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Dynamic Reuse Partitioning Within Cells Based on
Local Channel and Arrival Rate Fluctuations
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Abstract—It is possible to improve the spectral efficiency of
cellular systems by dynamically repartitioning the available band-
width between different interfering and noninterfering subareas
within and among sectors. Here, we investigate the problem of
maximizing the expected system throughput in a two-sector area
by dynamic bandwidth partitioning between two transmission
modes: 1) reusing bandwidth in the low-interference area near
either of the base stations and 2) using bandwidth for macrodi-
versity or single-base station transmission to avoid interference.
Mode 2 is typically useful for giving users near the cell border
higher bit rates. The suggested solution adapts the bandwidth
partitioning to reflect local transmission capacities and bandwidth
demands. Thus, it automatically decides on whether both trans-
mission modes should be used and how much bandwidth should be
used in each mode. The solution requires only limited knowledge of
the future arrival rates and channel qualities and uses probability
theory to find a robust bandwidth partitioning. Finally, we discuss
access control and when to switch a user between the transmission
modes to achieve high spectral efficiency and some minimum
average quality of service.

Index Terms—Diversity methods, land mobile radio cellular
systems, scheduling.

I. INTRODUCTION

CONSIDER two base stations opposite to each other in a
traditional hexagonal cell pattern with 60◦ sectors. If both

base stations use the same transmission bandwidth, there will
be a considerable interference for users near the cell borders,
whereas users close to either of the base stations will experience
little, if any, interference from the other base station. At some
point, the interference levels become too high for the border
users, and it would be better to set aside a certain part of the
bandwidth for transmitting to these users using only one base
station (or both, employing macrodiversity). That way, total
system throughput would increase.

The main problem that we will treat here lies in identifying
the right amount of bandwidth to use for each transmission
mode and dynamically adapting this amount according to the
actual demand for capacity and supply thereof (which indirectly
measures the interference levels) in different areas of the sector.

A critical aspect in realizing a cost-efficient mobile com-
munications network is to utilize the spectral resources as
efficiently as possible. Anticipating that a substantial part of
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the traffic in current and coming mobile networks will stem
from data applications, the traffic load of each user will fluc-
tuate much more strongly than for traditional voice services.
Accordingly, as the aggregate demand for transmission capacity
in an area becomes more unpredictable, it becomes increasingly
important to allow dynamic reallocation of the supplies of
transmission resources to areas with currently high demands.

At the same time, each user experiences shadow fading, fast
fading, and distance-related attenuation of the transmitted sig-
nal in addition to varying interference levels from neighboring
base stations. Thus, both supply and demand for transmission
capacity are subject to a high degree of local variability. From
a general standpoint of optimal resource utilization, variations
in demand and supply are the driving forces that make dynamic
optimization advantageous. In contrast, if we fix the resource
partitioning for all time, the variations are a nuisance that
degrades the resource efficiency.

In this paper, we will use the mentioned sources of variability
as a means to optimize spectral efficiency in the specific case of
partitioning downlink transmission bandwidth among interfer-
ing and noninterfering sectors in a cellular network. The object
is to maximize the expected total throughput in the considered
area, while using probability theory to explicitly take the in-
herent uncertainty concerning individual users’ channels and
traffic loads into account.

It can be observed that the topics of this paper are related to
that of scheduling users within a sector according to channel
quality and traffic requirements for maximizing the throughput
in the sector. The term multiuser diversity has been coined
to indicate that the capacity advantage of such scheduling
increases with the amount of channel fluctuations and the
number of users [1]–[3]. In discussing practical aspects of
the framework derived in this paper, we will often assume
that multiuser diversity is exploited within each sector. The
derivations, however, are independent of whether multiuser
diversity is used or not. Multiuser diversity does not affect the
workings of the algorithm proposed here, but it will increase the
total data throughput in the system and affect the distribution of
resources among the individual users.

In [4], it was shown that by using a fixed bandwidth par-
titioning, letting the border area between two sectors have
a fixed part of the available bandwidth, while the remaining
part is also reused by the neighboring base station, improved
spectral efficiency can theoretically be achieved along with
a more uniform throughput distribution across the cell area.
We take that theoretical analysis as a motivation for building
a practical strategy for adaptively distributing the available
bandwidth between the different transmission modes.

0018-9545/$25.00 © 2008 IEEE
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There is a lot of literature in the related areas of dynamic
spectrum partitioning, handovers, and admission control for
mobile communications. As indicated in [5] and [6], for the
most part, the solutions, either explicitly or implicitly, as-
sume voice traffic, but more recently [7]–[10], attempts have
been made to meet the anticipated requirements of data traf-
fic. Burstiness, the size of fluctuations, and its unpredictabil-
ity make resource management for data traffic a challenging
problem. In [7], it is shown that spectral efficiency can be
improved by coordinating subcarrier assignments in an or-
thogonal frequency-division multiple-access system over three
neighboring base stations. The solution, however, requires in-
stantaneous channel knowledge of all subchannels. Using a
traditional cell pattern with one transmission mode, [8] pro-
poses dynamic channel allocation schemes that require fewer
interference measurements at the user terminals and instead
involve more coordination between base stations. A related
paper [9] proposes a dynamic packet assignment algorithm that
involves no coordination between base stations but is focused
on interference avoidance for bursty traffic applications such as
mobile web browsing. Reference [10] shows that with bursty
data traffic, interference becomes bursty as well and finds
that multiaccess interference in code-division multiple access
exhibits self-similarity over several time scales. The analysis
shows that bursty traffic requires new methods for interference
management and resource allocation.

Critical aspects that have not been sufficiently investigated in
previous studies include uncertain traffic and uncertain trans-
mission capacities. We here show how optimization can be
carried out under uncertainty and find that solutions that neglect
the actual uncertainty may perform poorly. We further believe
that our use of two distinct transmission modes makes the
network more flexible and more robust to uncertain channel and
traffic conditions.

Further, allocation policies that maximize the aggregate
throughput within a group of sectors and take transmission
buffers into account have not been previously reported. Our
study does not place a lot of weight on fairness and quality of
service, although we briefly discuss these issues in connection
with admission control. Instead, we set out to find a solution
that tells us how to optimally partition a finite set of transmis-
sion resources under realistic levels of uncertainty. Analyzing
its behavior could then help in designing algorithms aimed at
providing certain quality-of-service levels without sacrificing
too much capacity.

In the following, we will assume (without loss of generality)
that the considered network uses orthogonal frequency-division
multiplexing (OFDM) with each frequency bin being slotted in
time. The set of transmission resources to be partitioned then
consists of time-frequency slots, according to Fig. 1.

In Section II, we formally state our problem. In Section III,
we determine the probability distributions for the unknown
supply and demand for transmission capacity, and then in
Section IV, we find the bandwidth partitioning which max-
imizes the expected system throughput. Following this, in
Section V, we discuss how a user decides which transmission
mode to use and show how admission control can be handled
within the considered framework.

Fig. 1. Set of transmission resources consists of N = T × F time-frequency
slots.

Fig. 2. Black areas denote the high-interference area where N3 time-
frequency slots are allocated. The remaining slots are simultaneously used in
the shaded areas, where the interference is acceptably low. (a) Two interfering
60◦ sectors. (b) Three-sector coordination using 120◦ sectors.

II. PARTITIONING BANDWIDTH FOR MAXIMUM

EXPECTED THROUGHPUT

We here investigate the problem of dynamically partitioning
bandwidth between three zones—zones 1 and 2 reusing the
same transmission bandwidth (henceforth denoted as trans-
mission mode 1) and zone 3 using the remaining part of the
bandwidth (transmission mode 2) that together make up two
sectors that are opposite each other in a traditional hexagonal
cell layout. Zone 3 is typically the border area between the two
sectors, and zones 1 and 2 are the areas close to their respective
base station. A situation like this is depicted in Fig. 2, where
the similar case of three interfering sectors is also shown. The
same situation arises on the border between two sectors lying
side-by-side and belonging to the same base station.

It should be emphasized that the specific geographic interpre-
tation of three areas is only a simplification. It is more correct
to talk of two transmission modes—reusable and nonreusable
bandwidth. A user decides on which transmission mode to use
individually based on interference levels and not on geograph-
ical position. The actual determination of the preferred trans-
mission mode for a specific user is discussed in Section V-B.

For transmission mode 2, a number of transmitter options are
possible. The simplest options are exclusive transmission by the
nearest base station or joint transmission using macrodiversity
from all base stations. The problem definition we will use is
compatible with either transmission strategy.

A. Objectives

The aim of this paper is to find a bandwidth partitioning
which maximizes the system throughput, which we hereafter
shall define as the capacity, within the considered area.

Our problem is how to distribute N time-frequency slots
among the two transmission modes. N3 time-frequency slots
are allocated to zone 3 [the black area in Fig. 2(a)], and the
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remaining N1 = N2 = N − N3 slots are simultaneously used
by base stations 1 and 2, respectively, in zones 1 and 2.

The partitioning is carried out at regular intervals over
which the user population in each area does not significantly
change. Over the coming period for which the partitioning is
to be optimized, the traffic generated by the totality of the
respective user populations is incompletely known, as is the
exact transmission capacity. Hence, we must first assign a loss
function L(N3, θj) describing the “loss” incurred to the system
on making decision N3 should θj turn out to be the true “state
of nature” in terms of supply and demand for transmission
capacity. Then, having decided on a loss function, we must
find probability distributions for the remaining uncertainty: in
this case the supply and demand for transmission capacity. The
optimal partition shall here be taken as the solution found by
adjusting N3 so that the expected loss, which we denote by 〈L〉,
is minimized. The loss function describes the amount of data
remaining in the transmission buffers, and the minimization of
〈L〉 is thus equivalent to maximizing the expected throughput
in the considered area.

Other criteria could be more appropriate in some circum-
stances. For instance, minimizing the square of the buffer levels
would lead to a policy that avoids large buffer levels in any
of the buffers. This can be regarded as a policy that strikes a
balance between throughput and fairness among user popula-
tions. Note, however, that the main contribution of this paper
is not the actual partitioning strategies but rather the resulting
probability distributions and expectations, which are of a more
general interest and are equally valid for uses requiring other
criteria.

Let Ni denote the number of time-frequency slots allocated
to each zone i, as defined above, and remember that N1 =
N2 = N − N3, reflecting that the same slots can be reused in
zones 1 and 2. In the following, we will use the term frame
to describe a set of time-frequency slots that are allocated to a
transmission mode. The entire scheduling frame is then the N
time-frequency slots that are being partitioned.

Let Si denote the current number of bits in the transmission
buffers corresponding to zone i, and let ci represent the effec-
tive transmission rate per time-frequency slot in the ith zone.
Notice that we use the term effective rate to emphasize that ci

represents the transmission rate that is actually used, which in
a system using multiuser diversity may be significantly larger
than the average of all users’ individual transmission rates
[2], [11].

Further, let ni denote the number of bits that will enter the ith
buffer over the coming scheduled time interval of T time slots.

Maximizing the throughput is equivalent to minimizing the
total amounts of data remaining in the transmission buffers for
each of the three areas after T time slots, and, with the given
definitions, we formulate the corresponding loss function as

L(N3, {ci, ni}) = g (S1 + n1 − (N − N3)c1) +

+ g (S2 + n2 − (N − N3)c2) + g(S3 + n3 − N3c3) (1)

where g(x) = x if x > 0; else, g(x) = 0. Each of the three
terms in the loss function describes the number of bits remain-
ing in the transmission buffers for the respective zones, i.e., the

sum of the data in stock Si and the influx ni over the coming
period minus the number of bits to be transmitted Nici. We
take each ci to be fluctuating according to different probability
distributions for each ci. Notice that the transmission rate is
here assumed to be fixed within each frame of scheduled slots,1

which may seem to be a severe restriction. However, even if the
transmission rates vary within a frame, the resulting expression
will still be entirely correct provided that the partition allocates
bandwidth such that each zone has more data in its buffers
than that zone’s available transmission rate. The reason is that
then, the nonlinearities due to g() disappear, and the expectation
calculated from the aggregate ci becomes equal to that of the
sum of subdivided ci, which would normally be the case. In all
other cases, however, the partition may be suboptimal.

III. DERIVATIONS OF SUPPLY AND

DEMAND DISTRIBUTIONS

A. Demand Distribution

The distribution for the total transmission capacity demand
in each zone is denoted by P (ni|I) given information I . The
background information I includes that the total demand in the
area in terms of bits per T time slots, i.e., the scheduled horizon,
is a sum of the influxes into each user’s transmission buffer for
each time slot, i.e.,

ni =
Ui∑

u=1

T∑
t=1

nut

where Ui is the number of users in the ith zone. If we regard
the data streams as originating from some type of best effort
data service such as the Internet, each nut can be regarded as
an independent unknown variable, which, taken together with
the fact that Ui × T is a large number (most likely > 100),
makes the resulting distribution tend to be a Gaussian shape
by a central limit theorem argument. In [11] and [12], each
individual user’s influx was modeled by a negative exponential
distribution according to the maximum entropy principle [13]
subject to known average influxes. A sum of such variables can
be shown in computer simulations to converge to a Gaussian
distribution with reasonable accuracy, even for a small (< 10)
number of terms, giving another justification for the choice of a
Gaussian model.

Another approach, which is useful for access control and
provisioning of quality-of-service agreements, is to require
each user u to specify a requested service level in terms of
the mean of the desired arrival rate and the expected sample
variance of the arrival rate, i.e., feeding to the base station 〈nu〉
and σ2

u. As shown in [14], in the sense of maximum mutual
information, the best approximate distribution to any proba-
bility distribution given knowledge of, for instance, moments
of that distribution, is the distribution with maximum entropy
subject to the constraints imposed by the moment information.

1Otherwise, we would need to replace the single ci with N terms repre-
senting individual time-frequency slots, as well as a decision variable for each
slot. The corresponding optimal allocation would require calculation of the
probability for each possible frame of the transmission rates.
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This means that with only knowledge of mean and variance,
the preferred distribution is Gaussian. With this knowledge, the
mean and variance of the Gaussian distribution for the total
population’s arrival rate in a zone can be obtained by adding the
stated quantities from each user. In discussing access control,
we will come back to this scenario.

In summary, we model the total transmission capacity de-
mand in each zone i in terms of number of bits ni required over
the scheduling horizon as

P (ni|I) =
1√

2πσi

exp
(

1
2σ2

i

(ni − 〈ni〉)2
)

(2)

with 〈ni〉 and σ2
i denoting the mean and the variance, respec-

tively, as measured by the base station serving zone i.

B. Supply Distribution

We now determine the probability distribution for the ef-
fective transmission rates ci of each zone i. Suppose that the
transmission rate for each slot can assume only a limited set
of values ci = ci,1, . . . , ci,K and that the base station monitors
and stores the relative frequencies with which the different ci,k

are used in each zone. Since, in a system employing multiuser
diversity, the distribution of relative frequencies with which
the ci,k are used depend on the number of users currently in
the area2 [12], these relative frequencies will generally not be
stationary. To simplify the calculation of the probabilities, we
will however assume stationarity over a certain time frame.
This means that the probability distribution should be based
on the data observed in the previous, for example M , slots,
where M defines the time over which the distribution of relative
frequencies can be assumed stationary.

Assume that according to the M most recent time slots, the
ith zone has until now served mi,k time-frequency slots at the
transmission rate ci,k. The total number Mi of monitored time-
frequency slots can then be written as

Mi =
K∑

k=1

mi,k

where K is the number of rate levels supported by the base
station.3

We are now interested in determining the probability for
serving ri,k time-frequency slots at rate ci,k in the next frame.
Assuming that the underlying causal mechanisms that deter-
mine the transmission rates do not significantly change over the
considered time interval, it follows that the relative frequencies

2The probability that there is at least one user who can transmit at rate ci,k

but no user that can transmit at the nearest larger rate ci,k+1 can be shown to
be (see [15], Ch. 6)

Ui∏
u=1

ci,k+1∫
0

P (ru|I)dru −
Ui∏

u=1

ci,k∫
0

P (ru|I)dru

where P (ru|I) is the probability distribution for user u’s rate.
3It can be noted that M < Mi in a slotted OFDM system, since the Mi slots

are made up of Ti time slots multiplied by Fi frequency bins, i.e., Mi = FiM .

should remain constant as well, and we take the probability
for each ci,k as the expectation of the relative frequencies with
which it occurs.

We seek to evaluate

P (fi,1, . . . , fi,K |mi,1, . . . , mi,KI)

=
P (mi,1, . . . , mi,K |fi,1, . . . , fi,KI)P (fi,1, . . . , fi,K |I)

P (mi,1, . . . , mi,K |I)
(3)

where

fi,k =
ri,k∑K

j=1 ri,j

(4)

is the relative frequency with which ci,k will be used, and I is
the background information stated above. The solution to this
problem is a generalized version of Laplace’s rule of succession
(see [16, ch. 18]). For completeness, we provide a derivation of
the solution in Appendix A.

The probability for transmitting at a certain rate ci,k in an
“average” time-frequency slot during the next scheduled frame
is then given by

pci,k

∆= P (ci,k|mi,1, . . . , mi,KI) =
mi,k + 1
Mi + K

. (5)

Note that when the number of observations Mi is very small
compared to the number of possible rates K, the distribution
tends to a uniform distribution. This agrees with common sense:
To obtain any sharp predictions, the number of observations
must be relatively large in comparison to the number of hy-
potheses. If Mi � K, then the probability assigned to any
rate level is practically independent of the number of possible
rates and depends only on the observed data. Note further that
the probability assigned to any rate level will never be zero
unless either K or Mi is infinite, which is never the case in
reality. This can be understood from observing that (5) can
be interpreted as using the observed frequencies as estimates
of the predictive probabilities but, in addition, using the fact
that each of the rate levels actually can occur, corresponding
to K additional observations: one for each rate. This is an
important feature, since a possible outcome should never be
assigned zero probability. This is one of the main reasons why
using histograms as probabilities, i.e., pci,k

= mi,k/Mi, should
always be avoided.

It could be argued that a base station knows more about
the channel than the recorded frequencies with which different
rates have been used in the past and, thus, that it should be
possible to find an improved rate distribution. However, very
precise information [which would be required to improve (5)] is
rarely available. One might assume Rayleigh fading, or Rician
fading, etc., combined with log-normal shadow fading, but in
practice, these are assumptions concerning the physical envi-
ronment which may often not be met in the specific scenario.
Such distributions would be based only on prior assumptions
and not on the actually observed channels in the specific sit-
uation. Moreover, even if these assumptions hold, the Laplace
rule (5) is able to infer these distributions from the observed
channel usages as long as the distributions are stationary. Only
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if there is a strong known nonstationarity could we hope to
make a substantial improvement on the Laplace rule, but this
case is difficult to model without imposing strong assumptions
concerning the nonstationarity.

IV. SOLUTIONS TO THE RESOURCE

PARTITIONING PROBLEM

Having derived the probability distributions for the supply
and demand in each area, we now determine the expectation
of the loss (1). Under the condition that the influxes ni and
the effective transmission rates ci,k are logically independent,
we have

〈L〉 =
K∑

k=1

pc1,k

∞∫
−∞

P (n1|I)g (S1 + n1 − (N − N3)c1,k) dn1

+
K∑

k=1

pc2,k

∞∫
−∞

P (n2|I)g (S2 + n2 − (N − N3)c2,k) dn2

+
K∑

k=1

pc3,k

∞∫
−∞

P (n3|I)g(S3 + n3 − N3c3,k)dn3. (6)

Here, we have used the more compact notation pci,k
=

P (ci,k|mi,1, . . . , mi,KI) introduced in (5). Adjusting the lower
integration limit due to g(·), the evaluation of the integrals is
straightforward, i.e.,

∞∫
−∞

P (ni|I)g(Si + ni − Nici,k)dni

=

∞∫
Nici,k−Si

1√
2πσi

exp
(

1
2σ2

i

(ni − 〈ni〉)2
)

× (Si + ni − Nici,k)dni

=
1
2

[√
2
π

σi exp

(
−

α2
i,k

2σ2
i

)
+ αi,k

(
erf

(
αi,k√
2σi

)
− 1

)]

(7)

where

αi,k = Nici,k − Si − 〈ni〉. (8)

The resulting expected loss is

〈L〉 =
3∑

I=1

K∑
k=1

pci,k

1
2

[√
2
π

σi exp

(
−

α2
i,k

2σ2
i

)

+αi,k

(
erf

(
αi,k√
2σi

)
− 1

)]
(9)

with pci,k
defined in (5), and αi,k is defined in (8).

In Appendix B, we prove the following theorem, which gives
the optimum partition between the zones when the Ni are

allowed to be continuous. We shall take the discrete solution
to be the integer Ni closest to the continuous optimum.4

Theorem 1: The partition N3, which minimizes the expected
buffer levels (9), is obtained by solving the following equation:

K∑
k=1

(
pc3,k

c3,kerfc
(

α3,k√
2σ3

)
−

2∑
i=1

pci,k
ci,kerfc

(
αi,k√
2σi

))
=0

(10)

with

αi,k = Nici,k − Si − 〈ni〉 (11)

where it should be remembered that N1 = N2 = N − N3.
The term erfc(αi,k/

√
2σi) in (10) is twice the probability

that ni is larger than Nici,k
− Si, i.e., it is proportional to

the probability that there is a nonzero loss contribution from
zone i. Assuming that the transmission rates ci are known, the
optimum partition (10) thus balances the transmission rate in
an average time-frequency slot multiplied by the probability
for a nonzero loss contribution from the high-interference zone
with the sum of the corresponding quantity for the two low-
interference zones. Likewise, when the ci are uncertain, the
optimum is obtained by balancing the expectation over pci

of
these quantities.

The balance equation (10) does not admit a general solution
in closed form but can be numerically solved. The left-hand
side of (10) is either monotonically increasing or monotonically
decreasing as a function of N1 = N2, and the optimum can be
found in a few iterations.

V. RELATED ISSUES

A. Several Sectors

From the final equation to be solved for optimal two-sector
partitioning (10), the generalization to l sectors with one com-
mon zone of high interference is immediate. Thus, we have

K∑
k=1

(
pc3,k

c3,kerfc
(

α3,k√
2σ3

)

−
l∑

i=1

pci,k
ci,kerfc

(
αi,k√
2σi

) )
= 0. (12)

B. Switching Between Transmission Modes

We now discuss how a user determines which transmission
mode it would prefer to use. It can be noted that, in principle,
a user would always prefer transmission mode 2, since this
minimizes the interference and, thus, always yields higher
throughput to the individual user. For the network, however,
system throughput may be reduced if no bandwidth is reused
in the two sectors. Thus, we must require the user to employ a
more sensible criterion.

4Since there is a unique solution when Ni is continuous, the discrete
optimum is either the nearest integer above or below the continuous optimum.
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Several criteria are possible. The simplest would be to have
a predetermined interference threshold, above which a user
is always allowed to use transmission mode 2. This could,
however, lead to underutilization of the network when there are
few users in the considered sectors. In a case where there are
very few users, there would be no need to reuse bandwidth, and
instead, we could give all users higher data rates by employing
transmission mode 2 at all times. Instead, we propose that upon
admission to the network, the user and the network agree on an
average bit rate that the network is to provide to the user. Let
that average bit rate for a user u be denoted 〈nu〉. The goal of
the network is then to never allow any user’s average throughput
〈cu〉 to go below its average desired rate. A user is then required
to use transmission mode 1 as long as

J = 〈cu(TM1)〉 − 〈nu〉 ≥ 0 (13)

where 〈cu(TM1)〉 denotes the user’s expected throughput when
using transmission mode 1. If the inequality does not hold, the
throughput is lower than the agreed-upon service level, and
the user requests the right to use transmission mode 2. This
request is granted by the network, and at the same time, a
new bandwidth partitioning should be carried out to reflect the
changes in expected demand for bandwidth as a consequence
of the transfer of that user to transmission mode 2.

When a user employs transmission mode 2, it is still required
to keep track of J at regular intervals and switch back to
transmission mode 1 when the inequality holds and transmis-
sion mode 1 is thus sufficient to attain the requested service
level.

This scheme requires that a part of the available bandwidth be
reserved for pilot symbols sent in transmission mode 1 to facil-
itate the computation of expected effective rates for that mode
also when a user employs transmission mode 2. A difficulty
arises in systems employing multiuser diversity, for in such
systems, the expected effective rate depends on the number of
users, the particular scheduler used, and the rate distributions
of all other users. A detailed solution to this particular problem
is beyond the scope of this paper, but a possible approach is
to compute the user’s expected data rate 〈ru〉 corresponding
to the signal-to-interference-plus-noise ratio (SINR) per time-
frequency slot and multiplying it by the number Nu of time-
frequency slots that the network expects to allocate to that
user, i.e.,

〈cu〉 = Nu〈ru〉. (14)

Nu is a function of the scheduler employed and the number
of users in the sector. In a system using a simple round-
robin scheduler, Nu is simply the total number of available
time-frequency slots divided by the number of users. In a
system utilizing multiuser diversity and a quality-of-service
aware scheduler, Nu will depend also on the service-quality
parameters and, often, the users’ individual rate distributions.
However, a sufficiently accurate Nu can be based only on the
number of current users and the expected SINR of the particular
user, possibly adjusted by the ratio of that user’s required
service level and the average user’s service level.

When recalculating the bandwidth partitioning between the
two transmission modes when a user has switched transmission
mode, it is important to update the demand distribution P (ni|I)
to reflect the change. To do this, information concerning in-
dividual users’ demands is required. This can be collected
in the base stations, or provided by the users upon admis-
sion to the network. To allow for efficient quality-of-service
provisioning, the network needs to have access to individual
traffic parameters for each user, and thus, it is useful to let
users specify requested rates upon admission. A reasonable
set of parameters for traffic characterization is the expected
arrival rate 〈nu〉 along with the variance σ2

u for the arrival
rate. As mentioned in Section III-A, an optimal approximation
(according to the criterion of minimum information loss) to the
individual demand distribution is then a Gaussian with the given
expectation and variance. As the demand distribution for each
of the three zones is also modeled by a Gaussian, the addition
or removal of a user from one zone to another results simply in
adding or subtracting, respectively, the mean and the variance
for nu corresponding to the user u in question.

Concerning the rate distributions for each zone i, pci,k
, these

should, in principle, also be updated when a user switches
zones. However, information concerning individual user rates
may more often than not be absent at the base stations. Without
such knowledge, the most conservative choice is simply to
assume that the pci,k

do not change when a single user is
changing zones. Under the assumption that the user population
in all zones is very large, this is reasonable. With few users,
the rate distribution would typically change when a user leaves
or enters a zone, but an update with more credibility than
simply using the same distribution as before would require
information concerning scheduling policies and accurate indi-
vidual rate distributions for all users. Thus, we suggest that
the rate distributions continue to be updated according to the
rule of succession, with no further adjustments. Given a few
observation intervals, the rate distribution will automatically
adapt to reflect the new user population’s channel variability.

C. Admission Control

Admission control serves the purpose of admitting as many
users as possible to the network with as high user satisfaction
as possible. We shall here estimate user satisfaction in terms of
the network’s ability to match the actual individual throughput
of a user to a desired rate specified by the user.

A user requests a certain average bit rate 〈nu〉 and the
network determines whether that bit rate requirement can be
expected to be met by the network. To determine whether
this can be granted or not, the network further requires some
information regarding the users’ rate distributions.

The decision consists of determining whether the expected
effective rate 〈cu〉 is larger than the average desired rate 〈nu〉.
If that is the case, the network has sufficient resources to fulfill
the rate requirements. Notice here that the difficulty lies in
determining the expected effective rate for an individual user.
To do this, the expected rate that the channel to that specific
user supports must be known for both transmission modes. This
can be determined by the mobile given pilot transmissions. It
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TABLE I
STANDARD PARAMETERS FOR PERFORMANCE TESTS FOR THE THREE

ZONES i = 1, . . . , 3. THE PARAMETER ci IS THE EFFECTIVE

TRANSMISSION RATE, Si IS THE CURRENT NUMBER OF BITS IN STOCK,
AND 〈ni〉 AND σi ARE THE AVERAGE AND THE STANDARD DEVIATION,

RESPECTIVELY, OF THE NUMBER OF INCOMING BITS OVER A

SCHEDULING INTERVAL. THE TOTAL NUMBER OF

SCHEDULED SLOTS IS N = 500

must then be decided how large a fraction of the bandwidth
the user can be expected to be allocated and in what mode of
transmission. A method for this purpose was briefly discussed
in the previous section, but the particular solution depends on
the scheduler the network employs.

To make the admission/rejection decision, the network first
computes whether admission is possible within the limits of the
current bandwidth partitioning. If that is not the case, a new
bandwidth partitioning based on assuming that the user is ad-
mitted should be computed. If that leads to an expected effective
rate 〈cu〉 that is larger than the requested rate 〈nu〉, the new user
is admitted, and the new bandwidth partitioning replaces the
old one.

VI. PERFORMANCE EXAMPLES

As an illustration of how the proposed scheduling frame-
work performs, we here investigate a few different scenarios
with varying uncertainty and traffic load. We study the basic
partitioning problem for two sectors with one area of high
mutual interference (cf. Fig. 2), where the solution is obtained
by solving (10) for N3. We assume that no transfers between
the two transmission modes, or three zones, take place dur-
ing the simulation. Thus, we study the stationary properties
of the dynamic partitioning. In all tests, if not otherwise stated,
the parameters in Table I are used, and the total number of
scheduled slots is N = 500.

A. Known Transmission Rates

Assuming that the effective transmission rate per time-
frequency slot in each zone is fixed and known,5 (10) simpli-
fies to

c3erfc
(

α3√
2σ3

)
−

2∑
i=1

cierfc
(

αi√
2σi

)
= 0. (15)

In this case, if the arrival rates in all zones exceed the
transmission capacity and the traffic uncertainty σi is low,
then the minimum required effective transmission rate c3 for
zone 3 to obtain any time-frequency slots is (assuming c1 = c2)
c3 ≥ 2c1. This directly follows from the definition of the loss
function (1). However, when the system is less heavily

5This corresponds to a situation in which rate adaptation is not used, but
instead, power control is employed to give all users in a zone the same ci.

Fig. 3. Optimal N3 for fixed σ3 and varying σ1 and σ2 for known and fixed
transmission rates. Expected traffic loads, etc., are shown in Table I.

trafficked,6 the scheduler will allocate resources to all zones ac-
cording to their respective demands and effective transmission
capacities.

Let us first see how the system reacts to varying amounts
of uncertainty concerning the capacity demands. We use the
parameters listed in Table I and vary the standard deviation
of the traffic generated in zones 1 and 2 while keeping σ3

fixed. The resulting optimum N3 for three cases of effective
transmission rates in zone 3 are displayed in Fig. 3.

We see that for higher uncertainties σ1 and σ2, the general
tendency of the scheduler is to lower N3 and thus increase
the number of time-frequency slots for zones 1 and 2. The
optimal partition N3 is very nearly a linear function of σ1

and σ2 for c3 = 5 and c3 = 10. However, when the effective
transmission rate of zone 3 equals that of the other zones, the
decrease slows down for increasing uncertainty. The scheduler
here tries to strike a balance between the potentially higher
(but more uncertain) loss contributions from zones 1 and 2 due
to increasing traffic uncertainty in these zones and the high
utilization which is certain to result from spectrum usage in
zone 3 (since σ3 is much lower than σ1 and σ2).

Fixing σ1 = σ2 = 200 and instead varying σ3, the optimal
N3 varies, according to Fig. 4. The variations for c3 = 5 and
c3 = 10 are now small, and N3 slightly decreases as the un-
certainty increases. Transmission mode 2 (i.e., zone 3) simply
gets the time-frequency slots that are left when the other zones
with higher transmission rates and better known traffic loads
have filled their needs. However, when c3 = 15, the fact that
the expected loss contribution from zone 3 increases with the
added uncertainty takes over as the determining factor, and the
optimal N3 consequently increases with σ3.

In Fig. 5, the optimal N3 is plotted as a function of the
expected traffic in zones 1 and 2, i.e., 〈n1〉 = 〈n2〉. In this
test, the standard deviations were fixed at σi = 200. The
three curves correspond to c3 = 5, 10, 15. The curves contain

6A well-dimensioned system should, for the most part, operate below the
congestion level, or else, it needs to increase its transmission capacities by
either more base stations or larger bandwidth.
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Fig. 4. Optimal N3 for varying σ3 and fixed σ1 and σ2 with known and fixed
transmission rates. Expected traffic loads, etc., are shown in Table I.

Fig. 5. Optimal N3 for varying 〈n1〉 = 〈n2〉 and fixed standard deviations
with known and fixed transmission rates.

TABLE II
TRANSMISSION RATES ci,k (K = 4) AND CORRESPONDING

PROBABILITIES pci,k

no surprises—for small traffic loads in the low-interference
zones, the optimal partition is loss free, and thus, the majority
of the slots are awarded to zone 3. When the traffic in zones 1
and 2 reaches a critical level, however, N3 decreases, reflecting
the higher spectral efficiency that follows when these zones can
use the available resources.

B. Uncertain Transmission Rates

With uncertain effective rates ci, according to Table II, the
resulting optimal N3 as a function of the expected traffic in

Fig. 6. Optimal N3 for varying 〈n1〉 = 〈n2〉 and fixed standard deviations
with uncertain ci, according to Table II. The solid line is the true optimum
obtained from solving (10). The dashed line shows the decision when using the
average transmission rate in (15).

zones 1 and 2 are given in Fig. 6. Apart from the parameters
just mentioned, the conditions are the same as in the equivalent
test in the case of known and fixed rates. As a comparison, the
figure shows both the true optimum obtained from solving (10)
for N3 (solid line) and the N3 obtained by simply plugging in
the average effective rates ci =

∑
k ci,kpci,k

in (15)7 (dashed
line). The difference is not insignificant and shows a surprising
behavior. The true optimum is at first higher than the “estimate
plug-in” solution, then for an intermediate range of traffic
intensity lower, and then for high loads once again higher. For
the lowest traffic loads, the estimate plug-in solution has a wide
interval of N3, which reaches the same estimate of the loss,
and that interval actually includes the true optimum from (10).
Although the suboptimal scheduler’s estimate of the loss is
identical over a range of N3 as wide as 100 time-frequency
slots, the true expected loss from (10) has a unique optimum.
Investigating the range of values around 〈n1〉 = 〈n2〉 = 3000,
the discrepancy is no longer due to the same effect; here, both
schedulers see one distinct optimum, but the correct scheduler,
which is aware of the actual uncertainty concerning the trans-
mission rate, makes a more conservative decision, which, at this
traffic load, results in a lower value of N3.

A similar situation holds for the higher traffic intensities as
well, but here, a more precautious decision is to give more
time-frequency slots to zone 3 than would be obtained with
the estimated plug-in scheduler. This can be understood from
studying the extreme case when 〈n1〉 = 〈n2〉 ≥ 6000. At that
traffic load, the estimate plug-in solution, which is confident
of the fact that c1 and c2 are fixed at the average 13.5, sees
that when the buffer loads corresponding to these two zones are
larger than 13.5 × 500 = 6750, all slots can be used by these
two zones without any risk of emptying the buffers. Compare

7It should be noted that this corresponds to using a loss function without
the g() function. The decision may then become to allocate more slots than
can actually be used to some zone (while others could in fact use it) since
overallocation decreases such a loss function.
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Fig. 7. Optimal N3 for varying 〈n1〉 = 〈n2〉 and fixed standard deviations
with uniform probability distributions for all ci. The possible rates ci are
the same, as in Table II. The solid line is the true optimum obtained from
solving (10). The dashed line shows the decision when using the average
transmission rate in (15).

this to the true optimum including knowledge of the rate
uncertainty. Now, there is a definite chance that the transmission
rates are higher than 13.5, and thus, a few slots should be left
for zone 3, where it is certain that these slots can be used. These
remarks are given further confirmation in Fig. 7, where the same
scenario as above, but with uniform rate distributions for all
three zones, is shown. We see that the difference becomes larger
in this state of larger uncertainty, particularly for higher traffic
intensities. For example, at 〈n1〉 = 〈n2〉 = 5500, the difference
in N3 for the two schedulers is almost 100 slots. In terms
of expected total throughput, the difference is, however, not
very large—for 〈n1〉 = 〈n2〉 = 5500, the true expected loss
becomes 〈L〉 = 5150 bits for the estimate plug-in solution, and
〈L〉 = 4786 bits for the true optimum. The relative performance
difference is thus less than 10%.

VII. CONCLUSION

We have presented a method for dynamic partitioning of
transmission channels among interfering sectors with the ob-
jective of maximizing expected throughput within the total area.
As the main case of interest in this paper, we investigated two
sectors with one zone characterized by high mutual interfer-
ence. Users in that zone (again, note that which users belong
to this zone is not geographically determined but is rather
based on interference levels) use transmission mode 2, i.e.,
nonreusable bandwidth, yielding lower interference and, conse-
quently, higher data rates for these users. Users that are closer to
either base station (zones 1 and 2, or transmission mode 1) are
using a part of the bandwidth that is also simultaneously used
by the other base station. Maximal expected throughput for this
case is obtained by solving (10) for N3: the number of channels
allocated to zone 3, i.e., transmission mode 2.

In Section V, a natural extension to several interfering sectors
was given. Further, a rule for transferring a user between the
transmission modes was given, as well as a method for decid-

ing whether to accept or reject a new user’s service request.
Both these methods require knowledge of individual traffic and
channel parameters. It was noted that a particular difficulty
arises in connection with determining the expected effective
transmission rate for an individual user in a network employing
multiuser diversity, but a simple heuristic was suggested.

The behavior of the bandwidth partitioning solution was
investigated in Section VI. The results showed that the optimal
partition is highly dependent on the amount of uncertainty
concerning both traffic loads and transmission rates. It was
observed that if transmission rate uncertainty is neglected by
using estimates instead of averaging over the loss function,
the resulting partitions are more risk prone, which, in turn, is
manifested by lower expected throughput. In contrast, using
the procedure dictated by probability theory, the partitions are
more precautious, yielding solutions that are more in line with
what common sense would suggest and with improved expected
throughput. Although the relative differences in Fig. 6 are only
about 10%, one should keep in mind the comments made in
Section VI-B—the estimate plug-in solution does not see any
difference in the incurred loss in intervals as wide as 100 slots.
Therefore, the actual performance difference may become quite
large, depending on which of these 100 values the optimization
program happens to choose. Further, Fig. 7 shows that for large
rate uncertainties, the differences increase.

In calculating the expected loss (9), we derived probability
distributions for supply and demand based on the assumption
of an approximately constant number of users within each area.
This should not be restrictive but should merely place an upper
limit on the length of the intervals used for collecting data in
the probability assignments.

In conclusion, it should be pointed out that the probability
distributions for supply and demand were derived from particu-
lar information that is possible to collect by the base stations in
today’s networks. The bandwidth partitioning does not rely on
measurements carried out by the receivers, which is a common
problem with dynamic channel assignments, but rather on data
collected at the base stations. Thus, the optimal partitioning
proposed here should be possible to deploy in current or near-
future systems.

APPENDIX A

We seek to evaluate

P (fi,1, . . . , fi,K |mi,1, . . . , mi,KI)

=
P (mi,1, . . . , mi,K |fi,1, . . . , fi,KI)P (fi,1, . . . , fi,K |I)

P (mi,1, . . . , mi,K |I)

(16)

where

fi,k =
ri,k∑K

j=1 ri,j

(17)

is the relative frequency with which ci,k will be used, and I is
all our background information that is relevant to the problem.
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The prior probability distribution for the relative frequencies
fi,k is defined by a distribution which is uniform over all
combinations of K nonnegative numbers that sum to unity as
follows:

P (fi,1, . . . , fi,K |I)=Cδ(fi,1 + · · ·+f1,K−1), fi,k≥0.
(18)

The normalization constant C is defined by

∞∫
0

, . . . ,

∞∫
0

P (fi,1, . . . , fi,K |I)dfi,1, . . . , dfi,K = 1 (19)

and letting

I(q) ≡
∞∫

0

, . . . ,

∞∫
0

δ(fi,1 + · · · + fi,K − q)dfi,1, . . . , dfi,K

(20)

we obtain

CI(1) = 1. (21)

To avoid difficulties in carrying out this integration due to
the interdependency of the integration limits, we note that the
Laplace transform of I(q) is

∞∫
0

e−sqI(q)dq =

∞∫
0

, . . . ,

∞∫
0

e−s(fi,1+···+fi,K)dfi,1, . . . , dfi,K

=
1

sK
. (22)

However, this is a standard formula, and the inverse Laplace
transform of (22) is

I(q) =
qK−1

(K − 1)!
(23)

yielding the normalization constant8

C =
1

I(1)
= (K − 1)!. (24)

Assuming a constant underlying causal mechanism, the like-
lihood term in (16) is a multinomial distribution, i.e.,

P (mi,1, . . . , mi,K |fi,1, . . . , fi,KI)

=
Mi!

mi,1!, . . . , mi,K !
f

mi,1
i,1 , . . . , f

mi,K

i,K . (25)

8One might casually expect that the normalization constant becomes K,
not (K − 1)!, since the different frequencies are equally likely. However,
the constraint that the probabilities must sum to one in effect means that the
normalization constant is obtained by counting the possible combinations that
can arise while satisfying the sum constraint.

The prior distribution P (mi,1, . . . , mi,K |I) is obtained by
averaging the joint distribution for mi,k and fi,k over all
possible fi,k. Since

P (mi,1, . . . , mi,K |I)

=
∫

, . . . ,

∫
P (mi,1, . . . , mi,K , fi,1, . . . , fi,K |I)

× dfi,1, . . . , dfi,K

=
∫

, . . . ,

∫
P (mi,1, . . . , mi,K |fi,1, . . . , fi,KI)

× P (fi,1, . . . , fi,K |I)dfi,1, . . . , dfi,K (26)

the prior can be written as

P (mi,1, . . . , mi,K |I)

=
Mi!

mi,1!, . . . , mi,K !

∫
, . . . ,

∫
f

mi,1
i,1 , . . . , f

mi,K

i,K

× P (fi,1, . . . , fi,K |I)dfi,1, . . . , dfi,K

=
Mi!

mi,1!, . . . , mi,K !
· J(1) (27)

where

J(q)=

∞∫
0

, . . . ,

∞∫
0

f
mi,1
i,1 , . . . , f

mi,K

i,K

× δ(fi,1 + · · · + fi,K − q)dfi,1, . . . , dfi,K . (28)

Using the same Laplace transform technique as above,
we obtain

P (mi,1, . . . , mi,K |I) =
Mi!(K − 1)!

(Mi + K − 1)!
. (29)

Combining (18), (25), and (29) into (16), we have

P (fi,1, . . . , fi,K |mi,1, . . . , mi,KI) =
(Mi + K − 1)!
mi,1!, . . . , mi,K !

× f
mi,1
i,1 , . . . , f

mi,K

i,K δ(fi,1+· · ·+fi,K − 1). (30)

We set out to find the probability for transmitting at a certain
rate ci,k in an “average” time-frequency slot during the next
scheduled frame, which, due to the assumption of a fixed causal
mechanism, is given by the expectation of the relative frequency
with which that particular rate occurs. Thus, we have

pci,k

∆=P (ci,k|mi,1, . . . , mi,KI) = 〈fi,k〉

=

∞∫
0

, . . . ,

∞∫
0

fi,kP (fi,1, . . . , fi,K |mi,1, . . . , mi,KI)

× dfi,1, . . . , dfi,K

=
mi,1, . . . , mi,K

(Mi + K)!
· (Mi + K − 1)!
mi,1!, . . . , (mi,k + 1)!, . . . ,mi,K !

=
mi,k + 1
Mi + K

(31)

where we again use the Laplace transformation technique to
solve the integrals.
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APPENDIX B

An N3 which minimizes (9) can be found using Lagrange
multipliers with the constraints N1 + N3 = N and N2 = N1.
There may not exist a point where the derivative of the loss
function is actually zero. In that case, the solution is simply
N3 = 0 or N3 = N , according to whether the sign of the
derivative of (9) is negative or positive.

We form (remembering that N1 = N2)

J(N1, N3, λ) = 〈L〉 − λ(N − N1 − N3) (32)

and differentiate, with respect to N1, N3, and λ, respectively,
the following:

∂J

∂N1
=λ+

2∑
i=1

K∑
k=1

pci,k

1
2




√
2
π

σ1

∂ exp
(
−α2

i,k

2σ2
i

)
∂N1

+
∂

(
αi,k

(
erf

(
αi,k√
2σi

)
−1

))
∂N1




=λ+
2∑

i=1

K∑
k=1

pci,k

1
2




√
2
π

σ1

∂ exp
(
−α2

i,k

2σ2
i

)
∂α2

i,k

∂α2
i,k

∂N1

+
∂αi,k

∂N1

(
erf

(
αi,k√
2σi

)
−1

)

+ αi,k

∂
(
erf

(
αi,k√
2σi

)
− 1

)
∂αi,k

∂αi,k

∂N1




=λ+
2∑

i=1

K∑
k=1

pci,k

1
2

[√
2
π

σi

(
−αi,kci,k

σ2
i

exp

(
−

α2
i,k

2σ2
i

))

+ ci,k

(
erf

(
αi,k√
2σi

)
−1

)

+
√

2αi,kci,k√
πσi

exp

(
−

α2
i,k

2σ2
i

)]
= 0

(33)

where the exponential terms cancel, and the result is

∂J

∂N1
= λ −

2∑
i=1

K∑
k=1

pci,k
ci,kerfc

(
αi,k√
2σi

)
= 0. (34)

In the same way, the derivative with respect to N3 is

∂J

∂N3
= λ −

K∑
k=1

pc3,k
c3,kerfc

(
α3,k√
2σ3

)
= 0 (35)

and the derivative with respect to the Lagrange multiplier is

∂J

∂λ
= N3 + N1 − N = 0 ⇔ N1 = N − N3. (36)

Noting that (34) and (35) are both equal to zero, we have

K∑
k=1

(
pc3,k

c3,kerfc
(

α3,hk√
2σ3

)
−

2∑
i=1

pci,k
ci,kerfc

(
αi,k√
2σi

))
=0

(37)

with, as before

αi,k = Nici,k − Si − 〈ni〉. (38)
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