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The interest in statistical classification for critical applications such as diagnoses of patient samples based
on supervised learning is rapidly growing. To gain acceptance in applications where the subsequent deci-
sions have serious consequences, e.g. choice of cancer therapy, any such decision support system must
come with a reliable performance estimate. Tailored for small sample problems, cross-validation (CV)
and bootstrapping (BTS) have been the most commonly used methods to determine such estimates in vir-
tually all branches of science for the last 20 years. Here, we address the often overlooked fact that the
uncertainty in a point estimate obtained with CV and BTS is unknown and quite large for small sample
classification problems encountered in biomedical applications and elsewhere. To avoid this fundamental
problem of employing CV and BTS, until improved alternatives have been established, we suggest that the
final classification performance always should be reported in the form of a Bayesian confidence interval
obtained from a simple holdout test or using some other method that yields conservative measures of the
uncertainty.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Currently there is a rapidly growing interest to use supervised
statistical learning techniques (Michell, 1997; Hastie et al., 2001;
Webb, 2002) to design classifiers for different forms of decision
support in performance sensitive applications found e.g. in bio-
medicine. Important examples are predictions of tumour subtype
and clinical outcome based on mRNA levels in tumour samples
measured using modern large-scale microarray technologies
(Rosenwald et al., 2002; van’t Veer et al., 2002; Yeoh et al.,
2002). In these examples the classification of a new tumour sample
is intended to guide the choice of treatment. Misclassification
would lead to sub-standard treatment that may have serious con-
sequences for the patient. Therefore, reliable information about the
classifier performance is critical for the acceptance of classification
guided therapy.

Since the 1980s, cross-validation (CV) (Lachenbrusch and
Mickey, 1968; Stone, 1974) and bootstrapping (BTS) (Efron, 1979,
1983; Efron and Tibshirani, 1993) have been the dominating meth-
ods for estimation of the unknown performance of a classifier
designed for discrimination. CV and BTS are acknowledged for
making efficient use of the samples available, a feature which
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makes them especially suitable for use in situations where only a
limited number of examples are available. To the present date,
CV and BTS still are the most commonly used methods, even
though many theoretical contributions and practical alternatives
have been reported (Hand, 1986, 1997; Vapnik, 1995; Schiavo
and Hand, 2000). The importance of reliable performance estima-
tion when using small data sets must not be underestimated. No
matter how sophisticated and powerful algorithms for classifica-
tion are developed and applied, if no reliable performance esti-
mates are obtained, no reliable decisions can be made based on
classification results.

There are several ways to interpret the quantity estimated by
CV and BTS. In this work, we choose the most common approach
which is to consider CV and BTS as estimators of the true error rate
etrue, i.e. the error rate of a designed classifier when applied to a
very large independent test set. In other words, the true error rate
is the probability of misclassification when applying the classifier
to an unknown future test example, which is the quantity of inter-
est for a decision maker. Here, we ignore the additional complexity
that the size of the training sets in CV are slightly smaller than the
total number of training examples available, a fact that introduces
a bias in the performance estimates. CV and BTS are methods de-
signed to estimate the classifier performance using the samples
available via partitioning (CV) or resampling with replacement
(BTS). An almost trivial, but often overlooked, fact is that a single
point estimate, eest, of a true performance, etrue, is not useful unless
it is known to be close to etrue. For simulated data sets describing
the same problem, a good estimator is reflected by a narrow joint
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distribution (probability density function, pdf) p(etrue,eest) of the
estimate and the corresponding true value. For real problems there
is only a single data set available, and the true performance is not
known. Thus, p(etrue,eest) cannot be estimated in a real application
but it is important to understand its properties based on simulated
data.

A given combination of classification problem, classification and
learning algorithm, performance estimator, and data set size, defines
an unknown joint distribution of estimated and true performance,
p(etrue,eest). In Fig. 1a one example of such a joint distribution is
Fig. 1. (a) Schematic figure illustrating the joint distribution of true and estimated
error rates p(etrue,eest) for a particular combination of classification problem,
classification/learning algorithm, and data set size obtained from simulated data
sets by using a very large test set and one estimation method like CV or BTS. (b)
Given an estimated error rate eest of 0.4 the uncertainty about etrue is described by
the conditional pdf p(etruejeest = 0.4t). This pdf is illustrated as the intersection
p(etrue,eest = 0.4), a slice of the joint pdf which is identical to p(etruejeest = 0.4) except
for a normalization factor. Since the intersection p(etrue,eest = 0.4), and consequently
the corresponding conditional pdf p(etruejeest = 0.4t), are centred at etrue = 0.3 this
reflects a situation where, on average, the true performance is 0.3 when the
estimated performance is 0.4. Notably, in a real application only the point estimate
eest would be available. Thus, there would be no information on the uncertainty of
the underlying true error rate for the classifier.
shown. For a given eest the uncertainty about etrue is described by
the conditional distribution p(etruejeest) which is illustrated in Fig.
1b. Notably, in a real application we would only have access to a sin-
gle error rate point estimate eest and we would not know the associ-
ated conditional distribution p(etruejeest) of interest. In this work, we
address this fact by first illustrating the uncertainty in the CV and BTS
estimates for realistic situations and then by suggesting the use of
Bayesian confidence intervals or other conservative alternatives to
assess and report classification performance.
2. Uncertainty of CV and BTS estimates

To illustrate the performance of CV and BTS estimates compared
to true error rates when the methods are applied to problems of real-
istic size, we performed Monte Carlo simulation two-class classifica-
tion experiments in MatlabTM (Mathworks Inc., USA), described in
detail elsewhere (Wickenberg Bolin et al., 2006), using a pair of
two-dimensional overlapping Gaussian distributions with means,
variances and co-variances estimated from real mRNA expression
data From the simulation results we determined p(etrue,eest) for data
sets of different sizes. All simulations were based on our own code
together with routines available in version 4.0 of PRTools (Duin et
al., 2004), a toolbox (plugin) for MatlabTM specialized on statistical
pattern recognition. In particular, a PRTools function called parzendc
was employed for classifier design. This design procedure is based
on a Parzen kernel density estimate (Parzen, 1962; Webb, 2002)
with its smoothing kernel parameter obtained as a maximum likeli-
hood estimate. However, this particular choice is not important for
the main conclusions made here.

The different algorithms for performance estimation applied
were the 0.632 bootstrap estimator and a hybrid algorithm called
repeated 10-fold CV (rCV10) which performs conventional 10-fold
CV repeatedly using different partitionings of the data set (Hastie
et al., 2001). One thousand different data sets were generated
and for each classifier designed, the true performance was ob-
tained by testing it using a large test set consisting of 5000 samples
per class. The results were similar for both performance estimation
algorithms. In Fig. 2, the simulation results from evaluating the
0.632 bootstrap estimator is presented for three different data
set sizes (N = 20, 100, and 1000). Similar results are shown in Fig.
3 for a 30 times repeated 10-fold CV. For any chosen estimated er-
ror rate the broad conditional distributions show that the BTS and
CV estimates are poor approximations of the true performance for
both N = 20 and N = 100 samples. Only for N = 1000, the estimates
deviate less than 10% from the true performance.

3. Performance evaluation and data set size

For a given classification problem, like the one studied in our
simulations, an ideal situation would be if the true performance
etrue was equal to the performance estimate eest for all randomly
selected data sets. In this situation, the joint distribution p(etrue,
eest) illustrated in Fig. 1a would be completely restricted to the
straight line etrue = eest and there would be no uncertainty left
about the true error rate. In both Figs. 2 and 3 the presented distri-
butions of results from simulated data suggest that the underlying
joint pdfs are broad and not at all restricted to the line etrue = eest.
Since a broad joint distribution results in a broad conditional distri-
bution (as in Fig. 1a and b), the results from the simulations shown
in Figs. 2a and b, 3a and b indicate that for small sample sizes the
conditional distributions are so broad that observed performance
estimates eest become practically useless for prediction of the true
performance etrue.

In Figs. 2a and 3a it can be noted that there is a larger variance
in the eest-axis direction compared to that along the etrue-axis. This



Fig. 2. Results from 0.632-bootstrap performance estimation of a Parzen kernel density based classifier applied to a standard two-class problem. 1000 data sets were
simulated for each of three different sample sizes N. (a) N = 20. (b) N = 100. (c) N = 1000. Note the wide joint distributions that become progressively wider with smaller data
set sizes.

Fig. 3. Results from 30 times repeated 10-fold cross-validation estimation of a Parzen kernel density based classifier with 1000 simulated data sets for each of 3 different
sample sizes N. (a) N = 20. (b) N = 100. (c) N = 1000. Note the wide joint distributions that become progressively wider with smaller data set sizes.
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difference may be partly explained as a bias caused by the small
test set size used to obtain the individual performance estimates
along the eest-axis. It will disappear as the number of examples
used increases, see Figs. 2b and c, 3b and c. There is at present
no detailed quantitative description of this phenomenon. However,
issues contributing to this effect are qualitatively explained in the
next section. For the less complicated holdout estimate (eest =
kt/Nt where kt is the number of errors and Nt the number of inde-
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pendent test samples) Wickenberg Bolin et al. has quantitatively
described how its variance depends on the size of the test sets
(Wickenberg Bolin et al., 2006).

For larger data sets sizes, here illustrated by N = 1000 (Figs. 2c
and 3c), the joint distributions and consequently the conditional
distributions become more narrow. For an unbiased performance
estimator the joint pdf becomes restricted to a small region close
to the line etrue = eest. Consequently, as should be expected, unbi-
ased versions of CV and BTS estimates become reasonable approx-
imations of the true performance when the data set size is
sufficiently large. The results from the simulations presented here
are consistent with other recent and more comprehensive simula-
tion results (Braga-Neto and Dougherty, 2004; Xu et al., 2006).
4. Estimating the uncertainty of CV and BTS estimates

Intuitively, the uncertainty of a particular CV estimate could be
estimated as the variation between individual holdout estimates
used to compute the CV estimate or as the variation between indi-
vidual CV estimates obtained for different splits of the data set. If
the variation between the individual estimates is small, this would
indicate that the CV estimate is close to the true performance of a
final design based on all examples available. Several methods
based on this idea have been reported recently (Mukherjee et al.,
2003; McLachlan et al., 2004; Michiels et al., 2005). Unfortunately,
there are many pitfalls associated with this idea that must not be
ignored.

For example, Michiels et al. demonstrated that CV estimates
based on different partitions of the data may vary substantially
in real medical applications (Michiels et al., 2005). Their results
show that the CV estimates are unreliable but this does not at all
prove that there is large variation in the true performances of the
classifiers designed and tested. Due to the small test sets used in
conventional CVs, the observed variance between the CV estimates
might be completely dominated by the variance contribution from
the small test set size used. This dominance can be understood e.g.
from a recently derived analytical expression for the observed var-
iance for an idealized CV procedure where all design and test sets
are independent, here called repeated holdout testing (RHT) (Wic-
kenberg Bolin et al., 2006). Therefore, one must not misinterpret
large variations between CV estimates as in the paper by Michiels
et al. to mean large variation also between the underlying true per-
formances. Of course, a real large variation between underlying
true performances will result in large variation in the correspond-
ing CV estimates even if the test set size used is large. However, in
all applications where the total number of samples is on the order
of hundreds, theory and simulations suggest that the contribution
to the observed variance from the small test set sizes still is sub-
stantial (Wickenberg Bolin et al., 2006). In conclusion, it might be
quite misleading to interpret the variation between CV estimates
to be valid also for the variation between true performances.

In addition to the variance caused by small test sets, there are at
least two additional effects on the variance of CV estimates that
must not be neglected. One is caused by the fact that in a CV pro-
cedure, all the classifiers are dependent due to the more or less
overlapping design sets used. For example, in the extreme case of
N-fold CV (also known as leave-one-out CV) where each test set
consist of a single example, N � 2 of the N � 1 design examples
used for any pair of the N classifiers designed and tested are iden-
tical. This large overlap makes the variation in the true perfor-
mance etrue of the designed classifiers smaller than one should
expect from a corresponding RHT. Another undesirable effect is
caused by the fact that the CV estimates are contaminated by in-
ter-dependencies between the design and test sets used. Since
the test set in each of the CV iterations is directly given from the
selection of the corresponding design set, the resulting holdout
estimate is not completely independent of the design set as in an
ideal RHT procedure. This deviation from the RHT yields a compli-
cated variance contribution that is difficult to analyse in detail
mathematically.

It should be pointed out that the variation in the eest-axis direc-
tion in Fig. 2 is based on truly independent data. Therefore, it is
fundamentally different from the variation in CV estimates ob-
tained from different partitions of a single data set as discussed
in this section. Thus the variation in Fig. 2 along the eest-axis direc-
tion is the true variation in the CV estimates (that never is available
in a real application) whereas in this section we consider estimates
of this variation. However, the larger variance in the eest-axis direc-
tion compared to that along the etrue-axis in Fig. 2 can be qualita-
tively explained by the fact that the CV estimates presented are
based on small test sets.

As an attempt to compensate for the over-pessimistic effect
caused by small test set sizes (the first effect) and to eliminate
the problem of dependent design and test sets (the third effect),
a method called Repeated Independent Design and Test (RIDT)
has recently been developed that can yield almost unbiased esti-
mates of the variation between the true performances of the clas-
sifiers designed and tested (Wickenberg Bolin et al., 2006). In other
words, the RIDT procedure can yield an estimate of the variation
between the true performances that equals the true variation on
average. This is significantly different from the earlier approaches
like the one proposed by Michiels et al. which yield an estimate
of the variation between CV estimates, a quantity that is heavily
contaminated by the small test set size effect. Thus, RIDT is de-
signed to determine the expected variation between the true per-
formances, not the variation between the CV estimates. Although
the RIDT procedure is a significant step forward towards bounds
on the true performance of a final classifier design, it is important
to note that an estimate is of limited practical value unless it comes
with information about its own uncertainty. However, since the
uncertainties in the mean and variance estimates obtained with
RIDT are unknown, RIDT cannot deliver the desired confidence
interval. In conclusion, even with procedures like RIDT that can
eliminate most of the undesirable small sample effects, it is not
possible to determine reliable bounds (confidence intervals) on
the true performance of interest.

To determine the uncertainty in a BTS estimate, an intuitive
idea is to obtain a distribution of BTS estimates via a second exter-
nal bootstrap that generates different data sets that subsequently
are used to obtain individual BTS estimates. In analogy with the
discussion above for the variation between CV estimates for differ-
ent splits of the data set, the observed variation between the BTS
estimates could then be used as a measure of uncertainty for the
BTS estimates. Notably, such an approach would be completely dif-
ferent from the double bootstrap proposed early by Efron to reduce
the bias of an individual BTS estimate (Efron, 1983). Unfortunately,
this alternative double bootstrap suggested here would suffer from
the same kind of small sample effects as discussed for the CV esti-
mates above. In conclusion, neither CV/RIDT nor double bootstrap
variance estimates can deliver reliable performance bounds on the
true performance as long as the data set sizes are small (on the or-
der of hundreds).

Attempts to provide information about the uncertainty of CV or
BTS point estimates have also been made by performing permuta-
tion tests, for recent examples in medicine see (Hedenfalk et al.,
2001; Radmacher et al., 2002). In each iteration, the class labels
of the training data are permuted randomly and the resulting CV
or BTS point estimate is obtained. Then the probability to observe
a CV or BTS point performance estimate that is equal or better than
the one obtained with the correct class labels is calculated. A low
probability suggests that the classifier detects a real difference
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between the classes. However, it should be noted that a low prob-
ability (p-value) does not provide a meaningful estimate of the
uncertainty associated with the CV or BTS estimates. In fact, it
has been shown in simulations that the p-values essentially are
deterministic non-invertible functions of the corresponding CV
estimates (Hsing et al., 2003). This means that the p-values are less
informative than the CV estimates themselves in quantifying the
associated uncertainty. Thus, permutation tests cannot be used to
put trust in CV or BTS point estimates as being useful estimates
of the true error rate.

In conclusion, CV and BTS can be used to estimate classification
performance when the data set is large enough. However, there is
presently no way of ensuring the uncertainty of the estimates for
many real applications with sample sizes in the hundreds. This
underscores the need for alternatives to CV and BTS estimates that
can offer reliable confidence intervals and/or bounds on the true
performance of interest.

5. Alternatives to CV and BTS

There are a number of recently proposed approaches to obtain
confidence intervals for the performance of supervised classifiers
based on a wide range of different theoretical foundations. For an
excellent introduction see the tutorial by Langford (2005). There
are few studies reported that compare the performance of different
confidence intervals but recently the empirical applicability of five
different upper bounds was compared on 29 real world data sets
(Kaariainen and Langford, 2005). One of the most successful
bounds was the binomial test bound recently proposed by Lang-
ford which is based on the binomial distribution. Another compar-
ison of different methods to obtain confidence intervals (CIs) for
the performance is the study by Brown et al. (2001).

A general conclusion is that many of the methods are not con-
servative in the sense that the resulting confidence intervals do
not cover the true performance in the desired percentage of inde-
pendent experiments, for example 95%. One explanation is that
many methods rely on particular assumptions or approximations
that are not valid for small sample sizes. Moreover, many bounds
reported are not tight enough for practical use when the sample
sizes are small. Therefore, the classical Bayesian CI (Jaynes, 1976,
2003; Webb, 2002) is of particular interest here as it yields conser-
vative intervals and has already been employed in small sample
Fig. 4. (a) Three different Bayesian posterior distributions (pdfs) P(etruejkt,Nt) for a unifo
same holdout point estimate eest = kt/Nt = 20% but the posteriors become progressively w
estimates eest and test set sizes Nt in a conventional holdout test. The intervals are the high
constructed from the HO results. As an example making kt = 4 errors on Nt = 20 test exam
green lines for eest = kt/Nt = 20% which is [7%,40%]. Similar graphs suitable for obtaining B
by Webb (2002).
medical applications such as tumour classification (Simon et al.,
2003). The Bayesian posterior p(etruejkt,Nt), which defines our
uncertainty about the true error rate after observing kt errors in
Nt tests, is expressed by means of Bayes’ rule as

pðetruejktNtÞ ¼
Pðkt jetrueNtÞpðetruejNt Þ

Pðkt jNtÞ
¼ Pðkt jetrueNtÞpðetrueÞ

PðktjNtÞ
ð1Þ

where the last equality follows from the fact p(etruejNt) = p(etrue),
i.e. that the integer Nt does not come with any information with re-
spect to our prior knowledge about the true error rate. The factor
P(ktjetrue,Nt) defines the binomial distribution, i.e. the probability
of observing kt errors in Nt independent trials when the probability
of making an error in each trial is etrue. P(kjNt) is independent of etrue

and can therefore be viewed as a normalization constant. Thus,
Bayesian inference makes it possible to calculate a posterior distri-
bution p(etruejkt,Nt) that describes our posterior uncertainty about
the true error rate after making kt errors on a data set with Nt test
samples. Note that the posterior uncertainty is not conditioned on
a particular data set but only on the fact that there were kt errors
made on Nt test examples. However, the particular classifier is de-
fined by the samples used for training. A Bayesian CI at the 95%-
level covers 95% of the area under the posterior p(etruejkt,N(t). For
the small sample problems of interest here, unless the prior p(etrue)
is narrow, the resulting posterior and the associated confidence
intervals become broad.

Particularly attractive features of the Bayesian interval are that
it is easily derived (see above) and that it relies on explicit use of a
prior which quantifies the initial knowledge about the true perfor-
mance. By contrast, alternative intervals like the Clopper–Pearson
interval discussed by Brown et al. (2001) may also be employed
but they are known to be more conservative than necessary (on
average), they are not as easy to derive, and they do not allow sim-
ple incorporation of prior knowledge. An interesting connection
between Bayesian inference and frequency based classical statisti-
cal inference in this context should be mentioned. The most infor-
mative prior possible is the true frequency distribution of true
error rates that one would obtain when designing repeatedly with
Nd samples. With access to this prior any a-level Bayesian CI of the
posterior, defined by covering a% of the distribution, would be
equivalent to the corresponding a-level confidence interval used
in classical statistics. In practice the most informative prior is usu-
ally unknown and therefore replaced by a prior that reflects the
rm prior p(etrue) = 1 as calculated using Eq. (2). All distributions correspond to the
ider with smaller test sets. (b) Bayesian confidence intervals for different error rate
est 95% probability density confidence regions, i.e. the shortest intervals that can be
ples yields a confidence interval for the true error rate as the interval between the

ayesian confidence intervals can be found for example on page 254 in the text book
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present state of knowledge. When the probability of misclassifi-
cation is completely unknown, except that it is restricted to the
unit interval [0,1], the uniform distribution, p(etrue) = 1 is used. In
this case, the posterior may be written out explicitly as

pðetruejkt ;NtÞ ¼ bekt
trueð1� etrueÞNt�kt ð2Þ

where is b normalization constant. Examples of this posterior for
different values of kt and Nt are presented in Fig. 4a. The Bayesian
CI corresponding to Eq. (2) quantifies our uncertainty about the true
performance. In terms of classical statistics, this Bayesian CI is exact
in a situation where the distribution of true performances for the
classifiers designed is uniform on the interval [0,1].

In Fig. 4b a graph is presented based on the Bayesian posterior
distribution in Eq. (2) which makes it possible to determine the
shortest Bayesian confidence interval for a particular holdout
(HO) test result using a uniform prior. Thus, Fig. 4b provides a com-
pact description of posterior pdfs in the form of intervals. For
example, the solid green curve in Fig. 4a presents the whole poster-
ior after making kt = 4 errors using Nt = 20 test examples whereas
the solid green curves in Fig. 4b show that the associated 95% con-
fidence interval is [7%,40%]. A major conclusion is that for such
small sample sizes, the Bayesian CIs provide rigorous intervals,
which are necessary for using the classifier in a real life situation
with any degree of certainty of its performance. If the interval is
too wide for the particular application, the performance estimate
is simply not good enough to permit the use of the classifier in
practice.

One should remember that CV and BTS estimates become
unnecessary in applications where the number of examples avail-
able is large. In such cases, a simple HO test is sufficient as the
resulting Bayesian confidence interval will become very short.
One should also note that a classifier may also be equipped with
an option which will leave the sample of interest unclassified
(Webb, 2002; Simon et al., 2003). To reject samples difficult to clas-
sify may be an attractive way to obtain reliable decisions, but this
is not trivial as it requires reliable estimation also of the probability
of rejection using the examples available.

6. Conclusion

In conclusion, for classification problems we would like to point
out that, (1) For a single data set, there is no way of knowing how
reliable a particular CV or BTS performance estimate is. (2) Simula-
tions show that CV and BTS estimates are unreliable for sample
sizes commonly encountered in real world applications. (3) Calcu-
lating a Bayesian confidence interval (or some alternative conser-
vative confidence interval) based on a holdout test still seem to
be the only rigorous yet practically useful alternative for assessing
and reporting classifier performance.
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