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An Implementation of Synthetic Aperture
Focusing Technique in Frequency Domain

Tadeusz Stepinski, Senior Member, IEEE

Abstract—A new implementation of a synthetic aper-
ture focusing technique (SAFT) based on concepts used in
synthetic aperture radar and sonar is presented in the pa-
per. The algorithm, based on the convolution model of the
imaging system developed in frequency domain, accounts
for the beam pattern of the finite-sized transducer used
in the synthetic aperture. The 2D fast Fourier transform
(FFT) is used for the calculation of a 2D spectrum of the
ultrasonic data. The spectrum is then interpolated to con-
vert the polar coordinate system used for the acquisition
of ultrasonic signals to the rectangular coordinates used
for the presentation of imaging results. After compensating
the transducer lobe amplitude profile using a Wiener filter,
the transformed spectrum is subjected to the 2D inverse
Fourier transform to get the time-domain image again. The
algorithm is computationally attractive due to the use of 2D
FFT. The performance of the proposed frequency-domain
algorithm and the classical time-domain SAFT are com-
pared in the paper using simulated and real ultrasonic data.

I. Introduction

Although advanced synthetic aperture focusing tech-
niques (SAFT) implemented in frequency domain

have been widely used for many years in radar (synthetic
aperture radar, SAR) and sonar (synthetic aperture sonar,
SAS), they are relatively unknown in medical applications
and nondestructive evaluation (NDE) of materials. Only a
simple time-domain SAFT (t-d SAFT) has been applied in
NDE for detection and characterization of defects in thick
metal structures, especially in nuclear power plants [1], [2].

In SAFT, the pulse-echo measurements made at a mul-
titude of transmitter/receiver locations are combined to
form a map of the ultrasonic reflectivity of the insonified
region of interest (ROI). The method takes advantage of
both spatial and temporal correlations to enhance the res-
olution and the signal-to-noise ratio of the resultant im-
ages. SAFT has been used in ultrasonic imaging systems
mainly due to its two benefits: first, it is capable of im-
proving lateral resolution in the focal zone, and second,
it extends the focal zone resulting in a dynamic focusing
effect [1], [2]. However, the performance of SAFT in prac-
tical applications, especially in the near field, depends on
the particular implementation of the algorithm as well as
on the size of the transducer used in synthetic aperture [3].

Usually, the NDE and medical SAFT implementations
are performed using a delay-and-sum (DAS) processing
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in time domain [4], [5]. DAS is a straightforward way of
simulating the required lens effect commonly used in ar-
ray beamformers. Such an implementation, while physi-
cally understandable, has been shown to be quite time
consuming on general purpose computers due to a large
number of parallel operations. Most SAFT implementa-
tions are based on a very simplified model of the imaging
system used for developing radar and sonar applications.
Such implementations can perform relatively well provided
that the theoretical assumptions, generally valid for SAR
and SAS, are fulfilled in the particular application. The
principal assumption, which is usually correct in radar
and sonar, is that the ROI is located in the far field of
the transducer (antenna) used for creating synthetic ar-
ray where its specific diffraction effects can be neglected
(point-like source assumption). Unfortunately, this is not
always valid in ultrasonic imaging, especially in the high-
frequency NDE applications where the transducer is often
in contact with the inspected structure. At least two kinds
of problems may be encountered in such setup; first, the
transducer’s diffraction effects may impair image quality,
and second, sparse spatial sampling used for gathering ul-
trasonic data may yield artifacts in the resulting image.
Apparently, the analysis of SAFT performance for finite-
sized transducers should be of great interest for its poten-
tial users.

Interestingly, judging from the literature, recent de-
velopments of advanced processing methods for high-
resolution imaging in SAR and SAS (see, e.g., [6], [7]) have
had no significant impact on the implementations of syn-
thetic aperture imaging either in NDE or in medicine. It
seems that the frequency-domain algorithms based on effi-
cient fast Fourier transform (FFT) schemes have been de-
veloped for SAR and SAS applications, while, as already
mentioned above, the NDE and medical applications have
mostly relied on the time-domain DAS schemes. Although
a number of authors have reported different implementa-
tions of frequency-domain SAFT, e.g., [8]–[13], the recently
developed algorithms using the framework for SAR and
SAS seem to be much less popular than the classical t-d
SAFT implementations. This concerns especially the area
of NDE where the development of new techniques lags af-
ter the fast progress of medical applications observed in
the recent decennium.

One possible explanation might be that SAR and SAS
have been developed by radar and communications spe-
cialists using specific radar terminology that obscured this
technology to specialists in other fields. Another reason
might be traditional differences between those fields; for
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instance, in NDE systems the RF signals are sampled and
processed directly in time domain, whereas in SAR and
SAS the quadrature demodulation is performed before pro-
cessing the complex valued baseband signals in frequency
domain.

Accurate Fourier-based imaging techniques, developed
recently in SAR, relate Fourier components of the mea-
sured SAR signal to the Fourier components of the target
to be imaged. The origin of this approach can be found in
the wave equation inversion theory, which is also known as
wavefront reconstruction or holography [6], [14]. The ba-
sic principle behind wavefront reconstruction is the use of
Fourier decomposition of the Green’s function (also known
as the spherical phase function), which represents the im-
pulse response of an imaging system [6].

Digital implementations of the wavefront reconstruction
for SAR rely on the discrete Fourier analysis of the SAR
signal and the target function. The successful implementa-
tion of the advanced SAR multidimensional digital signal-
processing algorithms requires a thorough understanding
of SAR imaging as well as the resulting sampling con-
straints in both time and space. These issues do not pose
serious problems for SAR specialists but may be quite un-
familiar to the designers of ultrasonic systems, especially
in the field of NDE.

All digital implementations of SAFT require discretiza-
tion of time and space and also transformation of polar co-
ordinates, natural for ultrasonic transducers that integrate
echoes arriving from the same distance, into Cartesian
coordinates used for mapping the ROI. While responses
of point targets in a transducer’s far field are relatively
straight and do not require dense mesh, the situation in
the near field is quite different—the responses contain high
spatial frequencies and require a dense mesh and an effi-
cient interpolation when the respective coordinate systems
are being transformed.

Accurate solutions to the wavefront reconstruction
problem in a two-dimensional (2D) coordinate system are
defined in terms of a space-variant and 2D operation that
makes SAR processing a challenge. A number of schemes
have been introduced that apply different approximations
to circumvent the computational difficulties encountered;
see [15] for review.

In the present paper we propose a frequency-domain
SAFT algorithm, which is a modified version of the
wavenumber (ω-k) implementations known from SAR and
SAS [6], [15], [16]. The algorithm is derived using a model
developed in terms of wave equations. The model, which
is valid in the far field, accounts for the beam pattern of a
finite-sized transducer used in the synthetic aperture. As
in the ω-k implementations, the proposed algorithm em-
ploys the 2D FFT for transforming data between the time
and frequency domains, and a formal transform of the po-
lar coordinate system, natural for ultrasonic transducers,
to the Cartesian system used for the presentation of imag-
ing results. However, since we intend to use the algorithm
in the range interval where the point source assumption
may be not valid, we introduce a filter for compensation

of the transducer beam pattern amplitude. We compare
the performance of the proposed algorithm to that of the
standard t-d SAFT based on DAS operations with empha-
sis on the lateral (cross-range) resolution. The resolution
and the side lobes of the algorithms are compared in the
analysis, and it is shown that the proposed algorithm con-
sistently performs better than the standard t-d SAFT.

The paper is organized as follows: in the next section,
we present theory starting from the basic relations defin-
ing the resolution and the sampling constrains that apply
to the synthetic aperture setup. This presentation is fol-
lowed by the models of the imaging system and the cir-
cular transducer that is used in the proposed algorithm.
In the subsequent section, results of the simulations per-
formed for the t-d SAFT and the proposed algorithm are
presented and their performance is compared. Finally, we
show experimental results obtained in a simple setup with
wire targets immersed in water.

II. Theory

A. Resolution and Spatial Sampling in SAFT

Below, we will define spatial resolution of a syn-
thetic aperture in monostatic strip-map mode (i.e., a lin-
ear equally sampled aperture without transducer beam-
steering), which is an appropriate setup in many ultrasonic
applications.

There is an important difference between physical linear
arrays and synthetic arrays, which results in the synthetic
aperture having a resolution finer than that correspond-
ing to the real linear array of the same length, focused
in reception. Assuming that in a physical linear array the
transmission results in an illumination of the ROI and the
angle selectivity is performed in a receive beamformer, the
differences in phase received by each element of the array
contribute to its beam pattern. In the synthetic aperture,
on the other hand, the same element radiates and receives
signals and therefore the round-trip phase shift is effective
in forming the resulting radiation pattern. As an impor-
tant consequence of this fact, the synthetic aperture has
two times finer lateral (cross-range) resolution for the same
aperture length, which can be expressed as

δ3dB ∼= Rλ

2Leff
, (1)

where λ is the wavelength and δ3dB is the effective half-
power beamwidth of the synthetic aperture with length
Leff at a distance R, [17]. The parameter Leff denotes an
effective aperture length that is defined as the largest aper-
ture length corresponding to λ, which contributes to the
SAFT performance in terms of its lateral resolution. It is
assumed that the signals received by all elements of a syn-
thetic aperture are used efficiently if the Leff is no longer
than the half-power lobewidth of the transducer (element)
used in the aperture. For a circular transducer with diam-
eter d, the half-power lobewidth at a distance R will be
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Fig. 1. Geometry of the synthetic aperture. At each position
{x1, x2, . . . , xN} of the synthetic aperture with length Leff, the trans-
ducer emits a pulse and receives an echo from a number of targets
located in the range Ri at the points Oi.

Leff ∼= Rλ

d
. (2)

Inserting this expression into (1), we get the fundamental
relation defining lateral resolution of synthetic aperture:

δ3dB ∼= d

2
. (3)

Thus the resolution obtained from a synthetic aperture is
independent of frequency and range if the effective aper-
ture length is used. Analysis of the support band of the SA
signal in the cross-range direction leads to the condition
for spatial sampling step:

∆x ≤ Rλ

4Leff
. (4)

Eq. (4) reduces to ∆x ≤ (d/4) if the effective aperture
defined by (2) is used for the shortest wavelength repre-
sented in the ultrasonic pulse (see [17], [18] for details).
Note that, in practical applications, the minimum trans-
ducer diameter d is limited by the minimal field intensity
in the medium required for obtaining satisfactory signal-
to-noise level in the receiver. The relations presented above
are correct for a monochromatic wave and the targets lo-
cated on the symmetry axis of the aperture.

B. Model of the Imaging System

In this section we present a general model of an imaging
system that will enable deriving the imaging algorithm.
The model, which is derived here for circular sources, can
easily be generalized to other transducer geometries (for
instance, rectangular array elements).

Let us consider the synthetic aperture consisting of N
transducer positions {x1, x2, . . . , xN} in the setup shown
in Fig. 1. The aperture is created when a single transducer
(or an array) performs N pulse-echo measurements at the
positions {x1, x2, . . . , xN}, respectively. The transducer in
its successive positions irradiates the ROI located in the
xz-plane. At each position the transducer (or the respec-
tive array element) emits an acoustic wave and receives

an echo from an object defined by the reflectivity function
f(x, y, z) (e.g., including a finite number of point targets
at points Oi(xi, 0, zi)). The successive transducer positions
located along the x-axis in the rectangular coordinate sys-
tem xz are spaced with the pitch ∆x. The transducer is
excited by an electrical pulse ei(t) and it receives in each
respective location {x1, x2, . . . , xN} the electrical signals
s(xk, t) ∈ {s(x1, t), s(x2, t), . . . , s(xN , t)} that can be pre-
sented in the aggregated form referred to as B-scan image.

Our task is to perform imaging in a predefined ROI
located in front of the synthetic aperture at the symmetry
plane xz, using the signal set s(xk,, t), and, in particular,
to enhance the lateral resolution in this region.

Following the notation used in SAR, we will derive the
imaging algorithm for a continuous time and space model
based on a number of measurements in the discrete points
along the axis x. For each transducer position xk, the imag-
ing model can be defined using the fundamental expression
used for SAR imaging [15], [18]:

s(xk, t) =
∫∫
x z

f(x, z)δ
(

t − 2
c

√
z2 + (x − xk)2

)
dzdx,

(5)

where xk is transducer’s position, f(x, z) denotes object’s
reflectivity function, c is sound velocity, and it is assumed
that the transducer emits an impulse δ(·).

Eq. (5) is valid assuming that the transducer diameter
d is small compared to the wavelength λ; in other words,
the transducer can be regarded as a point source; that is,
its specific diffraction effects as well as its electrical char-
acteristics can be neglected. This implies that the response
of a single point target takes the form of a single hyper-
bola in the B-scan, and the assumptions required for the
standard SAFT based on the DAS operations are fulfilled.
Below, we will present a more realistic transducer model,
which includes the transducer’s far-field beam pattern as
well as its electrical frequency response.

C. Transducer Model

Here, we will consider the case when a finite-sized trans-
ducer is used for the measurements and its diffraction pat-
tern has to be taken into account. However, our analy-
sis will be confined to the far-field zone where the Fraun-
hofer approximation can be used. We start by deriving an
expression defining the signals s(xk,, t) for a single circu-
lar transducer. This expression will then be used for the
derivation of the synthetic aperture scheme in frequency
domain.

Let us consider a circular piston transducer of radius a
in the polar coordinate system shown in Fig. 2. Since the
same transducer is used for all the measurements, we in-
troduce a separate coordinate system with its origin at the
transducer position xk. The incident pressure Pinc(�R, ω) at
a general off-axis point Q(�R) in far field can be found from

Pinc(�R, ω) = −jωρv0a
2 ·

exp(−jk
∣∣∣�R∣∣∣)∣∣∣�R∣∣∣ · J1(ka sin θ)

ka sin θ
,
(6)
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Fig. 2. Geometry for calculating the far-field response of a circular
transducer.

where J1 is the first-order Bessel function, ρ denotes the
specific medium density, v0 represents the normal particle
velocity at the transducer’s surface, k is the wave number,
and a = d/2 is the transducer radius [19], [20]. Eq. (6)
consists of three factors: the first is a frequency dependent
coefficient, the second represents a spherical wave, and the
third factor, often referred to as the jinc function, defines
the angular dependence of the amplitude of this spherical
wave. The jinc function indicates the lobe structure of the
beam in far field characterized by the main central lobe
and a number of side lobes.

It is worth noting that the assumptions used by stan-
dard SAFT algorithms are valid only for small values of
ka when the main lobe is wide and the amplitude of the
spherical wave varies very little with the angle θ.

The point target with an elementary surface se located
in the point Q(�R) will scatter back the incident pressure
wave, and the pressure integrated over the transducer sur-
face 〈Pr〉 (�R, ω) is proportional to the convolution (mul-
tiplication in frequency domain) of the incident pressure
Pinc(�R, ω) and the pressure reflected from the target sur-
face Pref(�R, ω) (see [20] for details):

〈Pr〉 (�R, ω) = Pinc(�R, ω)Pref(�R, ω)

= −se

2
ω2 (

ρv0a
2)2 exp

(
−j2k

∣∣∣�R∣∣∣)∣∣∣�R∣∣∣2 jinc2(ka sin θ). (7)

Note that (7) is valid for a monostatic configuration if
the transmission and reception of the transducer are sepa-
rated in time and the medium is isotropic. If the transducer
is modeled as a linear electromechanical system with elec-
trical frequency responses in transmission and reception,
Het(ω) and Her(ω), respectively, the received signal will be
a convolution of the incident pressure and the transducer’s
electrical characteristics:

S(�R, ω) = Het(ω)Her(ω) 〈Pr〉 (�R, ω) = 〈Pr〉 (�R, ω)He(ω),
(8)

where the joint electrical transducer frequency response is
He(ω) = Het(ω)Her(ω), and it is assumed that the pulse
u(t) = δ(t) is used to excite the transducer. Finally, by
inserting (7) into (8), the received signal is

S(�R, ω) =
se

2
(
ρv0a

2)2 ·
exp

(
−j2k

∣∣∣�R∣∣∣)∣∣∣�R∣∣∣2
· jinc2(ka sin θ) · ω2He(ω)

(9)

(the minus sign was omitted; see [21] for details). The
above expression is a product of four factors: the first is a
constant, the second represents a spherical wave that has
propagated to the target and back, the third defines the
diffraction effect in the transducer’s far field, and, finally,
the fourth denotes the second derivative of the transducer’s
electromechanical transfer function.

An important consequence of (9) is that the main lobe
width for a finite-sized transducer is limited by the jinc
function, which, as mentioned above, limits the maximum
length of the synthetic aperture. Verifying the above con-
dition for a given transducer diameter d, one should keep
in mind that the jinc has its −3-dB lobewidth θ3dB =
3.232/ka ∼= λ/d. If θ3dB is small, maximum lengths of
synthetic aperture for a given distance

∣∣∣�R∣∣∣ = R will be
Lmax ≈ Rθ3dB = Rλ/d.

Below, we will confine ourselves to the targets located
at the symmetry plane of the synthetic aperture, i.e., we
will only consider points O(x, 0, z) at the ROI for those
R =

√
x2 + z2. Then, assuming that distance compensa-

tion (1/R) is performed in the receiver, we obtain after
rearranging (9) the response of the transducer located at
the position xk to a single scatterer at the point Q(x, 0, z)

S(�R, ω) = S(xk, ω)

=
se

2
(
ρv0a

2)2 · exp
(
−j2k

√
z2 + (x − xk)2

)
· A(ω, kx) · ω2He(ω),

where A(ω, kx) = jinc2(ak sin θ) = jinc2(kxa).
To obtain a signal received by the transducer located

at that point, given the real image of the point scatterers
in front of the transducer f(x, z), we have to integrate the
transducer’s response over the whole area:

S(xk, ω) = α · A(kx)

· ω2He(ω)
∫∫
x z

f(x, z) exp
(
−j2k

√
z2 + (x − xk)2

)
dzdx,

(10)

where α is a constant coefficient.
To perform synthetic aperture imaging in frequency

domain we need the 2D Fourier transform of the signal
s(�R, t), which means that (10) has to be further trans-
formed from the space coordinate to spatial frequency
kx = k sin θ (referred to as Doppler wavenumber in sonar).
It can be shown that using the principle of stationary phase
[6], [7], the 1D Fourier transform of the above equation
along the x-direction can be expressed as
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S(kx, ω) = α · A(kx) · ω2He(ω)

·
∫∫
x z

f(x, z) exp
(
−j

√
4k2 − k2

xz
)

exp(−jkxx)dzdx.
(11)

If we now introduce a new set of coordinates, defined by

kz(kx) ≡
√

4k2 − k2
x, (12)

and denote Hed(ω) = ω2He(ω), we can finally express
S(kx, ω) as

S(kx, ω) = α · A(kx) · Hed(ω) · F (kx, kz). (13)

Note that now the coordinates of S(kx, ω) and
A(kx)Hed(ω) and those of F (kx, kz) are different. The co-
ordinate transformation defined by (12), which is known as
the Stolt transformation (or Stolt migration in geophysics
[22]), will be denoted as S{·} in the sequel.

D. Imaging Algorithm

The wavenumber reconstruction algorithm presented in
[7] and [15] takes the form of a spatio-temporal matched
filter and the Stolt transformation that can be summa-
rized by

F̂ (kx, kz) = S−1
{

exp
[
j
(√

4k2 − k2
x − 2k

)
r0

]
· A∗(kx)H∗

ed(ω)S(kx, ω)
}
, (14)

where r0 is the distance to the middle of the ROI and the
asterisk denotes a complex conjugate. The main function
of the algorithm (14) is compensating the phase shift in-
troduced by the imaging system (the exp[·] factor) and
transforming the coordinate system (the S−1{·} trans-
form). The term H∗

ed(ω) in (14) performs compression of
the electrical impulse, and the term A∗(kx) is intended to
compensate the effect of angular dependence of the trans-
ducer amplitude. Since the latter is not performed sat-
isfactorily by the matched filter (14), a modified version
using a Wiener filter for the beam pattern compensation
is proposed here:

F̂ (kx, kz) = S−1
{

exp
[
j
(√

4k2 − k2
x − 2k

)
ro

]
· A∗(kx)
A(kx)A∗(kx) + ε2 H∗

ed(ω)S(kx, ω)
}
. (15)

The small constant ε should limit the filter output out-
side the support band of A(kx). There are at least two
reasons why the electrical frequency response Hed(ω) is
not included in the Wiener filter (14): first, it is mea-
sured separately with a limited accuracy while the A∗(kx)
is calculated analytically; second, in practical situations,
the Hed(ω) will also include the space-variant low-pass ef-
fect due to the transducer spatial impulse response. Thus
the filter used for the compensation of the transducer’s fre-
quency response has to be robust enough to perform well
in the presence of model errors. Both practical experience

and the theoretical analysis presented in [23] show that
in such situations the parameter-free matched filter (com-
plex conjugate of the Hed(ω)) is much more robust than
the Wiener filter.

The ω-k algorithm (referred to as ω-k SAFT in the se-
quel) consists of three main steps:

1. 2D Fourier transform of the acquired data s(xk, t) →
S(kx, ω),

2. Filtering and change of variables using (14) or (15),
and

3. Inverse 2D Fourier transform F̂ (kx, kz) → f̂(x, z).
The ω-k SAFT can be easily implemented and fast-

executed using the existing FFT routines. It compensates
for the transducer’s diffraction distortion as well as for its
electromechanical characteristics, which is a great advan-
tage in contrast to the t-d SAFT based on DAS operations.
Note, however, that the above applied transducer model
is valid in far field only, and in the near field the low-pass
filtering effect due to the finite lengths of the transducer’s
SIRs must also be compensated [3].

Although the ω-k SAFT was derived above for the
monostatic configuration, the extension to a bistatic or
multistatic setup is quite straightforward and consists of
modifying the imaging system model starting from (7)
where different sound paths are to be accounted for. This
finally results in a modified phase compensation term in
(14) and (15).

The main disadvantage of the ω-k algorithms is the need
to interpolate from one 2D sampling grid to another grid
defined by the Stolt transformation. Indeed, by virtue of
physics, ultrasonic data acquired by a transducer corre-
spond to a curved surface while the real image tradition-
ally is reconstructed in a rectangular grid.

Below, we illustrate the performance of the ω-k SAFT
using simulations and we compare it to that of the stan-
dard t-d SAFT.

III. Simulations

The simulations were performed for the synthetic aper-
ture created from the measurements made by circular
transducers with various diameters d for a point target
located in water at different distances zt from the aper-
ture. Time-domain simulations were used and the spatial
impulse responses of circular transducers in the simula-
tions were calculated from analytical solutions [24]. Stan-
dard pixel-driven t-d SAFT implementation was used in
the simulations. In this implementation the theoretical hy-
perbolas (binary patterns) corresponding to the respective
ranges are shifted across the processed RF 2D data, and
the values of pixels where the hyperbola crossed the data
are summed. A linear interpolation was used to compen-
sate the effects of discretization. This implementation can
be thought of as a spatially variant matched filter employ-
ing the theoretical response of the point target received by
a point transducer with an unlimited bandwidth. The out-
put of the matched filter applied to a real RF ultrasonic
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Fig. 3. Exciting pulse used in simulations, and its Fourier transform.

Fig. 4. Plots of the normalized amplitudes obtained for the point
target located at distance 40 mm from aperture after processing with
the t-d SAFT (left) and the ω-k SAFT (right). Note that the absolute
value of the t-d SAFT result is presented.

signal, due to the oscillatory character of the transducer
response, can take both positive and negative values.

The ω-k SAFT was implemented according to (15),
which means that the beam pattern compensation was
used in all results presented below, except Fig. 8, for com-
paring the resolution of different algorithms. Contrary to
the t-d SAFT, which processed RF signals, the ω-k SAFT
was implemented on complex-valued quadrature demodu-
lated signals. To facilitate comparisons with the ω-k SAFT,
the envelopes (calculated using Hilbert transform) of the
t-d SAFT results are presented in figures below, except
Figs. 4 and 10, where the rectified amplitudes are pre-
sented. The lateral resolution of both algorithms is com-
pared using projection of the cross-range beam profiles on
the transducer plane (the xy plane). The range resolution
is illustrated by the envelopes of the center A-scans at
x = 0 in the B-scans.

The apertures used for the t-d SAFT included the num-
ber of elements calculated for each target distance and
each transducer diameter according to (2), given a con-
stant pitch ∆x ≤ (d/4). The transducers were excited by
the broadband pulse shown in Fig. 3, with its center fre-
quency at 1.5 MHz.

The first simulation shown in Figs. 4 and 5 was per-
formed for a circular transducer with diameter 4 mm and
a point target located at 40 mm. The aperture used for
the t-d SAFT consisted of 20 elements, spatial sampling

Fig. 5. Beam projections obtained from B-scans shown in Fig. 4 in
decibels. Upper: lateral profile obtained from the t-d SAFT (left)
and the ω-k SAFT (right). Note the values of 3-dB resolution (beam
width) printed above the respective panels. Lower: envelope of the
center A-scan at x = 0 in the B-scan obtained from the t-d SAFT
(left) and the ω-k SAFT (right). The dotted line represents the en-
velope of the original A-scan (raw data).

was 0.5 mm, and the proposed ω-k SAFT processed the
ROI x ∈ [−30, 30]; z ∈ [25, 55] (only a small center part
of the ROI is shown in Fig. 4). In Figs. 4 and 5 it can be
seen that the lateral resolution of the ω-k SAFT is much
better than that of the t-d SAFT (the −3-dB beam pro-
file widths x3dB evaluated using interpolation with second
order polynomial were, respectively, 1.4 mm and 2.0 mm).
The ω-k SAFT profile has its side lobes at the level less
than −60 dB, while the t-d SAFT profile is characterized
by the broad side artifacts seen in Fig. 4 and clearly pro-
nounced as a broad lobe in Fig. 5 (upper part).

The temporal resolution of both algorithms can be eval-
uated from the lower part of Fig. 5 where envelopes of A-
scans at x = 0 in the respective B-scans are plotted for the
t-d SAFT and the ω-k SAFT (the corresponding A-scan
profile from the raw data is also plotted as a reference).
It is apparent that the ω-k SAFT results in a much bet-
ter temporal resolution than that obtained from the t-d
SAFT. In Fig. 5 it can be seen that the range profile ob-
tained from the t-d SAFT has essentially the same width
as the raw data, while the ω-k SAFT yields a much smaller
profile decreasing to approximately −120 dB.

To evaluate robustness of both algorithms in the pres-
ence of measurement noise, the same experiment was re-
peated again but white zero-mean Gaussian noise was
added to the (raw) simulated data. The profiles presented
in Fig. 6 show that the lateral profile width x3dB is essen-
tially unchanged and the ratio of the main lobe amplitude
to the noise level is similar for both algorithms, approxi-
mately 25 dB (for the corresponding noise ratio approxi-
mately 20 dB in the raw data). The range profile for the
ω-k SAFT is much better than that for the t-d SAFT.
The maximum signal-to-noise ratio is approximately 30 dB
higher.

The lateral resolution of both algorithms for different
transducer sizes (but the same electrical impulse response
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Fig. 6. Beam projections obtained after processing simulated data
from the same setup as that in Fig. 5, but corrupted by Gaussian
noise. Upper: lateral profile obtained from the t-d SAFT (left) and
the ω-k SAFT (right). Note printed values of x3dB (3-dB beam width)
as a measure of resolution. Lower envelope of the center A-scan at
x = 0 in the B-scan obtained from the t-d SAFT (left) and the ω-k
SAFT (right); dotted line represents the original B-scan profile (raw
data).

Fig. 7. Lateral resolution (the x3dB) as a function of transducer diam-
eter for the t-d SAFT and the ω-k SAFT for target distance 100 mm.
The 3-dB profile width of the ultrasonic data (B-scan) is plotted for
reference.

shown in Fig. 3) for a target located at a distance 100 mm
can be compared in Fig. 7 (the −3-dB profile width of the
raw B-scan is plotted as a reference). In Fig. 7 it can be
seen that the resolution of both algorithms decreases pro-
portionally (the x3dB increases) to the transducer diame-
ter. However, the ω-k SAFT has the superior resolution,
which is better than that predicted by (3).

For large transducer diameters, d > 10 mm for the dis-
tance 100 mm shown in Fig. 7, the application of the syn-
thetic aperture does not yield improvements in resolution.
It is apparent that for large transducers, as the angular in-
formation in the target response decreases, the use of t-d
SAFT algorithms does not result in significant improve-
ment of resolution. In other words, the transducer lobe
becomes so narrow that processing consecutive A-scans
does not improve the lateral resolution. Note that this is
a direct proof of the general rule according to which syn-
thetic aperture can be effective only if the point source
assumption is fulfilled.

Fig. 8. Lateral resolution in terms of the profile width x3dB as a
function of target distance for the t-d SAFT and the ω-k SAFT,
respectively, without and with aperture compensation for transducer
diameter d = 4 mm.

In Fig. 8, the resolution obtained with the t-d SAFT
and the ω-k SAFT is presented as a function of target
distance for transducer diameter d = 4 mm. The results
obtained for the ω-k SAFT without aperture compensation
(14) are plotted beside those obtained for the proposed al-
gorithm with Wiener filter (15). All three algorithms keep
approximately constant resolution x3dB as predicted by
(3). However, while the resolution of the t-d SAFT is ap-
proximately equal to d/2, the resolution of the ω-k SAFT
is higher (smaller x3dB). The difference between t-d SAFT
and ω-k SAFT implementation is approximately 30% (tak-
ing the t-d SAFT’s resolution as a reference). The effect of
beam pattern compensation using a Wiener filter (15) is
clearly pronounced; the respective x3dB of the ω-k SAFT
with compensation is approximately 5% smaller for all dis-
tances.

Summarizing, the simulations have shown that the ω-k
SAFT offers a clear performance improvement compared
with the t-d SAFT in terms of resolution and lower side
lobes. An additional improvement is obtained by introduc-
ing beam pattern compensation in the ω-k SAFT (15).

IV. Experiment

To verify the performance of the compared algorithms,
a simple experiment was carried out in a water tank. The
measurements were performed using a planar 0.375-inch
2.25-MHz immersion transducer V325-SU from Panamet-
rics (Waltham, MA). Three steel wires of diameter 0.2 mm,
immersed in water at distances zt = 221, 251, and 280 mm
from the aperture were used as targets. The transducer
was moved in 1-mm steps and the ultrasonic data were
acquired with sampling frequency 80 MHz and digitized
using an 8-bit AD converter.

The experimental setup was simulated using the soft-
ware tools used for the simulations presented in the pre-
ceding section. The simulation results are summarized in
Fig. 9, where lateral profiles are presented in the upper
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Fig. 9. Simulation results obtained in the experimental setup for
three targets spaced 30 mm from each other (the middle target at
the distance 251 mm from SA). Upper panel: lateral profile obtained
using the t-d SAFT (left) and the ω-k SAFT with lobe compensation
(right). Lower panel: range profiles obtained for the middle target
using the t-d SAFT (left) and the ω-k SAFT (right); dotted line
represents the original B-scan profile (raw data).

panels and the temporal resolution is illustrated by the
graphs in the lower panel. The lateral resolution x3dB es-
timated using interpolation of profiles with the second or-
der polynomial was 4.9 mm for the t-d SAFT and 3.3 mm
for the ω-k SAFT with lobe compensation. The resolution
was similar for all three targets spaced 30 mm from each
other. The side lobe level was −20 dB for the t-d SAFT
and −40 dB for the ω-k SAFT. Also, the temporal reso-
lution of the ω-k SAFT was much better than that of the
t-d SAFT (cf. lower panel of Fig. 9).

The results obtained from the ultrasonic measurements
performed in the simulated setup are presented in Fig. 10.
The B-scans and lateral profiles are shown respectively
left and right for raw data (upper panel), the t-d SAFT-
processed data (middle panel), and the data processed
using the ω-k SAFT with lobe amplitude compensation
(lower panel). Amplitudes of the raw data were distance-
compensated after the acquisition. Both the t-d SAFT and
the ω-k SAFT yield clear improvement of the lateral res-
olution; the values estimated in the same way as in the
simulations are 4.6 mm for the t-d SAFT and 3.6 mm for
the ω-k SAFT. Both values are very close to those ob-
tained in simulations. The t-d SAFT has well pronounced
side lobes both at the B-scan and at the cross-range profile
at the level of −15 dB. The side lobes of the ω-k SAFT
cannot be seen in the B-scan with linear amplitude coding,
but the corresponding value read out of the profile is ap-
proximately −32 dB. The amplitudes of all targets are well
preserved both by the t-d SAFT and by the ω-k SAFT.

The origin of the side lobes present in the t-d SAFT
imaging can be understood if the responses in the t-d
SAFT imaging result, shown in Figs. 4 and 10, are an-
alyzed more closely. It can be seen that the main lobe cor-
responding to each target has a kind of “wings” at both
its sides. The “wings” originate from the simplified imple-
mentation of the t-d SAFT, which does not account for

the transducer electrical impulse response. Indeed, when a
single pixel-thick hyperbola is shifted across the processed
B-scan (see the description of the t-d SAFT implementa-
tion in the introduction to Section III), a number of over-
lapping points will be detected due to the finite width of
the transducer response, and this effect is particularly well
pronounced in the neighborhood of the main peak corre-
sponding to the target position. The ω-k SAFT does not
have this drawback since the transducer’s electrical fre-
quency response is included in the model of the imaging
setup.

In summary, the experimental result is in good agree-
ment with the simulated one, and it confirms the superior
performance of the proposed ω-k SAFT.

V. Conclusions

The ω-k SAFT for synthetic aperture imaging proposed
in the paper is based on the frequency domain model of
the imaging system. The algorithm performs the 2D FFT
transform of the measured ultrasonic data followed by the
2D matched filter and the Stolt transformation. The result
is transformed back to time-space domain using the inverse
FFT. A Wiener filter based on the far-field model of the
transducer beam pattern is proposed for the compensation
of the main lobe amplitude variation.

The simulated results revealed that the ω-k SAFT offers
a clear performance improvement compared with the stan-
dard time-domain SAFT in terms of both improved range
resolution and lateral resolution as well as lower side lobes
in the images of point targets. The lateral resolution of the
ω-k SAFT in a wide range of target distances is approxi-
mately 30% better than the theoretical limit equal to half
diameter of the transducer used in the synthetic aperture.

The transducer beam pattern compensation based on
the Wiener filter concept yields a clear improvement of
the lateral resolution, constant for all target distances.

The monostatic configuration presented in the paper
can easily be replaced by a bistatic or multistatic setup.
Similarly, the transducer model, derived here for the circu-
lar sources, can easily be generalized to other transducer
geometries, for instance, rectangular array elements. When
doing so, one should bear in mind, however, that SAFT
requires half of the pitch used in conventional array sys-
tems.
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