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Sparse Deconvolution of B-Scan Images
Tomas Olofsson and Erik Wennerström

Abstract—In this paper, a new computationally efficient
sparse deconvolution algorithm for the use on B-scan images
from objects with relatively few scattering targets is pre-
sented. It is based on a linear image formation model that
has been used earlier in connection with linear minimum
mean squared error (MMSE) two-dimensional (2-D) decon-
volution. The MMSE deconvolution results have shown im-
proved resolution compared to synthetic aperture focusing
technique (SAFT), but at the cost of increased computation
time. The proposed algorithm uses the sparsity of the im-
age, reducing the degrees of freedom in the reconstruction
problem, to reduce the computation time and to improve
the resolution. The dominating task in the algorithm con-
sists in detecting the set of active scattering targets, which
is done by iterating between one up-dating pass that detects
new points to include in the set, and a down-dating pass
that removes redundant points. In the up-date, a spatio-
temporal matched filter is used to isolate potential candi-
dates. A subset of those are chosen using a detection crite-
rion. The amplitudes of the detected scatterers are found
by MMSE. The algorithm properties are illustrated using
synthetic and real B-scan. The results show excellent resolu-
tion enhancement- and noise-suppression capabilities. The
involved computation times are analyzed.

I. Introduction

Resolution enhancement of ultrasonic pulse-echo B-
scan images can be achieved using synthetic aper-

ture focusing technique (SAFT) or using estimation based
approaches, such as two-dimensional (2-D) deconvolution
techniques. In the estimation-based approaches, the en-
tities of interest are the scattering strengths from points
in the image plane. Although we may argue that SAFT
also aims at finding this map of scattering strengths, these
methods do not use any statistically-motivated method for
estimation; rather they should be interpreted as mimicking
the behavior of an acoustical lens using the delay-and-sum
(DAS) technique. As such, they inherit the intrinsic limi-
tations of DAS; the lateral resolution is diffraction limited,
and grating lobes appear when using too coarse a spatial
sampling [1].

Methods using the estimation-based approach can,
for images with low noise levels, overcome the above-
mentioned limitations and far outperform SAFT. For me-
chanically scanned B-scans, examples of this class of meth-
ods can be found in [2] in which linear minimum mean
squared error (MMSE) was used to estimate the scatter
map. A similar method based on singular value decomposi-
tion (SVD) regularization is found in [3]. One disadvantage
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of the methods is that the computation time is typically
much larger than for SAFT processing, often limiting their
use only to applications without real-time constraints.

Linear methods as those in [2] and [3] are best adapted
to objects containing diffuse scatterers, with a Gaussian
distribution modeling the amplitudes of these. In many
application, particularly in nondestructive testing (NDT),
the images are better described by a collection of a few
but relatively strong contribution, for instance, indicating
small cracks or material inclusions. For such images, sparse
models and sparse deconvolution techniques are more ap-
propriate.

The majority of work on sparse deconvolution has con-
cerned 1-D signals. It was originally developed in seismic
exploration for detecting layered earth structures. The re-
flections from the layers were modeled by spiky sequences
having a Bernoulli-Gaussian distribution, convolved with
a wavelet describing a damped oscillation caused by an
impulsive source. Sparse deconvolution can be described
as the combined detection of the spikes and estimation
of their amplitudes. In early approaches the spike posi-
tions were detected using a recursive Kalman filter ap-
proach [4] that was based on a state-space description of
the wavelet. Later a more flexible linear algebra approach
involving finite-impulse response matrices was introduced
[5]. This approach has been used in ultrasonic applications
for deconvolving A-scans acquired from layered structures
[6], [7].

The detection of spikes in sparse deconvolution is made
complicated by overlapping contributions from these and
iterative search approaches have been used to find the most
likely combination of spike positions. The single most likely
replacement (SMLR) algorithm [4] has been widely used
for this purpose in both the Kalman and linear algebra
approaches.

SMLR iteratively scans every potential spike position
and finds the replacement yielding the largest improve-
ment in the chosen criterion. The replacement may consist
in either including or removing a point from a set of posi-
tions found so far. This method has been further developed
in two directions to improve the efficiency: In the iterated
window maximization (IWM) method [8], the signals are
partitioned in a number of smaller time windows, and the
global detection criterion is maximized through iterative
local maximizations in these windows. In [9], the multiple
most likely replacement (MMLR) algorithm was proposed.
At a very small increased computation cost at each iter-
ation, the algorithm in [9] allowed several nonoverlapping
spikes to be replaced at each iteration, as opposed to a
single in SMLR, thus reducing the number of iterations
required for convergence.
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One of relatively few examples of sparse deconvolution
in imaging applications can be found in star field astron-
omy [10] in which a spatially invariant point spread func-
tion (PSF) well describes the image formation. Note, how-
ever, that the linear algebra approach mentioned above al-
lows for treating any linear measurement model, in which
image generation models with spatially variant PSFs are
important special cases. A recent paper [11] proposed the
use of 2-D sparse deconvolution for ultrasonic B-scan im-
ages in which such spatially varying PSFs were considered.
Note that the involved matrices and vectors are usually
much larger in imaging applications than in 1-D deconvo-
lution. This is particularly true for spatially variant PSFs
relevant to mechanically scanned B-scans and time- and
memory-efficient methods are therefore much desired.

In [11] it was shown that the sparsity of the image could
be used to significantly reduce the time required for the es-
timation compared to linear MMSE solutions. An efficient
search strategy was developed that can be regarded as a
2-D extension of the MMLR search in [9], which was based
on recursions that are not applicable for images. In [11],
the search strategy was combined with efficient computa-
tions of the search criterion and a simulation study verified
that significant time saving was possible. However, few al-
gorithm details were given, and no results were presented
for real data. This paper gives a more thorough presenta-
tion of the algorithm and presents results for real B-scans.

This paper is organized as follows: In Section II, the
image formation model and the search criterion are pre-
sented. In Section III, the algorithm is presented along
with some of the related computational issues. Simulation
and experimental results are presented in Section IV. In
Section V, conclusions and comments are given.

II. Theory

A. Image Model

Consider the measurement setup depicted in Fig. 1 in
which a transducer is scanned in the x-direction and trans-
mits in the z-direction. At each of the L scanning posi-
tions, a pulse-echo measurement is performed insonifying
the region of interest (ROI). The ROI, which lies in the
zx-plane, consists of a rectangular grid of M × N equally
spaced potential scatterers. The spacing is ∆x and ∆z in x
and z directions, respectively. Furthermore, ∆x is set equal
to the distance between the scanning positions. Although
nothing prevents one from choosing a quite arbitrary grid,
this particular choice results in simplified algorithm imple-
mentations.

The received A-scans are sampled at K time instants
with a sampling period Ts. We have chosen ∆z = Tscp/2,
where cp is the sound speed. This corresponds to one grid
point per time sample.

Let y(k, l) denote the lth A-scan, sampled at time k and
let yl = col(y(1, l), y(2, l), . . . , y(K, l)) represent this A-
scan as a K ×1 vector. L such column vectors are acquired

Fig. 1. Illustration of the measurement setup in the text. The ROI is
divided in an M ×N grid with the center points in the grid separated
with ∆x and ∆z in the x- and z-directions, respectively. Pulse-echo
measurements are performed at L transducer positions with a scan
increment of ∆x, resulting in a B-scan of size K × L.

and the B-scan can be represented by a column vector
y = (yT

1 . . .yT
L)T , i.e., a column vector of size KL × 1

consisting of the A-scans placed on top of each other.
Let further the column vector p(m,n) denote the vector-

ized B-scan that a hypothetical (noise free) response from
a unit strength scatter at grid position (m,n) would re-
sult in. This template is defined by the electromechanical
impulse response of the transducer and the double-path
spatial impulse responses (SIRs) associated with the scat-
terer position (see [2] for details).

We consider the B-scan to be the result of backscat-
tering from a subset, I, of the points in the ROI. In the
following we term this subset the set of active scatterers.
Let na denote the number of points in this set.

If we neglect multiple scattering, we can model the B-
scan as a noise-corrupted superposition of contributions
from active scatterers:

y =
∑

(m,n)∈I
P(m,n)o(m,n) + e = PIoI + e, (1)

where the sum runs over only the positions listed in I. The
matrix PI consists of na columns p(m,n) with (m,n) ∈ I
and the na × 1 vector oI consists of the corresponding
amplitudes o(m,n). The vector e represents measurement
noise. In practice, we let this vector model anything that
cannot be explained by the linear relation in (1). This
could include model discrepancies, such as errors in the
template p(m,n) predicting the response from a scatterer
at position (m,n). This can, for instance, occur when using
an inappropriate method for the SIR calculation, errors in
the measurement of the transducer impulse response, or
because the true scatterer positions are not found exactly
on the grid points.

B. Statistical Assumptions

The image is modeled using a Bernoulli-Gaussian dis-
tribution. A priori, a scatterer is independent of the other
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scatterers assumed to belong to the active set with a prob-
ability λ. This number roughly describes how large a frac-
tion of the grid positions that can be expected to contain
an active scatterer.

We model the noise as zero mean white Gaussian,
e ∼ N(0, σ2

eIKL), where IKL denotes a KL × KL iden-
tity matrix. Furthermore, we model the amplitudes of the
active scatterers to be independent and identically dis-
tributed (iid) as om ∼ N(0, σ2

o), yielding the joint distribu-
tion oI ∼ N(0, σ2

oIna). If necessary, these assumptions can
be relaxed to include colored noise as well as correlations
between elements in oI .

III. Search Criterion

We define sparse deconvolution as the combination of
joint detection [i.e., finding the set I that maximizes the
probability P (I|y)], which is equivalent to maximizing the
product p(y|I)P (I), then, as a final stage, estimating the
amplitudes indicated by the so found I. The first step is
the dominating task and is solved iteratively by succes-
sively improving a criterion function that is obtained as
follows.

We take as the criterion the logarithm of the above
product, with constant terms removed. The logarithm of
P (I) is given by:

lnP (I) = ln
(
λna(1 − λ)NM−na

)
= na ln

λ

1 − λ
+ c,

(2)

with c being a constant. To find ln p(y|I), the marginal-
ization integral is solved yielding:

p(y|I) =
∫

p(y,oI |I)doI =
exp

(
− 1

2y
T D−1

I y
)

(2π)NM/2|DI |1/2 ,
(3)

where DI is given by:

DI = σ2
eIKL + σ2

oPIPT
I . (4)

This matrix is of size KL × KL, which makes the
quadratic form and determinant in (3) computationally
awkward. However, both these factors can be simplified
to more attractive forms that result in the log marginal
likelihood:

ln p(y|I) = na lnβ − 1
2

ln
∣∣BI + β2Ina

∣∣
− 1

σ2
e

‖y‖2 +
1

2σ2
e

cT
I

(
BI + β2Ina

)−1
cI , (5)

where β = σe/σo, where the na × 1 vector cI is defined as:

cI = PT
I y, (6)

and with the symmetric na × na matrix BI defined as:

BI = PT
I PI . (7)

Note that the elements in BI are scalar products be-
tween the different p(m,n)-vectors in the active set. These
can be extracted from a matrix (look-up-table) B = PTP,
where P is the KL × MN matrix consisting of the p-
vectors for all points in the ROI. Note also that B does
not depend on the received data, and it can be computed
and stored off-line.

Similarly, the vector cI for a certain I can be extracted
from a MN × 1 vector c = PT y, that we can compute
before we begin the search for the optimal I. The vector
c is the output from a spatiotemporal matched filter and
large entries in c indicate the likely presence of an active
scatterer. This is used in the search strategy described in
Section III-B.

By combining (2) and (5) and removing terms that are
constant with respect to I, we obtain the search criterion:

J(I) = naα − 1
2

ln
∣∣BI + β2Ina

∣∣
+

1
2σ2

e

cT
I

(
BI + β2Ina

)−1
cI . (8)

with the scalar α = ln(λ/1 − λ) + lnβ.
Note also that, for a given I, the linear MMSE estimate

of the amplitudes is given by:

ôI =
(
BI + β2Ina

)−1
cI . (9)

The linear (nonsparse) MMSE solution used in [2] is
obtained as the special case when I consists of all points
in the ROI:

ôMMSE =
(
PTP + β2IMN

)−1
PT y. (10)

IV. Algorithm

A. Initialization

The initialization consists of calculating the look-up-
tables B and c, and for this we first need to calculate the
p-vectors. These are defined by the transducer’s electrical
impulse response, which is measured, and the SIRs asso-
ciated with the points in the ROI. In this work, we have
used the DREAM (Discrete REpresentation Array Mod-
eling) toolbox [12], [13] for calculating the SIRs.

Note that choosing the grid point distance and scan-
ning step to be identical results in that the response from
a scatterer (m,n) at scan positions l is identical to a re-
sponse from (m + 1, n) at l + 1. As a result from this shift
invariance, the matrix P is block Toeplitz containing L×N
blocks, each of size K × M . Only M + N blocks need to
be calculated to fully determine P.

We have developed an algorithm that uses this block
Toeplitz structure in the computation of B. Matrix prod-
ucts of the smaller blocks occur at several instants in B and
by avoiding repeated calculations of these blocks we reduce
the computation time from being of order (KM)2×(LN)2

to (KM)2 × max(L,N)2.
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B. Search

We aim at, as efficiently as possible, finding the set of
I that maximizes the criterion J(I). In the search we gen-
erate a sequence of sets that yield monotonically increas-
ing J(I), and the search ends when no further increase is
achieved. We start at iteration i = 0 with the empty set
I0 = ∅.

At iteration i, the search has produced the set Ii. The
next iteration then consists of the following steps:

• Adding elements (up-dating). The elements to add are
chosen as follows:

– Compute the output from the matched filter ap-
plied to a residual image, cres = PT yres where
yres = y − PIi ôIi . ôIi is the vector of estimated
amplitudes for the scatterers indicated in Ii. Intu-
itively, yres is the remaining B-scan after having
removed the effects of the so far found scatterers.
By applying the matched filter, we try to detect
scatterers that best help to explain the residual
B-scan.

– Find a set of candidates, C, by extracting peaks
in the pointwise, squared matched filter output
|cres|2 and including also their neighboring points
in C. These neighboring points are found by a user-
defined mask centered at each peak.

– Compute J(Ii ∪ (m,n)) for all points (m,n) ∈ C.
Remove all points from C that do not yield im-
provements compared to J(Ii).

– Iterate until C is empty: pick the currently best
point (m∗, n∗) = arg max(m,n)∈C J(Ii ∪ (m,n));
remove from C all elements that are not orthogonal
to p(m∗,n∗). Let U denote the set of points found
in this iteration.

• Removing redundant elements (down-dating). For all
(m,n) ∈ (Ii ∪ U), calculate J((Ii ∪ U)\(m,n)), where
‘\’ denotes set difference. Remove those elements that
yield improvements compared to J(Ii ∪ U).

Step 4 relies on the following. Suppose we have several
candidates that all yield increases in J if they are included
in Ii. Unfortunately, there is no guarantee that these ele-
ments will yield an increase in J if they are simultaneously
included in Ii. However, it can be shown that, if their asso-
ciated p-vectors are all mutually orthogonal, the increase
in J that is obtained by including all candidates can be
written as a sum of the individual increases. This sum is
guaranteed to be positive because all these terms are pos-
itive.

The p-vectors describe contributions from different
scatterers. Even for well separated points, there will be a
slight overlap of these contributions in the B-scans; there-
fore, the corresponding vectors typically will not be per-
fectly orthogonal. Because for all practical purposes, it is
usually sufficient that the scalar product is small, but not
necessarily zero, we say that the vectors p1 and p2 are
orthogonal if

∣∣pT
1 p2

∣∣ < tol, where tol is a user-defined tol-
erance.

C. Computational Aspects

For a fast search, we need efficient methods to evalu-
ate J . The majority of the evaluations occur in up-date
(step 3) and down-date (step 6) and different computa-
tion strategies are suitable in these cases. In the up-date,
we base the computations on lower triangular Cholesky
factors of BI + β2Ina , satisfying:

GIGT
I = GI + β2Ina . (11)

This factorization requires approximately n3
a/3 floating

point operations (flops). Having GI , we then can compute
J as:

J(I) = naα −
na∑

k=1

ln(GI)k,k +
1

2σ2
e

‖VI‖2,
(12)

where (GI)k,k is the kth diagonal element of GI and vI is
the solution to the equation GIvI = cI . For moderate-to-
large na, the computations in (12) require approximately
2na + n2

a/2 flops. Note further that ôI in (9) can be ob-
tained by solving GT

I ôI = vI . Thus, having computed
vI , approximately n2

a/2 flops are required to estimate the
amplitudes.

These estimated amplitudes are used in step 2 for
evaluating cres = PT yres. It can be written as cres =
c − PTPIi ôIi where c has been precomputed and all el-
ements in the product PTPIi can be directly extracted
from the matrix B.

In the up-date, in step 3 we evaluate J for a number of
related sets. We have already computed GI and vI in an
earlier iteration and we then can find the values for these
sets using a recursive up-date of the Cholesky factor that
results in the following up-date equations for obtaining
J(Ii ∪ (m,n)):

J(Ii ∪ (m,n)) = J(Ii) + α − ln q

+
(
PT

(m,n)y − zT vI
)2

/
(
2q2σ2

e

)
, (13)

where z is the solution to GIz = b(m,n), with b(m,n) being
a vector of scalar products between p(m,n) and those p-
vectors corresponding to the elements in Ii. All these are
available in B. The scalar product pT

(m,n)y is found in cI
and finally, q = ‖p(m,n)‖2+β2−‖z‖2, where the first term,
again, is available in B. The computations in (13) involve
approximately na + n2

a/2 flops.
In the down-dating, we calculate ôI as explained earlier

and explicitly compute the inverse DI =
(
BI + β2Ina

)−1,
which can be efficiently done using GI available from an
earlier up-date step. Let d denote the element on the di-
agonal in DI corresponding to point (m,n). The following
equations then can be used:

J(I\(m,n)) = J(I) − α − 1
2

ln d − ô(m,n)2

2σ2
ed

,
(14)

where ô(m,n) is the estimated amplitude at point (m,n).
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Fig. 2. Measurement setup. Wire targets in immersion.

V. Simulations and Experimental Results

A. Experimental Setup

The performance of the proposed algorithm was eval-
uated using simulated and measured data. The measure-
ments were performed in immersion, and 0.3 mm thin steel
wires were used to simulate point-like targets. A water
sound speed of 1480 m/s was assumed in the experiment.
The data were acquired using a circular 2.25 MHz piston
transducer with 6 mm radius. The spatial sampling dis-
tance was ∆x = 1 mm, and temporal sampling frequency
was 25 MHz. The targets were located at a distance of
120 mm from the transducer and were grouped in three
pairs, in which the targets were separated by a distance of
5, 3, and 1 mm, respectively. This separation was in the
scanning direction x as illustrated in Fig. 2.

The considered ROI had the size 5 mm × 70 mm yield-
ing 160 × 70 = 11200 grid points. The corresponding B-
scan had the same size.

The wire targets were chosen to avoid problems with too
weak signals when using small point-like reflectors. How-
ever, the use of these violates the point target assump-
tion; the response from the wires can be approximated
by an integral over the points on a line that corresponds
to a temporal smearing effect of the signals compared to
smaller targets. Although we can redefine our model to in-
clude this effect, we chose in this work the approximate but
simpler method of including the smearing directly in the
transducer impulse response. This impulse response was
measured as the pulse-echo signal obtained from a wire
target in the far field, deconvolved with the SIR associ-
ated with the point at which the target was located.

B. Simulation Results

Measurements from the above setup were simulated.
The SIRs used in the simulations were obtained using the
DREAM toolbox [12], and the transducer impulse response
was the same as in the real data experiments. The scatter-
ing amplitudes at the wire positions were set to 3 × 10−8,

which yielded a peak-to-peak amplitude of 300 quantiza-
tion levels.1. White Gaussian noise of variance σ2

e = 100
was added to the simulated data to obtain an SNR of ap-
proximately 10 dB.

The results from the simulations are presented in
Figs. 3(a) to (d). Fig. 3(a) shows the simulated RF data.
Fig. 3(b) shows the sparse solution obtained with param-
eters σ2

e = 100, σ2
o = 10−15, and λ = 0.01. In Fig. 3(c),

a corresponding linear MMSE solution [2] obtained using
(10) is shown. To obtain comparable results in the sense
that the models predict approximately the same energy in
the images, the prior variance of amplitudes was set to,
σ2

oλ = 10−17 in the linear MMSE solution. The residual
for the sparse solution, yres = y − PI ôI , is displayed in
Fig. 3(d).

We see in Fig. 3 that the sparse algorithm can distin-
guish the point target pairs that are separated by 5 mm
and 3 mm. However, the pair of targets that are separated
with only 1 mm are estimated as a single, but stronger
scatterer. As a comparison, the linear MMSE can well re-
solve the pair separated with 5 mm, and a separation of the
next pair of targets is only faintly indicated. No separation
of the 1 mm targets can be seen.

Except for the last error, the detection of the positions
in the sparse solution is perfect, and the amplitude esti-
mation errors are less than 10% of the true values.

The residual of the sparse solution shows mostly white
noise. Most of the energy in the original data has been
accounted for, which could be expected as no model errors
are present; the simulated data are generated from the
same model used for reconstruction.

The simulation results serve as an example of the per-
formance that can be achieved using sparse deconvolution
in an ideal situation with no model errors present. We note
the excellent noise resilience and detection capabilities that
can be achieved under such circumstances.

C. Experimental Results

The results from processing of the measured data are
displayed in Figs. 4(a) to (c). The wires can be seen as
the white spots, corresponding to high positive estimated
scattering amplitudes. Weaker, dark indications2 near the
main echoes are most probably caused by model errors
that, for instance, may stem from slightly inaccurate SIRs
or targets that are not residing exactly at the grid posi-
tions.

As can be seen in Fig. 4, the wires were not positioned
on a perfectly horizontal line. The leftmost wire in the first
pair, seen at positions 14–19 mm, was slightly closer to the
transducer than the others.

1The choice of scatterer amplitudes are arbitrary as long as they,
in combination with the SIRs and the transducer impulse response,
yield signals of realistic magnitudes. We may choose to up-scale the
amplitudes and down-scale the impulse response the same amount
without any effect on the detection results.

2The dark spots have negative amplitudes. Their magnitudes are
approximately 1/5 of the main (bright) echoes.
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(a)

(b)

(c)

(d)

Fig. 3. Results from simulations. (a) Original simulated data.
(b) Sparse solution. (c) Linear MMSE solution. (d) Residual for the
sparse solution.

(a)

(b)

(c)

Fig. 4. Results from experimental data. (a) Original measured data.
(b) Scatter amplitude estimates. (c) MMSE result.

Similar to the simulations, the wires that were sepa-
rated with 5 mm and 3 mm can be distinguished by the
sparse algorithm, but the two wires that were 1 mm apart
are estimated as a single, stronger scatterer. The corre-
sponding linear MMSE solution now can clearly separate
only the wires in the first pair.

In the measured data, we can observe additional con-
tributions that can be explained by the sound paths;
transducer-wire-wire-transducer. These contribution ap-
pear approximately 3.5 µs, 1.8 µs, and 0.8 µs after for
main echoes, for the wires separated by 5 mm, 3 mm, and
1 mm, respectively. This agrees fairly well with the val-
ues 3.4 µs, 2 µs, and 0.7 µs predicted by a sound speed of
cp = 1480 m/s.

To illustrate the updating process, Figs. 5(a) to (c) show
the residual B-scan after iteration one, three, and six when
processing the measured data. At each iteration, the esti-
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(a)

(b)

(c)

Fig. 5. Residual B-scans after a few of the iterations. The algorithm
converged in six iterations. (a) First iteration. (b) Third iteration.
(c) Sixth and last iteration.

mate is refined and the residuals are reduced in magnitude.
We can note that the residuals for the measured data con-
tain patterns that are more regular than the residuals for
the simulated data. A probable cause of this is model er-
rors. For a nonperfect model, the strongest contributions
to the residual are expected close to strong scatterers.

D. Computation Time

To illustrate the computation times involved when us-
ing the algorithm, we here give the times required in the
processing of the real data. A study showing how the com-
putation time scales with the number of true scatterers,
and the image size can be found in [11].

The calculations were performed on a Pentium III (In-
tel Inc., Santa Clara, CA) with clock frequency of 2 GHz
and 4 GB of RAM memory, enough to hold all the data re-

TABLE I
Computation Time for Different Parts of the Search

Algorithm.

Step Time [s] Time [%]

2 0.16 4.6
3 0.2 5.7
4 2.24 63.8
5 0.7 19.9
6 0.21 6.0

quired for each set of calculations. No disc access or virtual
memory operations were needed. Calculations were imple-
mented in MATLAB (The MathWorks Inc., Natick, MA)
m-script. The initialization of the matrix B took approxi-
mately 10 minutes. Note that this is a one-time calculation.
When scanning a volume, several B-scans are collected un-
der similar conditions, and they all share the same matrix
B. The computation of c, see Section III-A, required 3.3 s.

The search required in total 3.5 s, which is approxi-
mately the same as the time for calculating c. The time
to perform each of the steps of the search algorithm is de-
tailed in Table I. The five different steps in the method is
explained in detail in Section III-B.

It is clear that the updating part of the search dom-
inates the search time. The single, most time-consuming
operation is calculating the criterion J(I ∪ (m,n)) for all
potential candidates in step 4. Calls to this operation con-
sume a total of 1.94 seconds, or 55% of the total search
time. In this case, approximately 7500 candidate points
were evaluated in step 4 over the six iterations in total.

VI. Conclusions

We have presented a new 2-D sparse deconvolution al-
gorithm for deconvolution of ultrasonic B-scans. The simu-
lation results show that the method under ideal conditions
combines excellent resolution and noise suppression prop-
erties. The reason is that the available information is opti-
mally used; we know that only a few significant scatterers
are present. Therefore, we search for only a few signifi-
cant scatterers. This also gives the advantage of a reduced
computation time compared to the linear MMSE solution,
despite the fact that an iterative search is performed. The
computations in each iteration are far less demanding than
those found in linear MMSE. For truly sparse images, the
iterative search converges in only a few iterations.

One disadvantage with this method compared to the
simpler SAFT methods is the small size of the images that
can be processed. In the present form, this method should
be seen mainly as a complement to SAFT-based system.
Small ROIs can be chosen manually, or possibly automati-
cally using some simple method based on SAFT results, so
that only small fractions of the data need to be processed.

Note, however, that the overall time for processing the
B-scan used in this paper is approximately 7 s; this is less
than the approximately 10 s that was used to collect the
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data. Thus it can for images of this size be implemented
for real-time processing.

An evaluation of the algorithm under less ideal premises
than those given here should be performed in the future.
Because we are approaching the limits of how much the
linear model can be used, we need to take more robust
methods under consideration. The challenge is to develop
methods in which model uncertainties are taken into ac-
count and that, at the same time, can be implemented
using computationally efficient methods.
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