re-
quires the same considerations as the numerical solving of deter-
ministic differential equations. Deterministic and stochastic
differential equations can also be combined in the same model in
so-called combined simulation [27,36].

The form xi(t + Dt) = xi(t) + Po[Dt �ki(x, t)] � Po[Dt �li(x, t)] for
i = 1..n, where x = (x1,x2, . . . ,xn)T is also very intuitive since it resem-
bles the embedded deterministic difference equation: xi (t +
Dt) = xi(t) + Dt �ki(x, t) � Dt �li(x, t), obtained by stripping off the
stochastic Po-parts. This also provides a bridge between stochastic
and deterministic macro modelling, see Fig. 1. Gustafsson [7] dis-
cusses when consistency is maintained for the embedded deter-
ministic model.

3.3.3. Time handling in state-based models
Now consider the three different ways of handling time in state-

based models. To be specific, we focus on a Markov chain model
where the step-size is short enough to regard the time as almost
continuous.

A Markov chain is a stochastic process with discrete states {X(t),
t = 0,1,2, . . .} in discrete time for which the Markov condition:
P[X(n) = xn jX(0) = x0, X(1) = x1, . . . , X(n � 1) = xn � 1] = P[X(n) = xn jX
(n � 1) = xn � 1] is valid. This condition simply states that the pro-
cess is memoryless and that all there is to know is represented
by the actual state the system is in. (A compartmental model also
has this property.)

The time unit for the sequence t = 0,1,2, . . . implicitly consti-
tutes the time-step between the time-points enumerated. The
time-step can be very small (h) or quite large (Dt), but must be
smaller than the shortest time constant of the dynamic changes.

3.3.3.1. Bernoulli time handling in a state-based model. Let us con-
sider a birth–death Markov chain model where it is sufficient to re-
gard only transitions between ‘neighbouring’ states. This will make
the transition matrix sparse. Since a transition corresponds to zero
or one event, the transition probabilities will be of Bernoulli type:
pi,i�1 = lh and pi,i+1 = kh, as obtained directly from the definition of
the Poisson process. The diagonal elements of the state transition
matrix will then be 1 � Rj–ipij so that the row elements add up
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to unity. The Bernoulli time handling is only valid for very small
time-steps so the model becomes very inefficient to execute.

3.3.3.2. Exponential time handling in a state-based model. The Mar-
kov chain definition above only allows events to occur at regular
time-points t = 0,1,2, . . . This condition of advancing time in equal
time segments can be relaxed [20]. The irregularly updated time is
then handled separately [20]. Stepping time irregularly from one
event to the next is not only more realistic, but also has a number
of advantages.

� First, the matrix will be sparse compared with the method to be
described in Section 3.3.3.3 below.

� Second, since an event happens at the end of the interval, a ‘new’
state is always reached. The diagonal elements aii of the transi-
tion matrix represent the probability of the system remaining
in the state. They are therefore equal to zero, unless there is
an absorption state. (Then the corresponding diagonal element
is equal to 1, preventing any further events to happen).

� Third, when the diagonal elements are all zero, all the elements of
a row are proportional to the probabilities of the respective transi-
tions. The transition probabilities of rows then only have to be
scaled so that they add up to unity (without involving a time-
step). This also makes the transition matrix easier to construct.

� Fourth, the problem of finding an appropriate step-size is
eliminated.
3.3.3.3. Poisson time handling in a state-based model. Using Poisson
time handling with a larger time-step Dt enables correspondence
to multiple transfers between compartments and results in a dense
transition matrix. This speeds up the execution of the model. How-
ever, the assignment of values to the transition probabilities pij is a
formidable task for all but the simplest models [23].6

For both the h and the Dt approaches, the transition probabili-
ties are furthermore functions of the time-step used, which means
that an adjustment of the time-step would require a complete
reconstruction of the transition matrix.

3.3.4. Summary
Table 1 provides a summary of micro, macro and state-based

population modelling, each of which may use the three ways of
handling time.

3.4. Consistency for micro, macro and state-based population models
using different time handling principles

When performing a model study, the purpose of the study re-
quires a desired level of accuracy in the outcome (averages, varia-
tions, some functions of the joint pdfs, etc.). The desired accuracy
then refers to the difference in behaviour between the real system
and the model.

When comparing two stochastic simulation models for consis-
tency, one considers the ‘error’ that represents the difference be-
6 For example, consider a two-compartment model containing a large amount o
molecules that can be in either of these compartments. The states are accordingly
numbered from 0 to n, representing the number of molecules in the first compart-
ment. Then let pij denote the probability of going from i to j (i > j) molecules during Dt
If the net transfer of i � j molecules during Dt only went from the first compartmen
t o t h e s e c o n d , t h e n w e w o u l d h a v e t he t r a n s i t i o n p r o b a b i l i t y
p(i � j) = e�Dt � i �l(Dt � i �l)i-j/(i � j)!, which is the i � j + 1:th term of a Poisson distri-
bution with intensity l during the interval Dt. However, a decrease of i � j molecules
in the first compartment during Dt will also occur if i � j + 1 molecules depart and 1
molecule arrives, or if i � j + 2 molecules depart and 2 arrive, etc. So even in this
extremely simple model the transition probabilities become complicated expressions
of terms from Poisson distributions. Furthermore, the length of the time-step D
appears in a nonlinear way in such expressions.
f

.
t

t

tween the outcomes of the two models. For two models that pos-
sibly belong to different model types, it should be possible to re-
duce this inter-model error to below a pre-specified value. If so,
the two models are said to be consistent. The issue is now whether
this can be achieved by certain measures, such as sufficiently small
step-size, sufficiently accurate representation of the sojourn time
distribution in the form of structures of compartments or states,
etc.

It is of course not feasible to demonstrate this property for every
conceptual model. Instead, a stepwise analysis is performed here,
where the focus is on one type of model (micro, macro, and
state-based in turn) to show that different models within the se-
lected model type that differ only in their time-handling principles
can be made consistent. Thereafter, the different model types are
compared with respect to consistency.

3.4.1. Time handling and consistency
The Bernoulli, exponential and Poisson principles are consistent

ways of handling time for stationary intensities (Poisson pro-
cesses). In particular, when the intensities ki(x(t)) are dynamically
related to entities, compartments or states but not explicitly to
time, then the exponential principle is exact. Consistency with
the Bernoulli and Poisson principles is therefore obtained by hold-
ing the time-step h and Dt small enough, which reduces the differ-
ences in outcome to arbitrarily small levels.

When the intensities are functions of time ki(�, t) because of
varying external conditions, this creates no additional problem
with the Bernoulli and Poisson methods. However, in such cases
the exponential method may sample too long an inter-event
time to the next event if the intensity is increasing with time.
As discussed in Section 3.2 and the accompanying footnote, this
can be corrected for by e.g. over-sampling and thinning
[11,30,32].

Since population models that use different time handling prin-
ciples can be made to produce consistent results within one model
type, the extent to which micro, macro and state-based models can
be made mutually consistent remains to be discussed.

3.4.2. Model type and consistency
The conceptual population model has by definition the four

properties: discrete entities, continuous time, dynamic relations and
stochastic variations.

Furthermore, the entities of the conceptual population model
may have a number of properties, logical connections and interac-
tions that together determine their behaviour:

(a) They may represent a non-homogeneous population charac-
terised by different attributes (such as sex, age, health sta-
tus, etc.).

(b) They may remain in a situation (stage) during a sojourn time
according to a specific statistical distribution.

(c) They may remain in a situation (stage) for a deterministic
time T.

(d) They may take different paths for reasons that are not
exactly known and must therefore be expressed in probabi-
listic terms.

(e) They may take different paths for reasons that can be formu-
lated as logical relations.

(f) They may support or block other entities. For example, they
may influence each other by signals.

(g) They may form pairs or groups with other entities.
(h) They may need resources to perform a task and have to wait

for that resource (‘queue for it’) if not available.

A micro model can map points (a)–(h) of the conceptual model
in a one-to-one manner. Different technical realisations may de-



Table 1
Nine possible ways of combining micro, macro and state-based models using Bernoulli, exponential or Poisson type time handling. The 3 � 3 alternatives for constructing
stochastic simulation models become mutually consistent if correctly modelled.

Model type Time handling

Bernoulli (h) Exponential (next event) Poisson (Dt)
Usually zero and occasionally
one entity transferred per very
small time-step

Exactly one event in the model is generated
per time-step

Many entities may be transferred
in many flows for each time-step

Micro model
n entities with attributes

that may change at events
Possible but very inefficient Efficient for e.g. Discrete Event

Simulation models [11–13]
Usually less efficient – but a practical
way to handle time-varying intensities.
See also the micro model in Example 4

1:1 mapping of the conceptual
model describing the system
under study

Macro model
k compartments connected by flows Possible but very inefficient Gillespie’s SSA method [16] Poisson Simulation model [15,33]
Distribution and attribute

expansion of micro model

State-based model
nþ k� 1

k� 1

� �
states, and

transitions between states

A sparse Markov model [20,21] Zero diagonal and sparse Markov model [20] Dense and extremely complicated
Markov model [23]

Combinatorial expansion of macro model
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pend on the micro language used, but no specific approximations
are needed when performing this task.

When electing to use a macro model, the choice is already made
to aggregate the individual entities into compartments where the
individuals are not identifiable. The consistency issue is therefore
limited to comparing results on an aggregated level.7 To exemplify
this, we assumed the macro model to be realised as a Poisson Simu-
lation model in a common Continuous System Simulation language
e.g. Powersim [37] or Stella [38] or directly written in a general pur-
pose programming language.

In [36], the consistency between micro and macro models is
demonstrated by giving a Poisson Simulation model in a general
setting and discussing how to consistently accommodate the
dynamics and the stochastics of the underlying conceptual model.
This was accomplished by defining Poisson Simulation in mathe-
matical terms as a series of Poisson processes that generate se-
quences of Poisson distributions with dynamically varying
parameters.

In general, the macro model can handle the set of aspects (a)-(h)
of a conceptual model in the following way (using e.g. Poisson
Simulation):

(a) A non-homogeneous population is handled by attribute
expansion.

(b) A sojourn time distribution other than exponential is han-
dled by distribution expansion.8
7 Of course, in the extreme case one might choose to give every entity a unique set
of compartments – meaning that micro modelling is performed using a macro tool.

8 Our experience is that a good approximation of sojourn time distributions can
usually be obtained by a rather simple structure of compartments in series, parallel
and/or feedback. This type of approximation can always produce arbitrarily small
deviations from the desired distribution by increasing the number of compartments.
An alternative, and sometimes more efficient, solution based on a shift buffer of
elements (compartments) in series, that is fully consistent is presented in [27]. There,
multiple inflows to different elements of the buffer are used, where the integer valued
inflows to the buffer elements are selected in accordance with the specified statistical
distribution.
(c) A static delay of length T can be modelled by a buffer of
N = INT[T/Dt] positions (compartments). Such pipeline
delays are often predefined functions in a Continuous Sys-
tem Simulation language.

(d) Different paths, determined by probabilistic decision criteria,
are obtained by giving the compartment two or more outflows
and by adjusting the parameters that control the outflows.

(e) Logical functions (like the if-statement) are part of the Con-
tinuous System Simulation language to operate on the flows.
Any part of the macro model can control any flow rate.

(f) All kinds of influences between entities can be modelled in
accordance with the level of aggregation. Any compartment
or group of compartments may control any flow rate.

(g) Formation of pairs or groups is common in e.g. chemical
reactions where two or more molecules form another mole-
cule or molecules. In such an application, the required num-
ber of ingoing molecules must be taken out of their
compartments and the appropriate number of new mole-
cules added to the respective compartment(s). The same
idea is used for e.g. mating.

(h) Queues for handling waiting for resources can be built in a
straightforward way, see [27]. In that publication, it is
shown that M/M/1, M/M/c and M/M/1 queuing models are
easily constructed using Poisson Simulation. It is also shown
how other kinds of queues can be formed. Adding counters
and tallies is also straightforwardly realised within the
macro model [27]. (Of course, the possibility of following
micro properties, such as queuing discipline, is restricted to
the level of aggregation.)

Selecting a state-based approach often results in an unrealistically
large model. However, in principle it is possible to implement a
conceptual model in a consistent way.

A macro model, represented by a Poisson Simulation model, can
be mathematically transformed into a consistent state-based model
represented by e.g. a Markov model [23]. In [23] it is discussed in
detail how the rows of transition elements are obtained from the
stochastic flow rates of the Poisson Simulation model so that con-
sistency is obtained. To make the discussion lucid, it is assumed
that a macro model (in the form of a compartment model) is to
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be rewritten as e.g. a Markov model. The necessary combinatorial
expansion is then assumed to be performed. In addition:

(a) Attribute expansion is already performed in the formulation
of the macro model.

(b) Distribution expansion is already performed in the macro
model.

(c) Any static delay described by N = INT[T/Dt] compartments is
already part of the combinatorial expansion.

(d) Different paths due to stochastic reasons are implemented
by appropriate values of the transition elements for the cur-
rently relevant row of the transition matrix.

(e) A logical condition to control the flow rates of a compart-
mental model is handled by the values of the transition ele-
ments of the currently relevant row.

(f) In the compartment model, influences between different
groups of entities are handled by appropriate influences
from compartments to flow rates. In a state-based model,
each situation (state) is separately described. It then remains
only to assign the appropriate transition probabilities (or
compulsory transition by an ‘1’ in the appropriate element)
to the row of transition elements of that state.

(g) The extra compartments needed to form pairs or groups in
the compartment model are taken care of by the combinato-
rial expansion.

(h) Queues (used for waiting for resources) bring nothing spe-
cial to the compartment model so there is no problem
involved for the Markov model.

There may be further aspects of a conceptual model, but to the best
of our knowledge there are no structures, logics or mechanisms for
a conceptual population model that cannot be accurately repre-
sented in a micro, macro and (in principle because of size) state-
based model.

The conclusion is that consistency between micro, macro and
state-based models using Bernoulli, exponential or Poisson
methods for time handling can be obtained provided that: (1)
Appropriate distribution, attribute and (for state-based models)
combinatorial expansions are performed; and (2) the time han-
dling is appropriately performed (not too large time-step, over-
sampling and thinning if needed).

4. Merits and demerits of micro, macro and state-based
population models

4.1. A cautionary example

Not all types of stochastic differential or difference equations are
consistent with a conceptual population model. For example, in
many common types of stochastic differential or difference equa-
tions, the change of a quantity is described by separate deterministic
and stochastic terms (or factors) on the right-hand side of the equa-
tion. This is an excellent form for many problems in e.g. automatic
control where signals are separated additively from noise, but is
not appropriate for population models, because the stochastics are
an intrinsic part of the changing process originally defined by events.
As a simple example, consider the artefacts that may be generated by
a stochastic difference equation model with an additive noise term.

Example 3 (radioactive decay). Radioactive decay, where x(t)
represents the number of radioactive atoms with a decay fraction
a per time unit, should in a macro model with Poisson Simulation
be modelled by

DxðtÞ ¼ �Po½Dt � a � xðtÞ�:

We may contrast this to a model with additive noise perturbations:
DxðtÞ=Dt ¼ �a � xðtÞ þ b � eðtÞ;

where e(t) is a zero-mean discrete-time white noise. The latter form
would produce a number of unfeasible phenomena such as: (1)
Non-integer numbers of atoms9; (2) stochastic variations unrelated
to the remaining number of atoms; (3) sudden increases in the num-
ber of atoms; (4) continued variations around the equilibrium state
even when there are no atoms left; (5) the number of atoms may be-
come negative; (6) the ensemble of trajectories from many replica-
tions not having the correct distribution; and (7) the extent of
randomness being strongly dependent on Dt. Such artefacts are all
eliminated by e.g. the Poisson Simulation approach. j

The artefacts in this example may seem innocent and obvious,
but when hidden within parts of a larger model, such artefacts
may generate severe consequences. Variations without appropriate
reasons may excite other parts of the model. Negative numbers of
entities may trigger different kinds of phenomena.

4.2. Choice of model type

The consistency between micro, macro and state-based models
brings the great advantage that the type of model that gives the
most appropriate realisation of the conceptual model can be se-
lected. This issue has many aspects, such as model size and con-
struction effort, homogeneity of population, average or individual
issues to study, execution time, transparency and communicability
of the model, access to data for building the model, validation, etc.

To exemplify how a conceptual model can be realised in a mi-
cro, macro or state-based form, an epidemic model can be consid-
ered. Models of infectious diseases are generally based on a
sequence of stages from Susceptible via Infectious to Removed.
Such a model is therefore denoted a SIR model. The first SIR model
was published by Kermack and McKendrick in 1927 [39].

4.2.1. Example 4: An epidemic SIR model
An epidemic is a process that affects a population of individuals.

From the system under study and the purpose of the study, a con-
ceptual model is defined where the fundamental structure and the
assumptions about the population and the disease are stated. Such
a conceptual model is realised here as micro, macro and state-
based models.

4.2.1.1. The conceptual model. The conceptual model of our example
has the following setting: The population, consisting of n individu-
als, is exposed to an infectious disease. Every individual of the pop-
ulation meets every other individual under equal conditions in
each time unit. The population is here assumed to be non-homoge-
neous. There are differences between individuals due to sex and
age. Each individual is classified according to sex = {male, female}
and age group = {child, adult, elderly}. The attributes sex and age
group are regarded as constant over the time of study.

The disease has the three consecutive stages (S ? I ? R). The
change of stage for an individual takes place instantaneously. Fur-
thermore it is assumed that:

� An event is statistically independent of all other events at that
point in time.

� The probability of a Susceptible individual being infected by an
Infectious individual is ps,a per time unit.

� The time during which an individual resides in stage I has a
3-Erlang distribution with the mean of Ts,a time units, i.e. a
C (3,Ts,a/3) distribution.
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4.2.1.2. The micro-model. Implementation of the conceptual model
as a micro-model is a straightforward one-to-one mapping of the
individuals with their attributes and behaviours. Each individual
has the variable attribute stage, which can take the values ‘S’, ‘I’,
‘R’, and the fixed attributes s = sex and a = age group, which affect
the probability of getting infected, ps,a, and the expected sojourn
time in stage I, Ts,a. The behaviour is: ‘everybody meets everybody
at each time unit’ and ‘when a Susceptible meets an Infectious the
former becomes infected and is transferred to stage I with proba-
bility ps,a’. Furthermore, when an individual enters into stage I, a
random number for the sojourn time in the stage is drawn from
a 3-Erlang distribution with the time parameter set to Ts,a/3.

For practical reasons a Poisson-distributed time handling ap-
proach is used here, so that several events may happen during a
time-step. A micro-model may then have the following structure.

� Generate the n individuals as entities and assign initial values to
the variable attribute stage{S,I,R}, and to the fixed attributes
sex{male, female} and age group{child, adult, elderly}.

While time < Simulation_time, loop over the following three
steps.10

� Time :¼ time + Dt.
� For each entity in stage S, test if it will become infected during Dt. If

so, change its stage to stage = I and draw a value for the sojourn
time in I from a 3-Erlang[Ts,a/3] distribution.

� For each entity in stage I, test whether the sojourn time is up. If so,
its stage = R.

4.2.1.3. The macro-model. Let S, I and R stand for numbers of individ-
uals in the consecutive stages S, I and R.

Because the macro model is based on compartments, the re-
quired 3-Erlang[T/3] distribution must be created or approximated
by distribution expansion. In this case the 3-Erlang[T/3] can be ex-
actly obtained by expansion to three compartments in a series with
an expected sojourn time of T/3 for each compartment [40]. The
Infectious stage therefore expands into three compartments de-
noted I1, I2 and I3 – all equally infectious.

Furthermore, the attributes sex and age group cause an attribute
expansion of the number of compartments. Since the processes for
the subpopulations are similar in structure, the simulation model
should be vectorised by giving compartments and flows indices s
and a to loop over. Using the Euler algorithm, the stochastic macro
model then takes the form

Ss;aðt þ DtÞ ¼ Ss;aðtÞ � Dt � F1s;aðtÞ;
I1s;aðt þ DtÞ ¼ I1s;aðtÞ þ Dt � F1s;aðtÞ � Dt � F2s;aðtÞ;
I2s;aðt þ DtÞ ¼ I2s;aðtÞ þ Dt � F2s;aðtÞ � Dt � F3s;aðtÞ;
I3s;aðt þ DtÞ ¼ I3s;aðtÞ þ Dt � F3s;aðtÞ � Dt � F4s;aðtÞ;
Rs;aðt þ DtÞ ¼ Rs;aðtÞ þ Dt � F4s;aðtÞ;
Dt � F1s;aðtÞ ¼ Po½Dt � Ss;aðtÞ � ðRm;nðI1m;nðtÞ þ I2m;nðtÞ
þI3m;nðtÞÞÞ � ps;a�;

Dt � F2s;aðtÞ ¼ Po½Dt � I1s;aðtÞ=ðTs;a=3Þ�;
Dt � F3s;aðtÞ ¼ Po½Dt � I2s;aðtÞ=ðTs;a=3Þ�;
Dt � F4s;aðtÞ ¼ Po½Dt � I3s;aðtÞ=ðTs;a=3Þ�:

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:
Thus a threefold distribution expansion of the Infectious stage is first
made and then the attribute expansion for sex and age group is ap-
plied for the five compartment equations above. This results in
5 � 2 � 3 = 30 compartments. The four flow equations expand to
10 Faster execution is obtained with: While I – 0 loop over the model, because the
simulation can then be terminated when I becomes zero.
4 � 2 � 3 = 24 flow equations, where the flow equations are de-
noted Fis,a(t). The total model thus consists of 54 equations.

4.2.1.4. The state-based model. A state-based model can be con-
structed by a combinatorial expansion of the compartment model
above. The size of the state-based model depends both on the
dimensions of the state-space (i.e. the number of compartments
in the macro model) and on the size of the population. The popu-
lation of n individuals is partitioned into six subpopulations with
fixed attributes {sex} � {age} so that n=n1 + n2 + n3 + n4 + n5 + n6

entities. Each individual of a subpopulation can then be in any of
the k = 5 compartments {S, I1, I2, I3, R}. Thus each of the six sub-

populations needs ni þ k� 1
k� 1

� �
states independently of each

other. Therefore, a total state-space of Pi¼1::6
ni þ k� 1

k� 1

� �
states

is needed.
For example, consider a small population with only ni = 100

individuals in each of the six subpopulations i = 1,2, . . . ,6. The

state-based model is then composed of 104
4

� �6

� 1040 states, so

a transition matrix would need to have 1040 rows of transition
probabilities.

Let us sum up this epidemic SIR modelling example for the case
where initially 100 individuals are in each of the six subpopula-
tions. With a micro model there is one entity class (prototype) with
the fixed attributes sex and age, the dynamic attribute stage, and a
procedure controlling the transfers to a new stage. This single pro-
totype is then copied into 600 entities, which are initiated with re-
spect to sex and age and with respect to the initial stage.

For the macro model, distribution and attribute expansions re-
sult in a model with 30 compartments independently of the popu-
lation size. Finally, a state-based model requires (in addition to
distribution and attribute expansions) a combinatorial expansion
which results in about 1040 states.

4.2.2. Model size of micro, macro and state-based models
Fig. 4 shows the number of entities in a micro model, the num-

ber of compartments in a macro model, and the number of states in
a state-based model for various sizes of the population (n) and cat-
egories/compartments (k). In the last case the formula

nþ k� 1
k� 1

� �
is used, which is correct when every entity can be

in every category/compartment. (As seen from the epidemic SIR
modelling example, this is not always exactly the case.)

Thus the number of states, even for quite a small state-based
model, can become astronomically high, while for macro modelling
the model size grows only linearly with the number of compart-
ments (k) and not at all with the population size (n). The micro
model usually requires only one or a few entity prototypes with
attributes and behaviours from which it is trivial to generate any
number (n) of entities.

Conceptual complexity is of importance beside computational
complexity. An example of when a micro model may be preferred
to a macro model from a conceptual complexity perspective is the
following.

Example 5 (micro or macro models of vaccination). A vaccine
against infection by Human Papilloma Virus (HPV), which causes
cervical cancer, was developed by Merck & Co. At Merck Research
Laboratories, a macro model for assessing HPV vaccination strat-
egies was developed [41].

From a conceptual point of view this model describes the
stages: susceptible, three stages of HPV infection, eight pre-stages
of cancer, and invasive cancer. The stages are also subdivided into
different HPV types, and all possible progressions and regressions



Fig. 4. Approximate size of a micro, macro, and state-based model. For a micro model the model size grows linearly with the number of entities (n) (dashed line). For a macro
model the size grows with the number of compartments (k) after distribution and attribute expansions are performed (dotted lines). For a state-based model the number of
states grows in combination with the number of entities (n) and the number of state-space dimensions (k) (solid lines).
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between these stages are also modelled. Furthermore, a population
of 100,000 individuals is classified by sex, 17 age groups,
vaccinated or susceptible, habits of attending screening, screening
outcome, degree of sexual activity, previous treatment such as
hysterectomy, etc.

This led to the construction of a deterministic compartmental
model which, because of attribute expansion, consists of 7191
differential equations (compartments)! [42]. The documentation of
the model comprises 50 pages, dominated by formulae with
multiple indices.

This model was reformulated to a micro model by the Danish
National Board of Health [43] and implemented as a computer
program [Code and personal communication]. To us, there is no
doubt that the Danish micro model is considerably easier to
understand, build, validate and communicate and better structured
than the original Merck model.

As a final detail, let us consider the smooth extendability of a
micro model. Assume that age was originally omitted from the
vaccination model, but is now to be included. In the micro model
one static attribute ‘TimeOfBirth’ is to be added and age can then be
calculated when needed from Time � TimeOfBirth, while the num-
ber of compartments in the macro model has to be expanded by,
say, a factor of 20 if the population is subdivided into 5-year age
classes between age zero and a hundred.j
4.3. Consequences of omitting distribution and attribute expansions

4.3.1. Distribution expansion and feasibility
Knowledge of the time an entity stays in a stage may be repre-

sented by any probability distribution (uniform, exponential, gam-
ma, Weibull, etc. or even empirical), whereas a single compartment
holds the entities in accordance with an exponential distribution
(in the linear and time invariant case). For example, if the sojourn
time in a stage has a probability distribution differing from expo-
nential, then modelling a stage by a single compartment, without
checking the consequences, is a serious and frequent error in both
macro and state-based modelling.

4.3.1.1. Feasible and unfeasible representations of sojourn time in a
stage. Most processes in real life require a non-zero time. For e.g.
biological or medical processes, a non-zero time is needed for
digesting, transportation of nutrients, defeating a disease, develop-
ing a cancer, growing an embryo, etc. For such a process a first or-
der process is biologically unfeasible because it means that the
probability of performing the process in almost zero time, i.e. fin-
ishing it within (0,e), is larger than finishing it in any other time
interval (t, t+e) of length e.

Example 6 (distribution expansion of the infectious stage of a SIR
model). Many model studies produce strongly biased results due to
modelling the sojourn time of a stage by a single compartment.
One example is the stochastic SIR model, discussed in Section 4.2.
Depending on the disease, the sojourn time distribution of the
infectious stage must be realistically described. For example the
average size of a new epidemic produced by the model strongly
varies with the number and structure of compartments, even when
the average sojourn time in the stage is the same. j
4.3.2. Attribute expansion
The importance of attribute expansion is easy to understand. If

entities with different attributes (such as sex, age, etc.) behave dif-
ferently, then it is often important to preserve these differences in
the model – rather than modelling a homogeneous population of
‘average individuals’. For example a population of two strains with
fertility f1 and f2 will grow faster than one strain with fertility
ðf 1þ f 2Þ=2 and the strain with the largest fertility will soon
dominate.
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Example 7 (attribute expansion to explain why a disease will not
vanish). If an infectious disease has a basic reproduction number
less than unity (an infectious individual infects less than one other
person on average) in a homogeneous population, the disease will
die out. However, if there is a risk group while the rest of the
population is at low risk, then the disease may remain in the
population.j
5. Discussion and conclusions

Construction of models and their use in simulation is a powerful
extension of mathematical and statistical methods for studying
complex systems. Unfortunately, model construction and simula-
tion are often practised by researchers with insufficient under-
standing of the implicit meaning of applying different modelling
approaches. Too often, some standard model is selected because
it is simple and commonly used, but it often has absurd conse-
quences on closer inspection. There is a lack of a scientific base that
considers the underlying qualities of different types of modelling
and the relationships between different types of models.

This paper presents a uniform foundation for population model-
ling based on consistency and discusses the fundamental relation-
ships between micro, macro and state-based population models.
The focus is on the most fundamental aspects of population mod-
elling and simulation, such as primary building blocks and time
handling, rather than on technical issues and implementation with
more complicated situations such as queue handling, use of re-
sources of different types, co-operation between entities, etc.

The message of this paper is twofold. On the theoretical side it is
shown that, based on the concept of events, there are three ways to
handle time that can each be applied to micro, macro and state-
based population modelling. Furthermore, it is shown that by
applying distribution and attribute expansions, micro and macro
models can be made consistent. Finally, by applying combinatorial
expansion to the macro model, a consistent state-based model can
be obtained.

On the practical side, important findings are as follows:

1. We demonstrate how to realise a conceptual model in the form
of a micro, macro or state-based population model, including
necessary expansions.

2. We discuss the size of a model in terms of the number of main
building blocks for a micro, macro or state-based population
model and its consequences for the model building effort. See
also Fig. 4.

3. We demonstrate how time can be handled and its
consequences.

4. We present an overall perspective (Fig. 1) where the type of
modelling and simulation can be selected rather than being
set routinely. This selection may be affected by the purpose of
the study, the effort required to build the model, size of model,
execution time, data available, parameterisation and parameter
estimation, simplicity and transparency of the model, validation
aspects, etc.

In the not recent, but still relevant, book ‘System Simulation –
Programming Styles and Languages’ [13], Kreutzer identifies four
model ‘paradigms’: Monte Carlo Simulation, Continuous System
Simulation, Discrete Event Simulation and Combined Simulation.
It is interesting to see that all four of these paradigms can be re-
lated in our uniform base to modelling and simulation (see Fig. 1).

In Kreutzer’s presentation, state-based models are not repre-
sented. The reason for including these models in the present paper
is that they constitute a strong connection to analysis from fields
such as stochastic processes and queuing theory, where theoretical
knowledge can be obtained. For example, Burke’s theorem [22,24]
on stable stationary M/M/c queuing systems states that a Poisson
process driving an exponential server generates a Poisson process
for the departures with the same intensity as in the driving process.
Furthermore, the input and output processes are independent. In
fact many multiple server nodes (M/M/c) can be connected in a feed-
forward network and still preserve a node-by-node decomposition.
Jackson [25] reports that for a network of queues with many nodes
and different service times, each node behaves as if it is an indepen-
dent M/M/c system with a Poisson input rate.

However, these results from queuing theory are equally valid
for e.g. Poisson Simulation models, since the compartments in such
a model are M/M/1 queues, i.e. there is no waiting for service. Such
results not only contribute to the understanding of stochastic mod-
elling but also have direct implications in assigning initial values
[27,28].

We here also wish to address the misunderstanding that micro
models in general are more complex than macro models. For
example, it has been stated (where micro models are exemplified
by Individual-Based Models – abbreviated to IBM and differential
equation models are named analytical models):

‘However, the great potential of IBMs comes at a cost. IBM mod-
els are necessarily more complex in structure than analytical mod-
els. They have to be implemented and run on computers. IBMs are
more difficult to analyze, understand and communicate than tradi-
tional analytical models (Grimm et al. 1999)’ [44], and ‘Particularly
critical is the problem of communication. Analytical models are easy
to communicate because they are formulated in the general lan-
guage of mathematics. Their description usually is complete, unam-
biguous and accessible to the reader. In contrast, published
descriptions of IBMs are often hard to read, incomplete, ambiguous,
and therefore less accessible. Consequently, the results obtained
from IBMs are not easily reproduced (Hales et al., 2003)’ [44].

We do not share the view that a micro model is necessarily more
complex than a macro model. Behind such an opinion there is usu-
ally a skewed comparison where more complex micro models are
compared with relatively simple macro or state-based models, and
where the latter type often lacks appropriate expansions. Letting
all distributions implicitly be exponential and removing the attri-
butes certainly makes the model simple, but not consistent with a
more detailed micro model. An illustrative example of this is the
model of vaccination against cervical cancer given in Example 5.

In our opinion, the documentation and communication of a
model should be on at least two levels. A presentation in broad
outline should describe the conceptual model regardless of how
it is implemented. On a technical level the implementation should
be described in detail in accordance with the claims of the selected
micro, macro or state-based approach.

Finally, we again caution against the routine use of modelling
without first having a conceptual model that is appropriate for
the intended purpose. A similar danger is when a ‘confection mod-
el’ is picked by routine and perhaps slightly modified, rather than
tailor-made from a conceptual model. It is the responsibility of
the modeller to select the appropriate type of modelling and time
handling and to check that any simplifications made do not distort
the model and its results. This paper hopefully contributes to this
in the form of theoretical understanding and insights into practical
population modelling.
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