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This paper treats the problem of correction of loudspeaker and room responses using a single source.
The objective is to obtain a linear correction filter, which is robust with respect to listener movement
within a predefined region-of-interest. The correction filter is based on estimated impulse responses,
obtained at several positions, and a linear minimum mean squared error criteria. The impulse
responses are estimated using a Bayesian approach that takes both model errors and measurement
noise into account, which results in reliable impulse response estimates and a measure of the
estimation errors. The correction filter is then constructed by using information from both the
estimated impulse response coefficients and their associated estimation errors. Furthermore, in the
optimization criteria a time-dependent reflection filter is introduced, which attenuates the high
frequency parts of the reflected responses, that is, the parts of the responses that cannot be
compensated with a single source system. The resulting correction filter is shown to significantly
improve both the temporal and spectral properties of the responses compared to the uncorrected
system, and, furthermore, the obtained correction filter has a low level of pre-ringing.
© 2009 Acoustical Society of America. �DOI: 10.1121/1.3075615�
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I. INTRODUCTION

The aim of digital room correction is, in general, to im-
prove audio reproduction in, for example, domestic or auto-
motive sound systems. Improve means here to compensate,
or at least reduce, the distortions of the signal due to both a
non-perfect source and acoustic diffraction and room effects.
In digital room correction this is normally accomplished by
first acquiring data to estimate the room impulse responses
and then construct a correction filter based on the estimated
impulse responses.1

It is known that direct inversion of acoustic impulse re-
sponses acquired at a single listening point results in exces-
sive boost at some frequencies due to interference induced
deep spectral notches in the impulse responses, which results
in high noise amplification,2,3 and, furthermore, the correc-
tion performance quickly deteriorates when the listener
moves away from the reference correction point.4,5 In this
area of application, spatial robustness is essential since the
position of the listener cannot be expected to be fixed. In the
literature, several approaches to robust design of correction
filters have been studied. Examples of such approaches in-
clude complex smoothing,6 multiple-point equalization of
common poles,7 derivative constrained equalization,8 spatial
averaging with fuzzy clustering of room responses,9 time-
domain inversion with frequency-dependent regularization,2

and robust multiple-point designs.4,10,11

Another important issue in correction filter design is to
try to avoid non-causal preresponses of the correction filter;
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non-causal means here the filter effects that occur before the
main correction filter delay. Allowing a delay in the system
normally improves the correction performance,12 but it also
implies a mixed phase character of the correction filters. It is
known that mixed phase designs generate a pre-response in
the filter, which may generate an audible pre-ringing in the
corrected system.3,13

This paper is concerned with compensation of loud-
speaker and room effects, using a single source, by means of
deconvolution of acoustic impulse responses based on data
measured at more than one listening point. The objective is
to obtain correction filters, with a low amount of pre-ringing,
that are robust in the sense that the position of the listener is
allowed to vary within a predefined region-of-interest while
still obtaining a good, or at least reasonable, compensation
for room and loudspeaker characteristics. The reason for
choosing such an objective is that we must realize that the
one cannot perfectly reproduce the input signal at every point
in a region-of-interest. This is mainly for two reasons: �i� we
are using a single source so we cannot control �beamform�
the sound field spatially and �ii� we do not know the impulse
responses at every point in advance and we must, therefore,
estimate them based on data acquired at a finite set of obser-
vation points. Hence, we only have knowledge of the char-
acteristics of the sound reproduction system at some points,
and, furthermore, the estimated impulse responses have a
finite length and are based on noisy measurements resulting
in limited accuracy of the impulse response estimates.

In this paper we will discuss a statistical inferential14

method for estimating acoustic impulse responses as well as

a method to design robust compensation filters based on �i�
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impulse responses estimated from data acquired at several
observation points and �ii� a linear minimum mean squared
criteria. Note that we are seeking a linear finite impulse re-
sponse filter that can be used for real time compensation.

This paper is organized as follows: in Sec. II a linear
matrix-based impulse response model is introduced, which
then is used in the estimation of the acoustic impulse re-
sponses, which is discussed in Sec. III. Furthermore, In Sec.
IV the robust multiple-point design method for correction
filters are described as well as how room reflections can be
treated by means of a non-stationary filtering approach. In
Sec. V the experiments are discussed, and, finally, in Sec. VI
a discussion and the conclusions are given.

II. A LINEAR IMPULSE RESPONSE MODEL

Consider the loudspeaker setup shown in Fig. 1. We
measure the acoustic pressure wave form at an observation
point rn= �xn ,yn ,zn� using a microphone. If we let the loud-
speaker be located at origo, r= �0,0 ,0�, then we can express
the received signal at the nth position as

y�rn,t� = h�rn,t� � u�t� + e�t� , �1�

where � denotes temporal convolution. Note that the impulse
response h�rn , t� is a function of position due to diffraction
effects of the loudspeaker and room effects, such as reflec-
tions and room modes; the impulse response, h�rn , t�, is com-
prised of several parts, such as the amplifier response, the
electro-acoustical response of the loudspeaker, the acoustic
�diffraction� response of the loudspeaker, the room impulse
response, and the response of the microphone.

Here we are concerned with digital processing of the
acoustic data; hence we need a discrete model of the system.
This can readily be obtained by sampling the impulse re-
sponses, input signals, and the acquired data; here we repre-
sent, by convention, the data yn, the input signal u, and the
impulse responses hn by column vectors. The discrete form
of Eq. �1� can then be expressed as

yn = hn � u + e , �2�

where � now denotes discrete temporal convolution. Further-
more, a discrete-time convolution of two vectors u and h can

Region-of-interest

rn

FIG. 1. Typical measurement setup.
be expressed as a matrix-vector multiplication of the form
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h � u = Hu = u � h = Uh , �3�

where the matrices H and U have a Toeplitz form consisting
of delayed versions of hn and u, respectively.12,15 If hn is of
length Lh and u is of length Lu, then the length of the
discrete-time convolution, hn�u, will be Lh+Lu−1. We will
assume, for the remaining part of the paper, that when a
matrix convolution, of the form �3�, is used then the Toeplitz
matrices involved have a dimension such that the length of
the resulting vector is the same as for the normal form of the
discrete-time convolution. Now, by using the matrix-vector
notation in Eq. �3�, the model �2� becomes

yn = Hnu + e = Uhn + e . �4�

III. ESTIMATING ACOUSTIC IMPULSE
RESPONSES

Before we can design the correction filter, we need to
obtain the impulse responses, hn, for each observation point
rn. To do this we play a suitable identification signal to the
system and measure the acoustic waveform using a micro-
phone at rn, as discussed in Sec. II. We must, however, ac-
knowledge that the measurements are never error free; we
will always have quantization errors, thermal noise, acoustic
disturbances, etc. Also, we are using a discrete model of
finite length, which never can describe the system perfectly.
We have, therefore, chosen a Bayesian approach to estimate
the impulse responses, which takes these uncertainties into
account. More precisely, we have used the optimal linear
estimator—also known as the linear minimum mean squared
error �LMMSE� estimator or the maximum a posteriori esti-
mator under Gaussian assumptions.

A. Prior information

A powerful feature in Bayesian analysis is that prior
information is naturally incorporated, which significantly can
improve our estimates. In this case we are interested in esti-
mating acoustic impulse responses, and we know, for ex-
ample, a priori that it takes a certain amount of time for the
sound to travel from the active area of the loudspeaker to the
observation point. The impulse response must consequently
have a zero amplitude for that time interval, and data for this
time interval can, therefore, be removed since it carries no
information relevant to the design of the correction filter. For
the response corresponding to the remaining time interval,
which consists of a direct response and room responses �re-
flections and room modes�, the direct response is often the
strongest. However, if we have no knowledge from, for ex-
ample, previous measurements, then it is difficult to say how
much stronger the direct response is compared to the re-
sponses due to the room. Furthermore, we normally do not
know if the impulse response amplitudes are more likely to
be positive or negative. We can, however, say something
regarding the mean signal variation since, in a typical mea-
surement situation, the output power and the microphone
gain is adjusted so that a sufficient acquired signal variation
is obtained. This mean signal variation will correspond to a

mean variation in the impulse responses, which we denote as
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�h. Based on probability theory,16,17 we can then assign a
zero-mean Gaussian �prior� probability density function
�pdf� to the impulse responses

p�hn�I� =
1

�2��Lh/2�Ch�1/2e−�1/2�hn
TCh

−1hn, �5�

where Ch=�h
2I∀n.

B. The optimal linear estimator for acoustic impulse
responses

To estimate the impulse responses hn, we first perform N
experiments, one for each observation point, where we ob-
tain the data yn, n=1,2 , . . . ,N. Using the linear model �4�,
for the nth measurement point, the optimal linear estimate of
hn can be found by minimizing the mean squared error
�MSE� criteria,

J�K� = arg min
K

E��hn − ĥn�2� = arg min
K

E��hn − Kyn�2� ,

�6�

which has the closed form solution given by18

ĥn = Kyn = ChUT�UChUT + Ce�−1yn, �7a�

where E�·� is the expectation operator, Ce is the noise cova-
riance matrix, Ch is the impulse response covariance matrix
given by Eq. �5�, and T is the transpose operator.

The covariance matrix Ch allows us to incorporate
a priori knowledge regarding the impulse responses. A con-
servative setting is, as discussed in Sec. III A, to let Ch

=�h
2I; that is, we have no a priori knowledge of correlations

and time varying amplitude variations of the individual mag-
nitudes of the impulse response coefficients—if such corre-
lations and amplitude variations do exist, then they must
solely be given by the data.

The noise term, e, in the model �4� above accounts for
all uncertainties that we may have. As previously discussed
we typically have model errors due to the finite length of the
impulse responses, as well as the electronic measurement
and the acoustic interference that cannot be avoided. Here we
have also used a conservative model of the noise and let the
covariance matrix have the form Ce=�e

2I. The value of �e is,
however, in practice seldom known beforehand. By using
probability theory we could assign a prior for �e and inte-
grate �marginalize� it out.16,17 This would, however, lead to a
more complicated non-Gaussian posterior. An often good ap-
proximation is to estimate �e from data and then use the
estimated value in Eq. �7a�, which is the method chosen in
this paper �the procedure for estimating the noise variance is
described in Appendix A�. The estimator �7a� can be rewrit-
ten in the equivalent form

ĥn = �UTCe
−1U + Ch

−1�−1UTCe
−1yn, �7b�

which can be practically useful since the size of the matrix
inverse may then be smaller. The latter form �7b� can also be
obtained by assuming a Gaussian distributed hn and e and

then choosing the estimate ĥn where the a posteriori pdf has

its maximum.
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In summary, we have assumed that h and e are zero
mean and mutually independent with covariance matrices
Ch=E�hnhn

T�=�h
2I and Ce=E�eeT�=�e

2I, respectively.

C. The impulse response error

An important feature of Bayesian analysis is that we
obtain a measure of the accuracy of our estimates. This is
given by the posterior distribution, which for the estimator in

Eq. �7a� and �7b� is Gaussian. The estimation error, �= ĥ
−h, is then also �zero-mean� Gaussian where the covariance
matrix for � is given by18

C� = Ch − ChUT�UChUT + Ce�−1UCh

= �Ch
−1 + UTCe

−1U�−1, �8�

where we have dropped Ce’s dependence on rn to simplify
the notation.

IV. THE CORRECTION FILTER

The objective with the design of the correction filter is
that the filter, as mentioned in Sec. I, should be robust in the
sense that the listener should be able to move within a pre-
defined region while still obtaining a reasonable correction.
Since we are using a single source we cannot compensate for
all �position-dependent� loudspeaker and room effects. That
is, in particular, the reflected responses vary significantly
over the region-of-interest,5 and such effects, therefore, can-
not be compensated—at least not without using a multiple-
channel system. However, at lower frequencies the sound
pressure varies more slowly with respect to listener move-
ment, and if the position change is within a half wavelength
then the sound wave will have a similar phase for the corre-
sponding frequency. Thus, the correction filter can therefore
compensate for the lower frequency room effects, and the
cut-off frequency, where compensation is possible, is directly
related to the size of our chosen correction region.19 This
information can be included in the design criteria, which will
be further discussed below.

A. The linear minimum mean squared error
correction filter

The objective is now to reproduce the input signal, u,
using linear pre-filtering according to

ûn � �k−dn
= hn � u � f + e = HnUf + e , �9�

where f denotes the correction filter and where �k−dn
=1 for

k=dn and otherwise zero. Note that ûn will be delayed rela-
tive to u due to the filtering delays associated with hn and the
filter delay due to the compensation filter f �i.e., it takes some
time for the signal to pass through the system and the cor-
rection filter�. We must, therefore, introduce a delay, dn, in
Eq. �9� in order to obtain a realistic estimator.

To find the linear filter we choose the filter, f, that mini-
mizes the mean squared sound reproduction error at a set of

N observation points according to
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fOPT = 	
n=1

N

arg min
f

E��u � �k−dn
− ûn�2�

= 	
n=1

N

arg min
f

E���k−dn
u − ûn�2� , �10�

where �k−dn
is the Toeplitz convolution matrix that corre-

sponds to �k−dn
. We have again used a conservative approach

and assumed that E�uuT�=Cu=�u
2I.

Now, by using the estimated impulse responses in Eqs.
�9� and �10� and equating the derivative with respect to f to
zero, the correction filter which minimizes Eq. �10� becomes

fLMMSE = 
	
n

ĤnĤn
T�−1	

n

Ĥn
T�k−dn

, �11�

where the dependence of the prior for u disappears since �u

cancels out.

B. The LMMSE correction filter for room impulse
responses with errors

Since we must estimate the room impulse responses
from data, there will be deviations in our estimates from the
true impulse responses, and, as discussed in Sec. III C, these
deviations can be treated as Gaussian. A model that takes
these uncertainties into account can then be expressed as

yn = �ĥn + �hn� � u + e = �Ĥn + �Hn�u + e , �12�

where �hn�N�0 ,C�
�n��. Following the procedure used in

Sec. IV A and using Eq. �12� in Eq. �10� results in

fLMMSE = 
	
n

Ĥn
TĤn + C̃�

�n��−1	
n

Ĥn
T�k−dn

, �13�

where C̃�
�n�=E��Hn

T�Hn�, which approximately is given by

C̃�
�n�Łh�̃�

2I �see Appendix B�.

C. Reflection response filtering

Recall from the discussion in Sec. IV that we cannot
compensate for reflections and high frequency room modes
using a single source. Note, however, that since the reflection
responses always arrive after the direct response, we can
apply a suitable time varying filter to the impulse responses
to attenuate the reflection effects in the impulse responses
while keeping the low frequency room modes. Thus, by this
procedure we can reduce the influence of the reflections in
the design of the reconstruction filter.

The non-stationary filtering can be obtained by using a
filter matrix where the columns are not delayed versions of
the same filter, as for a normal Toeplitz convolution matrix,
but now the filters are changing with time. This can be ex-
pressed in matrix form by multiplying the impulse response
matrices Hn with a reflection filter matrix FR, that is, we
replace Hn in the criteria �10� with FRHn, which results in
the new criteria,

fOPT = arg min
f

	 E��u � �k−dn
− UFRHnf�2� . �14�
n
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V. EXPERIMENTS

To verify the presented theoretical results above, experi-
ments have been performed in a 5.8 m long, 4.5 m wide, and
2.6 m high room, which is designed after the live-end/dead-
end principle; the wall behind the loudspeakers has sound
absorbing draperies, and the wall at the opposite side to the
loudspeakers has a sound diffuser. The data have been ac-
quired using a DPA 4004 Reference microphone and an
RME Multiface 24-bit sound card. The acoustic data were
acquired at 43 measurement points, where measurements
1–21 were acquired at a height of 1.09 m and measurements
22–43 were acquired at 1.32 m, respectively. Two Genelec
8040A loudspeakers were used, and the layout of the experi-
ments is shown in Fig. 2. In the results for the left loud-
speaker presented here, the data from the 10th observation
point, at �−0.38,1.83,1.09� m, was used for evaluation, and
the correction filter is based on data from the remaining 42
measurements. Furthermore, an impulse response �and cor-
rection filter� vector length of 16 384 elements was used
here, which corresponds to a time duration of 371 ms. We
have used white input signals of a duration of 3 s, sampled at
a sampling frequency of 44.1 kHz, in the experiments, and
the acoustic impulse responses were estimated using Eq. �7a�
and �7b�. We have given all estimated impulse responses an
equal weight in the construction of the correction filter, and
the data have, therefore, been normalized. We have also used
a lower limit of 20 Hz and an upper limit 20 kHz for the
working range of the correction filter.

In Fig. 3�a� the first part of the estimated impulse re-
sponse for measurement point �−0.38,1.83,1.09� m is
shown. The response seen just before 2 ms is the direct path
response, and the first �floor� reflection is the response seen
at approximately 5 ms. One can also see that the frequency
response, shown in Fig. 3�b�, has many dips, which is known
to cause problems in direct inversion approaches since then a
division by zero nearly occurs.

Note that the arrival times of the same reflections but at
different measurement points will not be the same since the
propagation distances to the objects that reflect the sound
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FIG. 2. The measurement setup. The circles indicate the loudspeaker posi-
tions and the numbers, 1–43, indicate the microphone measurement posi-
tions.
will be different at different points. This is shown in Fig. 4�a�
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where all estimated impulse responses have been plotted in
the same graph. As can be seen in the figure, the direct path
impulse responses have similar, but not identical, shapes for
all measurement points, but the reflections, which all arrive
after 4 ms, vary significantly between different measurement
points. This can also be seen by observing the average of the
estimated impulse responses, shown as the gray solid line in
Fig. 4�b�; here it can be observed that the reflection part of
the average impulse is close to zero since negative and posi-
tive responses does not arrive coherently for different points,
and these parts will, therefore, almost cancel out in the av-
erage.

To further study the variability between estimated im-
pulse responses, the spectra at each point have been plotted
in the same graph in Fig. 4�b�. Here we can see that the
spectra have peaks and dips at roughly the same frequencies
up to approximately 100–200 Hz, but above 200 Hz the
peaks and dips occur at different frequencies for different
points. This can also be seen in the average frequency re-
sponse, shown as the gray solid line, which is relatively flat
�with a falling trend� above 200 Hz with no strong isolated
peaks or dips.

The LMMSE correction filter, based on the 42 “training”
measurements, was then computed using Eq. �13�, and the
resulting filter is shown in Fig. 5. As seen in the frequency
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FIG. 3. The estimated acoustic impulse response for position
�−0.38,1.83,1.09� �m�.
response in Fig. 5�b�, the correction filter does not have ex-
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cessive filter gain at any frequency. There is a peak at ap-
proximately 25 Hz since the loudspeakers do not transmit
much energy below 30 Hz �see Fig. 4�. One can also observe
that there is three, or four, relatively well separated common
resonance peaks in the spectra shown in Fig. 4�b� between 50
and 200 Hz. These peaks have corresponding dips in the cor-
rection filter’s spectrum. One can also note that the correc-
tion filter compensates for the falling trend above 2–3 kHz
seen in the average impulse response spectra in Fig. 4�b�.
The falling trend of the frequency responses can partly be
explained by the diffraction effects of the acoustic source,
which depend on the size of the source and the position of
the measurement point; the fall-off trend for high frequencies
increases when the distance from center-axis of the source
increases �see, for example, Ref. 20�.

To further show the properties of the LMMSE correction
filter, the estimated impulse response for measurement point
�−0.38,1.83,1.09� was filtered using the correction filter
�shown in Fig. 5�, which is displayed in Fig. 6. First one can
observe, in Fig. 6�a�, that the corrected system has a signifi-
cantly shorter direct response compared to the uncorrected
system. Second, the pre-ringings are roughly 50 dB lower
than the maximum direct response �see Fig. 6�b��. Third, the
frequency response of the corrected system, shown in Fig.
6�c�, is significantly closer to a flat response compared to
uncorrected system. The correction is, as expected, not per-
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FIG. 4. The estimated acoustic impulse responses.
fect since there are, in particular, still some dips in the spec-

nd L.-J. Brännmark: Multiple-point statistical room correction 2125



tra for the corrected system. The high frequency part of the
correction filter is also somewhat “noisy” �see Fig. 5�b��.

To see if the robustness of the correction can be im-
proved by incorporating more prior information, we have
also performed experiments using the �slightly heuristic� re-
flection filter approach described in Sec. IV C. Figure 7
shows the results where a non-stationary reflection filter with
a cut-off frequency of 90 Hz was used when designing the
correction filter. The start time for the non-stationary reflec-
tion filter was 3.6 ms, and the filter length was gradually
increased until 5.6 ms where the full length �of four periods
at the cut-off frequency� was reached. By comparing the re-
sults in Figs. 6�a� and 7�a�, one can see that the correction of
the direct response is similar both with and without reflection
filtering, which was expected since the direct response was
not affected by the filter. However, if we compare the results
presented in logarithmic scale in Figs. 6�b� and 7�b�, we can
see that the reflection filter approach significantly has re-
duced the amplitudes of the pre-ringings. Furthermore, the
high frequency parts of the correction filter is significantly
smoother when reflection filtering is used, which can be seen
by comparing Figs. 5�b� and 7�c�.

VI. SUMMARY AND CONCLUSIONS

This paper treats the particular problem of the design of
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FIG. 5. The LMMSE correction filter.
robust correction filters based on several impulse response
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measurements. Clearly, the objective is to obtain the best
correction possible, but we must first acknowledge the limi-
tations of the experimental conditions and specify a realistic
goal for our filter design. Here we are considering correction
using a single source, and we are using a finite impulse re-
sponse model where we must estimate the coefficients in the
model from a limited number of noisy data. Due to the un-
certainties, we have used a statistical approach in the design
of the correction filter. The approach consists of two steps
where we first estimate the impulse responses at a finite
number of observation points in our region-of-interest, and
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FIG. 6. The uncorrected and corrected impulse responses for measurement
position �−0.38,1.83,1.09� �m�.
then we construct a correction filter based on the estimated
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impulse responses. By taking the uncertainties �i.e., the
model error and measurement noise� into account, we have
obtained reliable estimates of the impulse responses, which
is vital for the design of the correction filter. The correction
filter is then constructed by using a linear minimum mean
squared criteria. We have, furthermore, introduced a time-
dependent reflection filter in criteria, which attenuates the
high frequency parts of the reflected responses, that is, the
parts of the responses that we cannot compensate with a
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FIG. 7. The uncorrected and corrected impulse responses for measurement
position �−0.38,1.83,1.09� �m� using a correction filter based on reflection
filtered impulse responses.
single source system.
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As can be seen in the results from the experiments pre-
sented in this paper, the statistical multiple-point correction
method introduced here is capable of significantly improving
both the temporal and spectral responses compared to the
uncorrected system. Furthermore, the obtained correction fil-
ter has a low level of pre-ringing, which was in the order of
60 dB lower than the direct response for the data used in this
paper.

APPENDIX A: ESTIMATING THE NOISE VARIANCE

Here we are interested to estimate the noise variance �e
2

only and we, therefore, marginalize over the impulse re-
sponse coefficients according to

p��e�yn� � p��e�I��
hn

p�hn�I�p�yn�hn,�e,I�dhn

= p��e�I�L��e� . �A1�

If we, for convenience, use a uniform prior for hn, then the
integral in Eq. �A1� becomes

L��e� = �
hn

1

Rh

1

�2��L/2���e
2I�

�exp�−
1

2�e
2 �yn − Uhn�T�yn − Uhn��dhn, �A2�

where Rh=hmax−hmin is large enough so that the integral, in
practice, can be evaluated from −� to �. Then, after evalu-
ating the Gaussian integral, Eq. �A2� becomes,

L��e� =
1

Rh

1

�2��L/2���e
2I�
�
��e

22��Lh

�UTU�
�

�exp�−
1

2�e
2yn

T�I − U�UTU�−1UT�yn� . �A3�

Furthermore, since the noise variance is a scale parameter,
we use a �normalized� Jeffreys prior for �e,

17

p��e�I� =
1

log��max/�min�
1

�e
, �A4�

where �min is a small value but larger than zero �typically
determined by the bit resolution of the analog-to-digital con-
verter� and �max is a large but finite value. Using Eqs. �A4�
and �A3� in Eq. �A1�, and equating the derivative of the log
of the posterior �with respect to �e� to zero, then results in

�̂e =�yn
T�I − U�UTU�−1UT�yn

L − Lh + 1
; �A5�

that is, Eq. �A5� is the maximum a posteriori estimate of �e

for a uniform prior of hn.
Recall from Sec. II that here the noise describes the

model misfit, and different impulse response lengths will,
therefore, result in different values of the estimated noise
variance. As an example, the estimated �e for six impulse
response lengths are given in Table I for the observation
point at �−0.38,1.83,1.09�. One can note that estimated �e
becomes smaller when the impulse response length in-
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creases. This trend can also be seen in Fig. 8 where the
normalized log likelihood for �e has been plotted for three
different impulse response lengths. Here, one can also ob-
serve that the value of the most likely �e decreases when the
impulse response length increases since a longer impulse re-
sponse can describe the data better, and, furthermore, the
posteriors are so narrow that they are essentially delta func-
tions; hence, the actual limits of the prior for �e have negli-
gible influence of the posterior.

APPENDIX B: AN APPROXIMATE EXPRESSION FOR
THE ERROR COVARIANCE MATRIX

The error covariance matrix Ce was given in Eq. �8�.
This expression can be simplified by noting that since we are
using a white excitation signal the matrix UTU will be nearly
diagonal and can, therefore, be approximated with uTuI. By
making this approximation, Eq. �8� reduces to

C�  
 1

�h
2I +

uTu

�e
2 I�−1

=
�h

2�e
2

�e
2 + �h

2uTu
I . �B1�

If we use this approximation in the correction filter discussed

in Sec. IV B, then the matrix C̃e
�n�=E��Hn

T�Hn� reduces to

TABLE I. Estimated �c for six different impulse response lengths, Lh, for
the observation point �−0.38, 1.83, 1.09� �m�.

Lh 512 1024 2048 4096 8192 16 384
�c 0.1644 0.1241 0.0585 0.0226 0.0126 0.0119
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FIG. 8. The normalized log posterior for �e for three different impulse
response lengths at observation point �−0.38,1.83,1.09� �m�. The solid line
corresponds to an impulse response length of 512 �right curve�, the dashed
line to 2048 �middle curve�, and the dotted line to 8192 �left curve�, respec-
tively.
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C̃�
�n�  Lh

�h
2�e

2

�e
2 + �h

2uTu
I = Lh�̃�

2I , �B2�

where we have dropped the dependence of n for �e
2 to sim-

plify the notation.
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