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INTRODUCTION
International Mobile Telecommunications —
Advanced (IMT-Advanced) systems are mobile
broadband communication systems that include
new capabilities that go significantly beyond
those of the IMT-2000 family of systems such as
wideband code-division multiple access
(WCDMA) or WiMAX. One of the key features
of IMT-Advanced are the enhanced peak data
rates to support advanced services and applica-
tions. A peak spectral efficiency of 15 b/s/Hz is
required for the downlink (DL), and 6.75 b/s/Hz

for the uplink (UL) [1]. As an example, in 40
MHz bandwidth the DL peak rate is 600
Mbytes/s; in a 100 MHz the DL peak rate is 1.5
Gbytes/s . A request for IMT-Advanced technol-
ogy proposals has been issued by the Interna-
tional Telecommunication Union (ITU) [2],
according to which candidate radio interface
technologies can be submitted during 2008 and
2009 (October 2009 is currently proposed as the
deadline to submit proposals). The evaluation
phase is scheduled to be finalized in June 2010.
In parallel with the evaluation activities, an
assessment of the evaluations and consensus
building between the proposals will take place.
This process will continue until October 2010.
An ITU — Radiocommunication Standardiza-
tion Sector (ITU-R) Recommendation contain-
ing the IMT-Advanced radio interface
specification is scheduled for February 2011 [2].

Wireless World Initiative New Radio (WIN-
NER) was an ambitious research project funded
during 2004–2007 by the Sixth Framework Pro-
gram of the European Commission, aiming at
identification and assessment of key technologies
for IMT-Advanced mobile communication sys-
tems. The project partners consisted of the
major industrial and academic players in mobile
communications. The main outcome of the pro-
ject is the definition of the WINNER system
concept and the related system design, backed
up by a proof of concept in the form of extensive
system-level simulations under realistic system
deployments [3, 4].

While the WINNER radio access network
(RAN) is designed to fulfill the IMT-Advanced
requirements, additional and in certain cases
stricter requirements are derived from services
the WINNER RAN has to support. For exam-
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for flexible deployments in a wide variety of
operating conditions. The WINNER system pro-
vides a significant step forward from current 3G
systems. Key innovations integrated into the sys-
tem concept include flexible spectrum usage and
relaying, adaptive advanced antenna schemes
and pilot design, close to optimal link adapta-
tion, hierarchical control signaling, and a highly
flexible multiple access scheme. The end-to-end
performance assessment results demonstrate
that the WINNER concept meets the IMT-
Advanced requirements.
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ple, a minimum transmission delay of 1 ms in
DL and 2 ms in UL over the radio interface
has been required to support highly interactive
services, whereas IMT-Advanced requires a
user plane delay of less than 10 ms over the air
interface [1]. The WINNER system concept is
based on orthogonal frequency-division multi-
ple access (OFDMA); thus, the key technology
components and assessment results provide rel-
evant input for the future evolution toward
IMT-Advanced of other OFDMA-based sys-
tems such as WiMAX [5] and Third Genera-
tion Partnership Project (3GPP) Long Term
Evolution [6].

This article provides an overview of the
WINNER system concept and several of its
key innovative technology components. The
next section provides a description of the sys-
tem capabilities and the logical node architec-
ture. We then describe the developed solutions
for multiple access and medium access control
(MAC). We then focus on the advanced anten-
na concept with end-to-end performance
results. We provide an overview of the relay-
ing concept and describe the dynamic spec-
trum use solutions. The final section concludes
the article.

WINNER SYSTEM CONCEPT

WINNER SYSTEM CAPABILITIES

The WINNER system has been designed to
meet the IMT-Advanced requirements in
diverse deployment scenarios: wide, metropoli-
tan, and local areas. Wide area deployment
provides ubiquitous coverage in a manner simi-
lar to cellular systems known today; the
metropolitan area targets dense urban scenar-
ios, typically built according to a tight city plan;
and the local area concentrates on the provi-
sion of high data rates to indoor users. The air
interface is based on OFDMA, allowing flexible
and fine-grained multi-user resource allocation.
Parameterizations of the air interface provide
flexibility and maximum efficiency depending
on such factors as the particular radio environ-
ment, usage scenario, and economic model.
The system provides a user-centric and flexible
protocol architecture, integrating relaying,
advanced spatial processing schemes, and
dynamic spectrum use.

The main WINNER system parameters are
provided in Table 1. The system design has been
iterated and refined based on extensive system
simulations to find an optimum trade-off
between system performance, complexity, and
deployment cost. Compared to current 3G sys-
tems, these provide a significant step forward,
providing in particular a large scalable band-
width of up to 100 MHz, and support for signifi-
cantly higher data rates than in use today and
extremely low latencies of the air interface. The
flexible multiple access scheme simultaneously
enables frequency adaptive transmission with
high spectral efficiency for high-data-rate users
and low mobility, and diversity transmission for
low-data-rate and high-mobility users. Capabili-
ties for spectrum sharing enable new modes of
operation and provide access to spectrum bands

that would otherwise be unavailable. Two cate-
gories of mechanisms have been developed. One
category enables operation in shared spectrum
between IMT-Advanced and other technologies,
and another category provides mechanisms for
intersystem coordination between different net-
works all deploying IMT-Advanced technology.
The envisioned high-data-rate services will only
be adopted by users if the cost per transmitted
bit is sufficiently low. Relay-based deployments
have been identified as a key technology compo-
nent to provide cost-efficient high-bit-rate cover-
age exploiting the cost advantage of relays due
to their flexible deployment. Finally, advanced
multi-user multiple-input multiple-output (MU-
MIMO) schemes are crucial in achieving high
spectral efficiency. Their adaptable design
together with appropriately designed pilot sym-
bol patterns and the use of hierarchical control
signaling enables the usage of multi-antenna
techniques tailored to a wide range of scenarios
without excessive control and pilot signaling
overhead. The required spectral efficiency of 15
b/s/Hz for IMT-Advanced systems, for example,
can be achieved with eight antennas and four
parallel streams to four users each having 64-
quadrature amplitude modulation (QAM) and
code rate 2/3. However, more important than
the peak data rates are the data rates that are
achieved in a realistic deployment with a guaran-
teed throughput to the users. In such a scenario
the WINNER system achieves a spectral effi-
ciency of about 10 b/s/Hz in a wide area deploy-
ment.

SYSTEM ARCHITECTURE
The WINNER system architecture defines logi-
cal nodes and the corresponding interfaces. The
objective is to define as few logical nodes as
possible to keep the number of interfaces small.
Sophisticated function grouping enables a flat
architecture as in the system architecture evolu-
tion of 3GPP Long Term Evolution [6]. For
example, there are only two nodes in the user
plane, which reduces the number of involved
nodes in the connections, as well as flexible,
scalable, and cost-efficient implementations
(e.g., by defining logical nodes as pooled
resources to recover from node failures). The
system architecture addresses the lowest three
layers of the open systems interconnection
(OSI) stack, supporting both single-hop and
multihop communication. The two lowest layers,
represented by the physical (PHY), MAC, and
radio link control (RLC) sublayers, are present
in all base station (BS), user terminal (UT), and
relay node (RN) logical nodes, denoted BSLN,
UTLN, and RNLN, respectively. This enables
efficient cross-layer design of these layers. For
example, fast hybrid automatic repeat request
(HARQ) with low additional control overhead
(low code protection of the feedback signaling)
takes place at the MAC layer, whereas the more
robust RLC-ARQ facilitates recovery from
occasional HARQ negative acknowledgments
(NACKs) interpreted as acknowledgments
(ACKs).

Figure 1 illustrates the WINNER logical
node architecture [3], providing a logical map-
ping of the interactions between different func-
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tional entities, whereas some of them might be
combined into single physical nodes.

The BS logical node BSLN performs all radio
related functions, including user mobility, for
active terminals, and is responsible for governing
radio transmission to and reception from UT
logical nodes UTLN and RN logical nodes RNLN.
The BSLN controls the relays,  determines routes
(i.e., handovers), and forwards packets to the
respective relay. The BSLN and the RNLN form a
tree topology to avoid complex routing schemes.
Moreover, the RNLN is transparent to the UTLN,
so there is no necessity for the UTLN to distin-
guish between RNLN and BSLN. The Spectrum-

ServerLN enables sharing and coexistence with
other radio access technologies, as well as spec-
trum assignment between WINNER networks.
An optional RRMserverLN could be used, for
example, for load sharing and user mobility con-
trol. The GW_IPALN is a user plane node that
provides access to external data networks and
operator services, terminates flows on the net-
work side, and serves as the anchor point for
external routing. It is accompanied by the
GW_CLN, which provides control functions for
UTLNs that are not active (i.e., terminals not
sending data) and functions that control and
configure the GW_IPALN.

�� Table 1. Main WINNER system capabilities with parameterization for different scenarios.

Capability Value

Spectrum

Carrier frequencies Generally between 450–5000 MHz, including the newly identified bands for IMT: 450–470 MHz,
698–892 MHz, 2.3–2.4 GHz, 3.4–3.6 GHz

System bandwidth 1.25–100 MHz

Duplexing FDD (wide area) and TDD (metropolitan area, local area)

Flexible spectrum sharing with
other RANs Supported by flexible spectrum use

Flexible spectrum sharing with
other primary or secondary systems Supported by sharing and coexistence schemes

Link adaptation

Modulation BPSK, QPSK, 16-QAM, 64-QAM, 256-QAM

Channel coding Convolutional coding and LDPC codes optimized for short and long block lengths, respectively

Spatio-temporal processing MU-MIMO with 2 terminal antennas and up to 32 base station antennas (metropolitan area and
local area), grid of beams with SDMA (wide area).

Hybrid ARQ LDPC-based incremental redundancy, mother code rate = 1/3

Multiple access methods

Multiple access Chunk-wise adaptive TDMA/OFDMA, B-IFDMA (UL), B-EFDMA (DL) combined with SDMA when
appropriate

Subcarrier spacing FDD: approx .39 kHz
TDD: approx .49 kHz

Superframe/frame duration 5.69 ms/0.6912 ms

Scenarios/Deployments

Cyclic prefix (CP) 3.2 μs (FDD mode), 1.2 μs (TDD mode)

Mobility ≤ 10 km/h (local srea), ≤ 50 km/h (metropolitan area), ≤ 350 km/h (wide area)

Relaying Decode-and-forward relaying with cooperative relaying as an optional add-on

Peak Spectral Efficiency Exceed the IMT-Advanced requirements of 15 b/s/Hz

Minimum delay Downlink: 1 ms
Uplink: 2 ms
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MULTIPLE ACCESS AND MAC
The WINNER MAC layer is designed for min-
imum air interface delays of 1 ms in DL and 2
ms in UL, which are attained for single-hop
transmission by short frame durations of 0.7
ms. The low latency enables adaptability with
respect to fast channel variations, so link adap-
tation and multi-user scheduling gains can
boost the spectral efficiency. A tight feedback
control loop enables fast HARQ retransmis-
sions with a retransmission delay below 1.4 ms,
which facilitates high-throughput TCP/IP traf-
fic and provides reliable links even for real-
time services.

The packet processing procedure, as well as
the physical layer processing, is controlled by
the scheduler within the MAC layer.  The
scheduler adaptively distributes the available
resources to multiple users in time, frequency,
and space, conditioned on the available chan-
nel state information (CSI),  and can be
deployed in a wide variety of system band-
widths and propagation scenarios. Depending
on the channel conditions and/or user veloci-
ties, the scheduler distinguishes between fre-
quency-adaptive and non-frequency-adaptive
transmission. When the user velocities are suf-
ficiently low, the BS can utilize short-term CSI
at the transmitter, giving rise to frequency-
adaptive transmission. Frequency-adaptive
transmission combines multi-user scheduling
and individual link adaptation of time-frequen-
cy-space resource blocks (denoted chunk lay-
ers), with a chunk-wise adaptive time-division
multiple access (TDMA)/OFDMA scheme.
With a sophisticated multi-user multif low
scheduler,  very high spectral efficiency is
obtained, while also taking user fairness restric-
tions into account. The DL signaling overhead
is reduced by an adaptive hierarchical design
of the allocation tables containing the resource
allocation to the users within the frame [7]. A
small table with robust channel coding is broad-
cast to all users and describes for every user
how to decode a second table. The second
table contains the relevant resource allocation
information encoded with different levels of
coding depending on the user’s link quality.
The short frame duration in combination with
channel prediction enables frequency-adaptive
transmission even at vehicular speeds [8]. The
frequency-adaptive transmission scheme adapts
the modulation individually for each chunk
layer while the same code rate is applied to all
chunks of the same user. This method has sev-
eral advantages over adapting both modulation
and code rate per chunk. First,  the system
complexity is  kept low since only one
encoder/decoder pair is required. It also facili-
tates the implementation of rate-compatible
puncturing, which is required for seamless inte-
gration of HARQ strategies.  The common
encoding over all chunks allows the full poten-
tial of the channel code to be exploited and is
thus particularly powerful for the applied quasi-
cyclic block low-density parity check code [3].
Last but not least,  since this transmission
scheme is a multicarrier version of bit-inter-
leaved coded modulation, iterative decoding

techniques are directly applicable. The associ-
ated novel bit-loading algorithm, called Mutual
Information Based Adaptive Coding and Mod-
ulation (MI-ACM) [9], is based on the mutual
information per coded bit.  This allows the
combination of fine-grained adaptation of the
resources within a code block with strong chan-
nel coding for arbitrary codeword lengths.
Apart from its high accuracy in meeting the
targeted error rate, this algorithm stands out
for its very low complexity: the modulation
scheme per chunk is assigned by a simple table
lookup, and it contains no iterations. Addition-
ally, it has been found that this adaptation
scheme, even without employing power load-
ing, yields performance very close to the theo-
retical optimum.

For users with high speed and for short con-
trol packets, a robust diversity-based transmis-
sion scheme is also needed. The WINNER
system then resorts to the non-frequency-adap-
tive transmission mode that obtains its robust-
ness by dispersed allocation of resources,
providing diversity from the frequency and spa-
tial domains. The resource allocation structure
in frequency and time provides a tunable
degree of frequency diversity. In order to sup-
port for high power amplifier efficiency, enve-
lope variations are reduced by a discrete
Fourier transform (DFT) precoding step in the
UL. In addition, an adjustable time-localized
allocation allows the receiver to be switched
off for short periods within an OFDMA chunk,
which enables improved battery life in UTs.
These time-localized and regularly frequency
dispersed allocations form block allocations in
the time-frequency domain, as illustrated in
Fig. 2.  The allocated blocks are separated
equidistantly in frequency to facilitate the use
of DFT precoding in ULs. The corresponding
medium access schemes are denoted block
interleaved frequency-division multiple access

�� Figure 1. WINNER logical node architecture providing as few logical nodes
as possible, and keeping the number of interfaces small. The architecture
includes base stations (BSs), relay nodes (RNs), gateways (GWs), user termi-
nals (UTs), a spectrum server, and an optional radio resource management
server.
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(B-IFDMA) in the UL and block equidistant
frequency-division multiple access (B-EFDMA)
in the DL [3].

An important enabler for efficient coexis-
tence and switching of the two transmission
modes is the cross-layer design of the MAC
layer, as illustrated in Fig. 3. Efficient switching
between frequency-adaptive and non-frequency-
adaptive transmission is supported by a common
approach to channel coding and retransmissions.

The modulation and coding requirements for
control channel signaling are different than the
ones for user data transmissions, due to very
short packet sizes being considered (on the
order of 25 information bits). Therefore, low-
rate tail-biting convolutional codes have been
introduced and lead to good performance [3].

ADVANCED ANTENNA CONCEPT AND
PERFORMANCE ASSESSMENT

The flexible WINNER advanced antennas con-
cept [10] works with varying degrees of available
channel knowledge at the transmitter. It sup-
ports flexible combinations of spatial multiplex-
ing, space-division multiple access (SDMA),
spatial diversity, beamforming, and a means of
enhanced interference management. The WIN-
NER transmitter concept is illustrated in Fig. 3.
The transport blocks of the scheduled flows are
segmented, channel encoded (forward error cor-
rection [FEC]), and multiplexed onto the avail-
able chunks. After modulation, the selected
spatial temporal processing techniques are
applied: linear dispersion ccode (LDC), DFT
precoding, and linear precoding (LP). Not all of
these function blocks will be operational all the
time. Their use depends on the scenario, system
load, propagation conditions, number of
receivers (unicast, multicast, or broadcast), and
the corresponding desired multi-antenna pro-
cessing gain (multiplexing, diversity, and directiv-
ity). Thereafter the chunks are summed and
passed to OFDM modulation per antenna. The
transmit schemes can be selected and optimized
per flow instead of per user. Thus, the concept
enables the use of different multi-antenna
schemes for multiple flows to a single user that
have different quality of service (QoS) require-
ments.

The multi-antenna function blocks can oper-
ate based on long-term or short-term CSI. Long-
term CSI operation is most useful in wide area
deployments, supporting medium to large cells
and user velocities up to 350 km/h. In wide area
deployments the BS antennas are typically
mounted above the rooftop. The narrow angular
spread of electromagnetic waves results in high
spatial correlation between BS antenna ele-
ments. We have identified linear beamforming
as providing the best performance vs. complexity
trade-off for these cases [10]. A four-element
uniform linear array is used to form eight fixed
beams (so-called grid of beams [GoB]). This
solution allows transmissions to multiple users
on the same chunk in different beams. In combi-
nation with advanced receive combining tech-
niques, a spectral efficiency of more than 8
b/s/Hz/site can be reached [10].

Short-term-CSI-based operation is most use-
ful in metropolitan and local area deployments,
supporting small urban and indoor cells with
limited user mobility. In these scenarios it is
assumed that accurate CSI is available at the
transmitter, which is required for advanced MU-
MIMO precoding schemes. These techniques
spatially multiplex streams of several users with
low or no interference between the streams in
order to provide very high system throughput.
The gain is especially pronounced in a rich scat-
tering radio environment (i.e., local area) where
distributed antennas can achieve spectral effi-
ciency of more than 13 b/s/Hz for a BS equipped
with 8 antennas [10]. In urban scenarios a spec-
tral efficiency of more than 9 b/s/Hz was reached
with 8 BS antennas.

In system-level performance assessments of
�� Figure 2. Illustration of multiple access resources allocation: chunk-wise

adaptive TDMA/OFMDA, B-IFDMA, and B-EFDMA.
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the advanced antenna concept, a user-centric
approach based on the satisfied user criterion
(SUC) was adopted. The SUC requires 95 per-
cent of users to have an average user throughput
of 2 Mb/s or higher in the DL [4] (i.e., the sys-
tem provides a good level of service at the cell
edge). Figure 4 shows an example comparison of
spectral efficiency under the SUC and the sup-
ported number of users for a wide area deploy-
ment using the frequency-division duplex (FDD)
mode at a carrier frequency of 3.95 GHz and 2 ×
50 MHz system bandwidth. The BS sites are
deployed on a 19-cell hexagonal grid layout with
1 km distance, each having three sectors with a
uniform linear array of four antenna elements
(λ/2 element spacing), and a wraparound tech-
nique is used to avoid edge effects. The users
are uniformly distributed with a speed of 3 km/h,
and full buffer traffic is assumed.

Different spatial processing and link adapta-
tion schemes are compared in the DL using pro-

portional fair scheduling. Basic link adaptation
(BLA) is a scheme where adaptation is based on
the average signal-to-interference-plus-noise
ratio (SINR), and MI-ACM refers to the bit
loading algorithm described in the previous sec-
tion. It can be seen that the 4 × 2 GoB-based
schemes (denoted GoB, GoB+SDMA) in partic-
ular boost the maximum number of satisfied
users: from 7 users/sector for single antennas at
BS and UT (single-input single output [SISO])
to 9 users for 2 × 2 adaptive MIMO, 28 users for
GoB, and 30 users for GoB+SDMA. The spec-
tral efficiency achieved for this maximum sup-
ported load is 3.0, 5.7, 6.6, and 9.7 b/s/Hz/site for
SISO, 2 × 2 MIMO, 4 × 2 GoB, and 4 × 2
GoB+SDMA, respectively. Apart from the GoB
case, where the highest modulation and coding
scheme limited the observed throughput, a sig-
nificant system-level gain is observed by the pro-
posed MI-ACM scheme.

Reference symbols known to the receiver

�� Figure 3. The WINNER transmitter structure integrates the multiple access schemes for the frequency-adaptive and non-frequency-
adaptive transmission modes in the MAC layer.
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(pilots) are commonly used to support coherent
detection at the receiver. Dedicated pilots per
beam that include user-specific spatial processing
are required to estimate the effective channel at
the receiver. Furthermore, common pilots probe
the channel over the entire frequency band to
facilitate frequency-adaptive transmission.
Unfortunately, straightforward combination of
common and dedicated pilots may lead to pro-
hibitive pilot overheads, especially when the
number of transmit antennas is large. The WIN-
NER pilot design exploits spatial correlation at
the transmitter to retain a modest pilot overhead
that does not exceed 16 percent [4]. In this
design dedicated pilots associated with well spa-
tially separated beams may be multiplexed in
space (i.e., pilots of different spatial streams are
placed on the same subcarriers). Moreover, com-
mon pilots may only be selectively inserted with
reduced rate on a subset of transmit antennas
[11]. One implication of the bandwidth-efficient
pilot design is that iterative channel estimation is
needed to meet the required channel estimation
accuracy [12].

RELAYING CONCEPT

Next to performance targets, IMT-Advanced
mobile communication systems need to signifi-
cantly reduce the cost per transmitted bit in
order to be commercially successful. Relay-based
deployments are an integral part of the WIN-
NER system architecture, and are effective to
reduce the deployment costs of the system.

Relay-based deployments were found to be
cost efficient in wide area deployments, with cost
ratios between micro BS and RN of at least 1.15,
given a nonuniform traffic density [13]. In [14]
two cellular metropolitan area networks with an
equal target area capacity and uniform traffic
density were compared; a micro BS scenario
consisting of smaller cells (and thus a high num-
ber of BSs) and a relay-based scenario consisting

of larger cells but with relays in each cell. In this
comparison the cost efficiency of the relay-based
deployment exceeds the micro-BS-based deploy-
ment for a cost ratio of 3. The cost advantage of
relays is mainly achieved by lower deployment
and site rental costs relative to deploying BSs,
which affects both capital and operational expen-
ditures. The deployment costs of relays are
decreased through smaller physical size, due to
lower output power and lower complexity than a
micro BS. Moreover, relays benefit from superi-
or deployment flexibility, since relays do not
require a wired backhaul connection. Further-
more, they operate on the same band as the BS,
and no additional spectrum is required.

The WINNER relay is a half-duplex decode
and forward relay at a fixed location, which can
take advantage of adaptive transmissions with
different modulation and coding schemes. This is
especially beneficial for intelligent deployments
with good link quality between BS and RN,
which is observed, for example, by deploying
RNs in the same street as the BS. The relay con-
cept is designed and optimized for two-hop con-
nections, but the topology may be extended to
more than two hops. An RN can (re)segment
received packets when forwarding them to
another RN or UT, an end-to-end RLC-ARQ
process ensures reliable packet transmission in
the case of handovers, and flow control avoids
buffer overflows at the RN [3].

Radio resource management within a relay
enhanced cell (REC) is of crucial importance to
exploit the potential benefits of a relay-based
deployment. A distributed MAC scheme is
applied. The BS dynamically assigns the resources
to itself and the RNs in the REC. The RNs can
then independently allocate these resources;
thus, frequency adaptive transmissions and multi-
antenna schemes for UTs served by RNs can be
supported without forwarding all the required
control signaling to the BS. Figure 5 illustrates
the flexible assignment of resources for an exam-
ple scenario with three relays in the REC. Differ-
ent allocations between BSs and relays, here
referred to as radio access points (RAPs), are
possible: a frame can be shared between all
RAPs, or part of a frame can be allocated to a
limited number of RAPs or a unique RAP. The
actual resources assigned depend, for instance,
on delay requirements, traffic load, or the inter-
ference coordination scheme utilized. As an
example, in a wide area deployment the BS can
utilize a grid of beams; beams overlapping with
the relays are not used when the RN is serving
UTs. In the metropolitan area, interference coor-
dination by assigning power masks (soft frequen-
cy reuse) to BS and RNs has been shown to be
effective [14]. If an RN is not serving UTs, it
transmits or receives traffic from the BS.

Cooperative relaying can further boost the
capacity and has been integrated in the concept
as an add-on to single-path relaying. Multiple
RAPs form a virtual antenna array, and the
MIMO transmission schemes of the previous
section can be applied to the BS antennas aug-
mented by the antennas of a RN. Cooperative
relaying is only applied to UTs having similar
received signal strength from multiple RAPs in
the same tree topology.

�� Figure 4. Performance of spatial processing and link adaptation.
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End-to-end performance assessment results
of the relaying concept [4, 15] show that adding
one RN per BS sector increases the spectral effi-
ciency by 25 percent for the wide area scenario
and 28 percent for the metropolitan area sce-
nario. Cooperative relaying based on distributed
multi-user precoding can boost the spectral effi-
ciency by 94 percent in the metropolitan area,
excluding signaling overhead and imperfections.

DYNAMIC SPECTRUM USE

In light of the outcome of the World Radiocom-
munications Conference 2007, flexible spectrum
technologies are important for IMT systems for
two reasons. First, the possibility of sharing spec-
trum with other technologies will enable deploy-
ments in mobile bands that are not exclusively
allocated to IMT. Second, flexible spectrum use
between different operators will allow sharing of
resources within the allocated band, enabling
operators to offer services to users using higher
bandwidths and thus data rates.

Therefore, the spectrum usage concept in
WINNER is classified in two categories, as illus-
trated in Fig. 6: spectrum sharing (frequency
sharing between the WINNER system and other
radio technologies) and flexible spectrum use
(FSU, frequency sharing between WINNER sys-
tems). The goal of spectrum sharing is to obtain
access to spectrum bands that would otherwise
be used exclusively by a single technology. On
the other hand, flexible spectrum use provides a
means of sharing the spectrum between net-
works of the same technology, increasing both

overall system efficiency as well as the flexibility
and scalability of the system. An example of a
spectrum sharing scenario is sharing the spec-
trum between WINNER and fixed satellite ser-
vices (FSS) in the C-band DL (3.7–4.2 GHz).

Under the spectrum sharing umbrella, two
different types of schemes have been developed
[3]. They are based on system-specific spectrum
access rights. If one of the systems has higher
access rights to the spectrum, vertical sharing
schemes are used. When WINNER is the prima-
ry system, it can assist the secondary system by
enabling resource negotiations and broadcasting
resource information. If WINNER is the sec-
ondary system, the emissions of its BS and UTs
are controlled not to interfere with the primary
system. The activity of the primary system and
information about exclusion zones where WIN-
NER UTs are not allowed to operate may be
obtained, for example, from a beacon signal
transmitted by the primary system. Using these
mechanisms, WINNER can share the spectrum
with primary systems, such as the earth stations
of FSS. Given the uncertain availability of shared
bands with other systems, the WINNER concept
provides efficient multiband operation with fast
band switching. A dedicated band allows guaran-
teed access, while the shared band is used only
when available [16].

If the WINNER system shares spectrum with
other systems on the basis of equal access rights,
horizontal sharing schemes are applicable. The
systems contending for the spectrum coordinate
spectrum use by means of negotiations. When
the systems cannot negotiate, coexistence

�� Figure 5. Example allocation of a superframe using the flexible resource partitioning scheme in a relay enhanced cell with three relays
(RNs). The superframe consists of a preamble and an eight-frame payload. The BS allocates (a part of) the resources to the RNs; the
RNs independently schedule their associated users within their allocations.
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between competing systems is maintained by
observing the spectrum use and following certain
etiquette rules. The monitoring of spectrum use
by other technologies is done at the BS.

The WINNER system supports two different
FSU strategies to share the spectrum with other
WINNER systems: long-term (LT) and short-
term (ST) FSU, taking advantage of the chang-
ing nature of the spectrum availability and the
traffic demand in different parts of a multi-oper-
ator environment. The LT scheme assigns the
spectrum at a higher level of geographical granu-
larity between multiple RANs, and the spectrum
is negotiated over a longer timescale (i.e., on the
order of minutes). The ST assignment acquires
the fine tuning of the spectrum assignment at
the cell level. This is performed at shorter
timescales than in LT assignment: the ST assign-
ment negotiation of spectrum is performed over
time periods of several hundred milliseconds in
duration.

CONCLUSIONS

WINNER was an ambitious research project
aiming at identification, development, and
assessment of key technologies for IMT-
Advanced mobile communication systems. The
WINNER system concept and design is user-
centric and flexible, enabling operation in multi-
ple bands with scalable bandwidths. The system
can be utilized in a wide range of deployment
scenarios, ranging from rural environments to
dense metropolitan scenarios. The WINNER
system provides a significant improvement over
cellular 3G networks deployed today. Key inno-
vations in the concept include a flexible
advanced antenna and pilot design, close to opti-
mal link adaptation, hierarchical control signal-
ing, a flexible multiple access scheme, relaying,
and flexible spectrum use. The end-to-end per-
formance of the final system concept and its
components has been assessed showing high
spectral efficiency and providing high data rates
to users at the cell edge.

The IMT-Advanced process is currently ongo-
ing in the ITU and scheduled to be completed
early 2011. We show that the WINNER system

concept is a promising IMT-Advanced-compliant
system concept, achieving the required high data
rates and peak spectral efficiencies. The key
technology components and assessment results
provide relevant input to future evolutions
toward IMT-Advanced of other OFDMA-based
systems such as WiMAX and 3GPP Long Term
Evolution.
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