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On Time-Domain Model-Based Ultrasonic
Array Imaging

Fredrik Lingvall and Tomas Olofsson

Abstract—This paper treats time-domain model-based
Bayesian image reconstruction for ultrasonic array imag-
ing and, in particular, two reconstruction methods are pre-
sented. These two methods are based on a linear model of
the array imaging system and they perform compensation
in both the spatial and temporal domains using a mini-
mum mean squared error (MMSE) criterion and a maxi-
mum a posteriori MAP) estimation approach, respectively.
The presented estimators perform compensation for both
the electrical and acoustical wave propagation effects for
the ultrasonic array system at hand. The estimators also
take uncertainties into account, and, by the incorporation
of proper prior knowledge, high-contrast superresolution
reconstruction results are obtained. The novel nonlinear
MAP estimator constrains the scattering amplitudes to be
positive, which applies in applications where the scatter-
ers have higher acoustic impedance than the surrounding
medium. The linear MMSE and nonlinear MAP estima-
tors are compared to the traditional delay-and-sum (DAS)
beamformer with respect to both resolution and signal-to-
noise ratio. The algorithms are compared using both simu-
lated and measured data. The results show that the model-
based methods can successfully compensate for both side-
lobes and grating lobes, and they have a superior temporal
and lateral resolution compared to DAS beamforming. The
ability of the nonlinear MAP estimator to suppress noise is
also superior compared to both the linear MMSE estimator
and the DAS beamformer.

I. Introduction

In traditional delay-and-sum (DAS) ultrasonic array
imaging, the lateral resolution is determined by the

physical size of the array and the temporal resolution is
determined by the length and shape of the transmit pulse.
In more recent array imaging methods [1]–[3], more ad-
vanced processing methods have shown that these restric-
tions can be alleviated resulting in images with both high
temporal and lateral resolution, which does not necessarily
depend only on the array size and the shape of the transmit
pulse. In this article we will discuss time-domain methods
to achieve high-resolution imaging results by means of a
linear modeling of the array system and a careful choice
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of reconstruction methods (based on a linear model that
acknowledge both uncertainties and prior information re-
garding the scattering strengths).

Normally in ultrasonic array imaging, an image of the
insonified object is formed by (i) transmitting several
acoustic pulses which are focused and steered at differ-
ent parts of the region-of-interest (ROI), or (ii) by means
of mechanical scanning using a wide-beam transducer and
then constructing an image from the collected RF-data.
The first method will be denoted physical array imaging
(PAI) in this article and the latter synthetic array imaging
(SAI).

Traditionally, acoustic array data, both from physical
and synthetic arrays, have been processed by means of spa-
tial filtering, or beamforming, to obtain an image of the
scattering objects [4], [5]. Beamforming, using the classical
time-domain DAS method, is analogous to the operation
of an acoustical lens, and it can be performed efficiently us-
ing delay-line operations in real time or using postprocess-
ing as in SAI systems [6]–[8]. Conventional beamforming,
which is essentially based on a geometrical optics approach
[9], is computationally attractive due to its simplicity but
it has several inherent drawbacks. In particular, conven-
tional beamforming does not perform well using sparse
arrays or using arrays where the element size is large com-
pared to the wavelength of the transmitted waveform.1

In this paper we will consider more advanced models
of the imaging system which then will be used in the im-
age reconstruction process. The approach taken here is
Bayesian-influenced, and we view the array imaging prob-
lem as an inference problem. We will show that the three
factors below are important for the reconstruction perfor-
mance:

• The use of prior information regarding scattering
strengths is vital to obtain stable estimates.

• We must consider the uncertainties (model errors and
measurement noise) that we have.

• A suitable model for the imaging system is important
in order to be able to compensate for diffraction effects
and the electrical characteristics of the array system.

By acknowledging these three factors we can obtain very
high resolution images, even though our imaging system
may not be perfect in the sense of traditional array imaging
(i.e., well- sampled arrays with small array elements).

The main motivation for developing the reconstruction
algorithms discussed here is the wish to improve the per-

1Grating lobes, which occur for sparse or under-sampled arrays, is,
in fact, a direct consequence of DAS processing [10].
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formance of traditional ultrasonic array imaging methods.
In particular, it is desirable to relax the restrictions of the
array design imposed by the DAS method, that is, the
requirement of an array pitch less than half the transmit-
ted wavelength and the need to use small array elements
so that the point source assumption is valid. Moreover,
in many applications a high frame rate is desirable and
the limiting factor is often the round-trip travel time of
the acoustic pulse. If many points could be reconstructed
from a single transmission, then the frame rate could be
increased significantly. Such systems have been proposed
before where a wider-than-normal transmit beam is used
and a few lines of the total ROI are reconstructed using a
parallel receive beamformer [11]–[13]. These systems can,
however, beamform only a few lines per transmission. The
methods proposed here do not have these restrictions and
their performance depends, as will be shown later, mainly
on the signal-to-noise ratio (SNR).

In this article we will see that, by using a suitable model
for the imaging system and appropriate assumptions on
the scattering amplitudes, the reconstruction performance
can be significantly improved compared to traditional DAS
imaging.

This article is organized as follows: In Section II the
linear model is introduced, and the reconstruction meth-
ods based on the model is described in Section III. The
simulations and experiments are given in Sections IV and
V, respectively, and the conclusions are finally given in
Section VI.

II. The Impulse Response Model

In order to compensate for the frequency-dependent
diffraction effects, input pulse shape, and the electro-
acoustical properties of the array system, we need a model
that is more advanced than the common point-source
model. We have chosen a linear model here which is suffi-
cient for our purposes. It has been shown to be adequate
for compensating transducer size effects in SAI [14] as well
as to compensate for grating lobes in undersampled linear
arrays [15]. Note that we do not consider the model used
here to be flawless but it is sufficient for our purposes; that
is, it allows us to compensate for many of the effects that
cause problems in traditional DAS imaging.

The linear model used here is based on the impulse
response method [14], [16]–[19], where each observation
point is associated with an impulse response. The impulse
response can be divided into the forward (f), or transmit,
impulse response and the backward (b), or receive, impulse
response. We make a distinction between the forward and
backward impulse responses since the transmit and receive
apertures may not be identical, and the electrical charac-
teristics of the transmitters and receivers may also differ.

The forward response can be divided into three parts:
the input signal u(t), the forward electro-acoustical re-
sponse hef(t), and the forward acoustical or spatial impulse
response (SIR) hf-SIR(r, t). In the simulations performed in

Fig. 1. Illustration of the transmit process for a single observation
point at r = (xn, 0, zm) in the x–z plane.

this article, the input signals are of the form δ(t−τ) where
τ is the focusing delay for the corresponding transmit ele-
ment. The model described below is, however, not limited
to this type of input signals; that is, any type of input
pulse can be used in the model.

The SIRs account for the acoustical diffraction effects
associated with the transmit elements and they can be ob-
tained by several means such as analytic solutions to the
wave equation, numerical procedures [20], [21], or measure-
ments.2 The transmit process for a single observation point
in the x–z plane is illustrated in Fig. 1. Note that the total
forward impulse response is a superposition of the forward
impulse responses corresponding to all transmit elements.

The backward response can be similarly divided into
two parts, the backward acousto-electrical impulse re-
sponse heb(t) and the backward SIR hb-SIR(r, t).

Now, consider an array with K transmit elements and
L receive elements and contributions from a single obser-
vation point, r =

[
x y z

]T , where T denotes the transpose
operator. The received signal, yl(r, t), from the lth receive
element can be expressed

yl(r, t) =

Forward impulse response (f)︷ ︸︸ ︷(
K−1∑
k=0

hf-SIR
k (r, t) ∗ hef

k (t), ∗uk(t)

)
o(r) ∗

Backward impulse response (b)︷ ︸︸ ︷
hb-SIR

l (r, t) ∗ heb
l (t) + el(t),

= hf(r, t) ∗ hb
l (r, t)o(r) + el(t),

= hl(r, t)o(r) + el(t),

(1)

where ∗ denotes temporal convolution, and el(t) is the
noise for the lth receive element. The object function o(r)
is the scattering strength at r, hef

k (t) is the forward electri-
cal impulse response for the kth transmit element, heb

l (t) is
the backward electrical impulse response for the lth receive
element, and uk(t) is the input signal for the kth transmit
element. Hereafter we will refer to the pulse-echo (double-
path) impulse hl(r, t) as the system impulse response.

2Here we have used a software package [22] which is based on the
DREAM method [20].
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A discrete-time version of (1) is obtained by sampling
the impulse responses and by using discrete-time convolu-
tions. If we, for simplicity, consider two-dimensional (2-D)
imaging, where the scatterers are located in the x–z plane
(cf. Fig. 1), then the received discrete waveform from a
target at an observation point r = (xn, 0, zm) can be ex-
pressed as

y(m,n)
l = h(m,n)

l (O)m,n + el, (2)

where the column vector h(m,n)
l is the discrete system im-

pulse response for the lth receive element, and el is the
noise vector for the lth receive element.3 The M × N ma-
trix O represents the scattering amplitudes in the ROI,
and the notation (O)m,n denotes element (m,n) in O.

To obtain the received signal for all observation points,
we need to perform a summation over m and n, which
equivalently can be expressed as a matrix-vector multipli-
cation,

yl =
∑
m,n

h(m,n)
l (O)m,n + el,

=
[
h(0,0)

l h(1,0)
l · · · h(M−1,N−1)

l

]
o + el,

= Plo + el,

(3)

where the vector o is the vectorized matrix O [o = vec(O)].
If we now append all L receive signals yl into a vector

y, then we finally obtain the linear model

y =

⎡
⎢⎢⎢⎣

y0
y1
...

yL−1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

P0
P1
...

PL−1

⎤
⎥⎥⎥⎦ o +

⎡
⎢⎢⎢⎣

e0
e1
...

eL−1

⎤
⎥⎥⎥⎦ ,

= Po + e,

(4)

for the total array imaging system [15]. The propagation
matrix, P, in (4) now describes both the transmission and
the reception process for an arbitrary focused array.4 Note
that

• each column in P is the vectorized B-scan response
for a unit area point target at the corresponding ob-
servation point. The received vectorized B-scan data
y is thus a weighted sum of B-scan responses for all
observation points.

• the “noise” vector e describes the uncertainty of the
model (4). Hence, e not only models the measurement
noise but also all other errors that we may have, such
as multiple scattering effects, cross talk between array
elements, nonuniform sound speed in the media, etc.

3All vectors are, by convention, column vectors in this article.
4We have chosen to derive the linear model (4) using a 1-D linear

array and a 2-D rectangular sampling grid of the ROI. This was done
only in order to simplify the presentation. The array elements can,
in fact, be positioned at arbitrary locations in 3-D space, and the
observation points do not need to be confined to a regularly sampled
grid in 2-D space. Thus, the model (4) can also be used to model
2-D arrays as well as array responses in 3-D space.

The model (4) plays a vital part of the image recon-
struction methods discussed in this paper. The model (4)
allows us to compensate for many properties such as side-
lobes, grating lobes, and the electrical characteristics of
the array system. In Section III below, the model (4) will
be utilized, and two reconstruction methods based on the
model will be presented.

III. Bayesian Image Reconstruction Methods

In Bayesian estimation theory a probability density
function (PDF) describes the uncertainty, or the degree
of belief, of the true value of the variable under study [23].
In other words, a PDF is thought of as a carrier of in-
formation. In our case we want to study the scattering
strength at each image point described by the vector o.
To accomplish this we perform an experiment that gives
us some data y. Note that our knowledge regarding o is
usually not coming only from the data. Typically we know,
without seeing any data, that o cannot have an arbitrary
scattering amplitude; the scattering amplitude must at
least be limited to some interval. The PDF p(o|I), that
describes our knowledge before seeing the data, is usually
called “the prior”, and I denotes any background informa-
tion that we have regarding o. When we have performed
an experiment, we have received more information about
o and the updated PDF after seeing the data are given
by the posterior PDF, p(o|y, I). If the measurement con-
tained relevant (new) information of o, then the posterior
PDF should be more concentrated around the true value
of o.

Bayes’ theorem,

p(o|y, I) = p(o|I)
p(y|o, I)
p(y|I)

, (5)

describes how to update our knowledge of the variable,
o, when new data, y, are observed. The conditional PDF
p(y|I) is a normalization factor not dependent on o, and
p(y|o, I) describes the likelihood of seeing the data y,
given o.

In this paper the errors e are assumed to be Gaussian,
and p(y|o, I) will therefore be given by the multidimen-
sional Gaussian distribution,

p(y|o, I) =
1

(2π)
MN

2 |Ce|1/2
e− 1

2 (y−Po)T C−1
e (y−Po),

(6)

where P is the propagation matrix from (4), Ce is the co-
variance matrix Ce = E{eeT}, and E{·} is the expectation
operator.

The two most common estimators in Bayesian estima-
tion applications are the maximum a posteriori (MAP)
estimator and the minimum mean square error (MMSE)
estimators. The MAP estimate is defined as the maximiz-
ing argument of p(o|y, I),

ôMAP = arg max
o

p(o|y, I) = arg max
o

p(o|I)p(y|o, I),
(7)
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(a) (b)

Fig. 2. Illustration of the a priori probability density functions (PDF)
used for the scattering strengths (O)m,n in this article. (a) The 1-D
Gaussian PDF. (b) The 1-D exponential PDF.

where (5) was used in the last equality. The MAP estimate
is thus the value o that is most probable, given both data
and prior information.

The MMSE estimate is defined by

ôMMSE = arg min
o

E{‖o − ô‖2}. (8)

In this paper we focus on two estimators for estimating
the scattering strengths. They are based on two different
assumptions:

1. Both o and e are zero-mean Gaussian processes.
2. The scattering amplitudes o are positive and exponen-

tially distributed, and e is zero-mean Gaussian.

To see more clearly what these a priori assumptions
mean, consider the 1-D Gaussian and the exponential
PDFs shown in Fig. 2. We see here that small amplitudes
are more likely than large ones, and the width (the vari-
ance) of the PDFs tells us how large are variations in the
scattering strengths that we expect. Roughly, we assume
here that only the scattering energy must be limited (it
is very unlikely to have very large scattering amplitudes).
This is actually a rather conservative assumption since we
know that the scattering amplitudes must in reality be
limited to some fixed interval.5 Furthermore, these prior
assumptions are also attractive since they, as will be dis-
cussed below, lead to relatively efficient algorithms.

In practice, the mean and variance values may not be
known exactly. In such case one can, more practically, see
mean and variance values simply as tuning parameters for
the algorithms. The authors’ experience is also that the
reconstruction performance is not too sensitive regarding

5The a priori distributions used here can also be motivated from an
information theoretic perspective. Say that we have knowledge of the
expected scattering variance (energy) of o and that we have no reason
to favor positive amplitudes over negative ones, so the mean must be
zero. What prior should we then assign to o? Clearly, we do not want
that our choice of prior should add more information about o than
we have. Thus, we want the prior to be absolutely noncommittal for
everything except for the information that actually we have. It turns
out that the Gaussian PDF is the most noncommittal PDF if the
mean and variance are known, and the exponential PDF is the most
noncommittal PDF if we know the mean and that o is positive; the
most noncommittal distribution is the one that has the maximum
entropy, given the prior information. We recommend [23] for more
information regarding this subject.

the exact value of these parameters, as will be discussed
further in Section IV-D.

A. The Linear MMSE Estimator

The optimal linear estimator, which has the form ô =
Ky, is based on the assumptions that both o and e are
Gaussian distributed and the estimator is found minimiz-
ing a mean squared error criterion,

KLMMSE = argmin
K

E{‖o − Ky‖2}

= argmin
K

tr{Co} − 2tr{KTCoPT }

+ tr{KPCoPT KT } + tr{KCeKT },
(9)

where y = Po + e and where we assume that o and
e are mutually independent with covariance matrices
Co = E{ooT} and Ce = E{eeT}, respectively. The linear
MMSE (LMMSE) estimator, ô = KLMMSEy, is presented
here for reasons of comparison since it is closely related to
the novel MAP estimator presented in Section III-B. The
LMMSE estimator is given by [3], [15]

KLMMSE = CoPT (PCoPT + Ce)−1. (10)

Furthermore, by also assuming that the covariance matri-
ces Co and Ce have the form Co = σ2

oI and Ce = σ2
eI,

(10) reduces to

KLMMSE = PT (PPT + µI)−1, (11)

where µ = σ2
e/σ2

o. The optimal linear estimator (11) has
been shown to be able to successfully compensate for finite-
sized array elements in SAI [14] as well as to suppress
sidelobes and grating lobes in PAI [15].

B. The MAP Estimator for Positivity-Constrained
Scattering

In Section III-A it was assumed that o could take
both negative and positive values. Such an assumption
is reasonable if the inspected object may have an acous-
tic impedance that can be both higher and lower from
that of the surrounding medium. In some applications it
may, however, be appropriate to assume that the scattering
strength only can take positive values.6 Such applications
can be found in, for example, nondestructive testing, sonar
mapping, sea-floor imaging, etc. Let us therefore consider
a scenario where it is known a priori that the scatter-
ers have a higher acoustic impedance than the surround-
ing medium (resulting in positive scattering amplitudes).
Also, let us assume that o, instead of being Gaussian, has
elements that are exponentially distributed, thus allowing
only for positive values. If we also assume that all ois are
independent identically distributed (IID), then the prior
is given by

p(o|I) = ΠMN−1
i=0 λo exp(−λooi). (12)

6This method can also be derived for scattering that is strictly
negative using the negative single-sided exponential distribution.
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Using that e is Gaussian results in the posterior PDF

p(o|y, I) ∝ 1
(2π)

MN
2 |Ce|1/2

exp
(

−1
2
(y − Po)T C−1

e (y − Po)
)

ΠMN−1
i=0 λo exp(−λooi).

(13)

The MAP estimate can be found by finding the argument
minimizing the negative log of (13). Thus, the MAP esti-
mate can then be found by solving the quadratic program-
ming (QP) problem

ô = argmin
o

1
2
(y − Po)T C−1

e (y − Po) + λo1To

subject to oi ≥ 0 ∀i, (14)

where 1 = [1 1 · · · 1]T . The estimate obtained by solving
(14) will hereafter be denoted the positivity constrained
quadratic programming, or PCQP, estimate.

QP problems can always be solved in a finite number of
iterations, if a solution exists [24]. Here, the QP problem
is convex since the Hessian matrix, PT C−1

e P, is positive
semidefinite which further facilitates the solution of the
problem.

IV. Simulations

In this section we will study, by means of simulations,
the behavior of the proposed LMMSE and PCQP estima-
tors. The simulated data used here were obtained using
the linear model (4), where the noise vector e was sim-
ulated as white with Gaussian amplitude distribution. In
all simulations performed here, a certain amount of noise
has been used since a noise-free measurement situation is
unrealistic.7 The SNR used in this article is defined as

γ � oT PTPo
eTe

. (15)

The signal energy, oTPT Po, is then the total (noise-free)
energy received by all array elements.8 Note that the re-
ceived signal energy when, for example, imaging a single
point target will depend on the target’s position. The SNR
will therefore also be a function of the target’s position
and, consequently, the SNR will be low when the target
is in regions with low acoustic energy and high when the
target is in the main lobe (or in a grating lobe).

In Section IV-A–C below, we will study the proposed
model-based methods with respect to three important fac-
tors: imaging with finite-sized array elements, imaging
with undersampled arrays, and the influence of SNR for

7The estimates of the LMMSE and PCQP estimators would essen-
tially be error free in such a case.

8The noise-free signal energy is found by setting e = 0 in (4), that
is, oT PT Po = yT y|e=0.

(a) (b)

Fig. 3. The electrical impulse response used in the simulations.
(a) Simulated electrical impulse response. (b) Amplitude spectrum.

the reconstruction performance, respectively. The estima-
tors will also be compared with traditional DAS beam-
forming.

In all simulations in this article, the forward and back-
ward electrical impulse responses have a corresponding
center frequency of 3.5 MHz, as shown in Fig. 3. The wave-
length, λ, at the center frequency is then 0.43 mm for a
sound speed of 1500 m/s.

A. Imaging with Finite-Sized Array Elements

Imaging with a finite-sized aperture, that is, using a
transmitter where the size is in the same order (or larger)
than the wavelength of the acoustic pulse, is common in
many applications. In such imaging, the specific diffrac-
tion effects due to the finite aperture cannot be neglected.
These effects are most significant close to the aperture,
and the LMMSE and PCQP methods are here studied for
a such case. A 32-element array, focused at z = 25 mm,
with a 0.5-mm pitch and 5 × 10-mm elements, has been
used. Such an array is not realizable in PAI, since the ele-
ments are larger than the array pitch, but it can be used
in SAI.

In Fig. 4(a), a snapshot of the wave field at (x = −25–
25 mm, z = 15–25 mm) is shown. It is apparent that the
wave field differed significantly from that of a focused array
with point-like elements since the field at the focal point
roughly has the same width as the array elements.

The reconstruction results, shown in Fig. 4(b)–(d), are
computed for a unit area point target located at the fo-
cal point (x = 0 mm, z = 25 mm). As can be seen in
the DAS-processed image, shown in Fig. 4(b), the DAS
beamforming has resulted in a lateral resolution that is in
the same order as the size of the transmitters. The model-
based LMMSE and PCQP methods, on the other hand,
have both successfully compensated for the size effects of
the array elements, as can be seen in Fig. 4(c) and (d).

B. Imaging with Undersampled Arrays

Imaging with undersampled, or sparse arrays, is attrac-
tive since this allows for larger array elements in PAI due
to a larger array pitch, and the hardware complexity of the
array system is decreased compared to that of a dense ar-
ray [25]. This is of particular interest for 2-D arrays where
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(a) (b)

(c) (d)

Fig. 4. Wave field snapshot (a) and reconstruction images (b), (c),
and (d) using the DAS, LMMSE, and PCQP algorithms, respec-
tively, for a 32-element array with, pitch = 0.5 mm (5 × 10 mm
elements, and a unit amplitude point target at x = 0 mm) at z = 25
(SNR = 21.3 dB). (a) Simulated snapshot of the acoustic field at
−25 mm < x < 25 mm, 15 mm < z < 35 mm. (b) DAS. (c) LMMSE.
(d) PCQP.

the number of, for example, connectors rapidly becomes
large for dense arrays [26].

In traditional DAS array imaging, one must carefully
consider the position of the array elements and the aper-
ture weighting since, otherwise, sidelobes and grating lobes
can deteriorate the contrast in the image. The model-based
methods proposed here have the ability to compensate
for essentially any beam pattern; hence a more flexible
array design should be possible. To illustrate this prop-
erty, a simulation with a 32-element undersampled array
is shown in Fig. 5. The array has a pitch of 2 mm which is
roughly 4λ (at the center frequency of the pulse). Fig. 5(a)
shows a simulated snapshot of the transmitted waveform,
and it can be seen that there are strong grating lobes for
x � ±10 mm.

The simulated data were obtained using a unit area
point source at the focal point (x = 0 mm, z = 50 mm).
The DAS beamformed result is shown in Fig. 5(b), and it
is evident that the grating and sidelobes result in a sub-
stantial leakage. As can be seen in Fig. 5(c) and (d), the
model-based LMMSE and PCQP methods both success-
fully compensated for these effects, and the leakage, for
both of the model-based methods, is minimal.

C. Performance with Respect to SNR

In this section the PCQP estimator is compared with
the DAS beamformer and the LMMSE estimator for a
fixed setup but with a varying SNR. The objective is to
show the importance of prior information regarding the
scattering strengths for obtaining good estimates. As de-

(a) (b)

(c) (d)

Fig. 5. Wave field snapshot (a) and reconstruction images (b), (c),
and (d) using the DAS, LMMSE, and PCQP algorithms, respectively,
for an undersampled 32-element array with, pitch = 2 mm (5×10 mm
elements, and a unit amplitude point target at x = 0 mm) agt z = 25
(SNR = 11.9 dB). (a) Simulated snapshot of the acoustic field at
−25 mm < x < 25 mm, 45 mm < z < 55 mm. (b) DAS. (c) LMMSE.
(d) PCQP.

(a) (b)

Fig. 6. Snapshot of the acoustic field at −25 mm < x < 25 mm,
45 mm < z < 55 mm for a 16-element linear array with 0.9-mm-
wide elements, and an array pitch of 1 mm focused at z = 50 mm.
(a) Wave field snapshot at t = 34.6 µs. (b) Profile plot of the wave
field.

scribed in Section III-B, the prior for the PCQP method
is based on positivity constraints on the scattering ampli-
tudes and it will be shown below that such knowledge can
greatly improve the reconstruction performance.

Here, the simulations are performance using a 16-
element array with pitch 1 mm, and 0.9×10-mm elements,
focused at z = 50 mm. A snapshot of the acoustic field
around the focal point for this setup is shown in Fig. 6.
Since the array is undersampled, one can notice two grat-
ing lobes, at approximately x = ±18 mm, but most of the
acoustic energy is focused around the center axis x = 0.

Three simulations were performed, with SNR = 18, 3.4,
and −10.1 dB, where the SNR is defined by (15). The true
scattering image, o, had five pairs of unit area point targets
located at the horizontal positions x = −20, −10, 0, 10,
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and 20 mm, and vertically at z = 50 and z = 50.5 mm. The
vertical distance between the point targets is then roughly
one wavelength at the corresponding center frequency of
the array.

To obtain a fair comparison, we need to set the param-
eters in the LMMSE and the PCQP so that the expected
energy using both estimators is the same. The prior that
is determined by the mean value λo, used in the PCQP es-
timator, was based on the assumption that we can expect
to find one unit area point target in the ROI. The mean
scattered energy is the sum of the squared mean value
and the variance, which for a single point target becomes
12/MN = λ2

o + λ2
o, since the variance is given by λ2

o for
the exponential PDF. Thus, λo is given by 1/

√
2MN . By

similar reasoning, the variance, σ2
o , used in the LMMSE

estimator is given by σ2
o = 1/MN .

The reconstruction results, for the respective SNRs, are
displayed in Fig. 7. If we study the DAS beamformed im-
ages, it is evident that, even for the data with the relatively
high SNR of 18 dB, shown in Fig. 7(b), the DAS method
can only resolve the targets located close to the focal point.
On the contrary, the LMMSE and PCQP estimators were
able to resolve all targets. The PCQP estimator had, as it
can be seen in Fig. 7(d), very low error in the scattering
amplitudes at all target positions.

When decreasing the SNR to 3.4 dB, the LMMSE and
the PCQP estimators underestimated the amplitudes in
the regions where the acoustic power was low, shown in
Fig. 7(g) and (h), which is a reasonable behavior since the
SNR in those regions is lower than in the focusing region,
and the estimates are therefore more uncertain; that is,
the estimators become more cautious at regions with low
acoustic power. This is even more evident in the recon-
structions from the rather low SNR of −10.1 dB, shown
in Fig. 7(j)–(l). Now, the LMMSE and PCQP estimators
only trust responses from the focusing region, and all other
responses are close to zero.

Noteworthy in Fig. 7(h) and (l) is also the remarkable
high ability of the PCQP estimator to suppress the noise,
even though the received signals were completely hidden in
the noise; see Fig. 7(i). The PCQP estimator managed to
predict the two targets at the focal point with a remarkable
high contrast in the reconstructed image.

It is evident from these simulations that the two model-
based LMMSE and PCQP methods are superior to tra-
ditional DAS-based beamforming, DAS processing does
not perform well for targets outside the focusing region,
whereas the two model-based LMMSE and PCQP meth-
ods can reconstruct the targets with high temporal and lat-
eral resolution provided that the SNR is sufficiently high.

D. Sensitivity to the SNR Setting

In practice, the SNR is normally not known exactly.
The statistics of the measurement noise may be obtained
from measurements but other uncertainties included in e,
such as model errors and nonlinear effects, is difficult to
measure. Typically, one can then treat the SNR setting

for the LMMSE and PCQP estimators as tuning param-
eters. An important question is then: how sensitive are
these algorithms for variations in this parameter? To an-
swer this question we illustrate the behavior of the model-
based methods (when the SNR setting deviates from the
true value) by presenting simulated reconstruction results
with the same setup as used in Section IV-C. We present
reconstruction results for four different SNR settings in
Fig. 7. In Fig. 8(a) and (c), the SNR settings were 4 times
too low compared to the true value. By comparing with
the reconstruction results when using the true SNR value,
shown in Fig. 7(g) and (h), respectively, one can see that
both estimators have become more conservative and un-
derestimated the amplitudes of scatterers outside the fo-
cal zone. If we instead use a 4-times-too-high SNR setting,
shown in Fig. 8(b) and (d), the estimated amplitude of the
scatterers is closer to the true value but at the cost of more
noisy reconstructions. This trend is seen even more clearly
in Fig. 8(e)–(h) where the deviations from the true values
were ±10 times. Note that even though the deviations from
the true SNR values were as large as 10 times, none of the
methods became unstable (with possibly useless results as
a consequence).

The simulation results presented here are in agreement
with the well-known properties of Bayesian estimators;
that is,

• If the noise is large, then we have more trust in the
prior than in the data.

• If the noise is low, then the prior is not so important
and we rely mostly on the data.

These properties can be seen in the LMMSE estimator
(10) by considering the two extreme cases when the noise
increases to infinity and decreases to 0. Let us first consider
when the noise is large. If the noise increases, then the
matrix Ce will be dominating in the factor (PCoPT +Ce)
and (10) reduces to

ô = KLMMSEy ≈ CoPTC−1
e y

= σ2
o
PT y
σ2

e
,

(16)

where we have used (11) in the last equality. Thus the
LMMSE estimator reduces to a matched filter, PT y, when
the noise is large (which has the well-known property to
optimize the SNR at a single point).9 If the noise ap-
proaches infinity σ2

e → ∞, then ô → 0; that is, ô ap-
proaches the a priori mean value.

If we now consider the other extreme case, when we have
a very high SNR, then PCoPT will dominate the factor
(PCoPT + Ce) and the LMMSE estimator reduces to:

9Note that a matched filter only optimizes the SNR at a sin-
gle point without considering surrounding observation points. A
matched filter has, in fact, similarities to the conventional DAS beam-
former which can be expressed in the matrix form DT y where the
sparse matrix D only has ones at those positions corresponding to fo-
cusing delays [14]. The matched filter will, therefore, also have many
of the deficiencies that the DAS beamformer has, such as problems
with grating lobes, sidelobes, etc.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 7. Simulated data (a), (e), and (i) for five pairs of point targets at x = −20, −10, 0, 10, and 20 mm, at z = 50 and z = 50.5 mm,
respectively, and reconstructions using the DAS (b), (f), and (j), the LMMSE (c), (g), and (k), and the PCQP (d), (h), and (l) algorithms.
(a) Data, SNR = 18.0 dB. (b) DAS, SNR = 18.0 dB. (c) LMMSE, SNR = 18.0 dB. (d) PCQP, SNR = 18.0 dB. (e) Data, SNR = 3.4 dB.
(f) DAS, SNR = 3.4 dB. (g) LMMSE, SNR = 3.4 dB. (h) PCQP, SNR = 3.4 dB. (i) Data, SNR = −10.1 dB. (j) DAS, SNR = −10.1 dB.
(k) LMMSE, SNR = −10.1 dB. (l) PCQP, SNR = −10.1 dB.

ô = KLMMSEy ≈ CoPT (PCoPT )−1y,

= PT (PPT )−1y,
(17)

where we have Co = σ2
oI; that is, the LMMSE estimator

reduces to the least squares (LS) solution [27]. The poten-
tial danger with the LS estimate is that the matrix PPT

normally has eigenvalues close to zero and the operation
(PPT )−1y will therefore result in a strong noise amplifi-
cation if there is even the slightest error in y.

The PCQP estimator has a behavior similar to that of
the LMMSE estimator. If the noise is large, then the factor
1To will dominate over (y − Po)T C−1

e (y − Po), and (14)
reduces to

ô ≈ arg min
o

λo1To

subject to oi ≥ 0 ∀i.
(18)

The minimum of (18) will be attained when ô = 0; hence
the most likely estimate when the noise goes to infinity is
where the prior has its maximum.

From the discussion above, we note that it can be poten-
tially dangerous to use an overly optimistic setting of the

SNR value, and also, an overly pessimistic setting results
in reconstruction results similar to the matched filter for
the LMMSE estimator. The span where the model-based
methods presented here are superior to DAS imaging is,
however, rather large.

As a final comment about tuning the SNR parameters in
these methods, we note that since e accounts for more er-
rors than only measurement noise, the SNR setting should
in general be lower than the measured noise variance indi-
cates. If the reconstruction performance is poor with this
setting, then either (a) the model errors are large and
another model should to be considered, or (b) the mea-
surement noise is large, resulting in reconstruction per-
formance similar to that of matched filters, and another
design of the experiment should be considered.

To summarize, the general observation from the simu-
lations presented in this section is that it is the spatial dis-
tribution of acoustic energy that is most important for the
reconstruction performance, not the actual pulse shape.
More specifically, the reconstruction performance of the
model-based methods employed here mostly depends on
the SNR in the particular region and not the length or
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8. Reconstructions using the LMMSE and PCQP estimators, for four SNRs that deviate from the true SNR (for five pairs of point
targets at x = −20, −10, 0, 10, and 20 mm, at z = 50 and z = 50.5 mm, respectively). The true SNR was 3.4 dB (the LMMSE and
the PCQP estimates using the true SNR is shown in Fig. 7(g) and (h), respectively). (a) LMMSE estimate using a 4 times too low SNR.
(b) LMMSE estimate using a 4 times too high SNR. (c) PCQP estimate using a 4 times too low SNR. (d) PCQP estimate using a 4 times
too high SNR. (e) LMMSE estimate using a 10 times too low SNR. (f) LMMSE estimate using a 10 times too high SNR. (g) PCQP estimate
using a 10 times too low SNR. (h) PCQP estimate using a 10 times too high SNR.

shape of the waveform. Moreover, as demonstrated above,
the LMMSE and PCQP estimators could estimate targets
outside the focusing region, where the transmitted wave-
forms from each element are not in phase, provided that
the SNR is sufficient.

V. Experiments

To verify the presented theoretical results and simula-
tions above, two experiments have been performed. The
data have been acquired with an ALLIN array system and
a 3-MHz 64-element concave array manufactured by Ima-
sonic (Imasonic S.A., Besançon, France) has been used.
The concave Imasonic array, originally designed for inspec-
tion of immersed copper and steel specimens, is geomet-
rically focused at 190 mm.10 The experiments were con-
ducted at room temperature in water using a steel wire
target. Since this type of target has a much higher acous-
tic impedance than water, the requirements for the PCQP
method are fulfilled.

We used 16 elements of the array, focused at z = 50 mm
and steered −20 degrees, and the wire targets were po-
sitioned both in the main lobe at x = −18 mm and in
the grating lobe at x = 10 mm, at depth z = 50 mm.
The reconstruction results are shown in Fig. 9. The re-
sults for the DAS method, shown in Fig. 9(a) and (b),
demonstrate the typical leakage from the grating lobe as-
sociated with conventional beamforming. Also, the tem-

10For details regarding the data acquisition system and the array,
see [28].

poral resolution for the target in the grating lobe is poor.
The results for the LMMSE and the PCQP estimators on
the other hand, shown in Fig. 9(c)–(f), show that these
methods suppressed the grating lobe well for both target
positions, and the temporal resolution has also been im-
proved significantly compared to DAS processing.

In summary, both of the model-based LMMSE and
PCQP estimators were able to accurately estimate the
target strength, regardless whether the wire target was lo-
cated in the main or the grating lobe. This is in complete
agreement with the simulations presented above.

VI. Conclusions

In this paper we have discussed two model-based meth-
ods for ultrasonic array imaging; the first one is an op-
timal linear estimator based on a linear minimum mean
squared error (LMMSE) criterion and the second one
is a novel nonlinear estimator based on a positivity-
constrained quadratic programming (PCQP) problem.

The two model-based methods have been evaluated
and their performances have been compared with classical
delay-and-sum (DAS) beamforming. It is evident from the
results presented here that the two model-based LMMSE
and PCQP methods are superior to traditional DAS-based
beamforming. In the sense that DAS processing does not
perform well for undersampled arrays and when the targets
are outside the focusing region, the LMMSE and PCQP
methods can reconstruct the targets with high temporal
and lateral resolution, provided that the SNR is sufficiently
high.
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(a) (b)

(c) (d)

(e) (f)

Fig. 9. Reconstructions from measured data using a wire target in
the main lobe (a), (c), and (e) and a wire target in the grating
lobe (b), (d), and (f). The data were acquired using a 16-element
concave Imasonic array. The transmit beam was steered −20 deg and
focused at 50 mm. (a) DAS: Target in main lobe. (b) DAS: Target in
grating lobe. (c) LMMSE: Target in main lobe. (d) LMMSE: Target
in grating lobe. (e) PCQP: Target in main lobe. (f) PCQP: Target
in grating lobe.

The general observation from the experiments presented
here is that it is the spatial distribution of acoustic energy
that is important for the reconstruction performance if the
reconstruction method is properly chosen. Also, at least for
high-contrast targets, the use of an exponential prior for
the scattering amplitudes can give impressive results with
very high temporal and lateral resolution. The contrast
is also very high and the noise levels in the reconstruc-
tions are often very low. The remarkable performance of
the PCQP estimator is due to the proper prior informa-
tion that was incorporated into the reconstruction process,
which enables the estimator to effectively discriminate be-
tween noise and the target responses.
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