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Abstract

Population models concern collections of discrete entities such as atoms, cells, humans, animals, etc.,
where the focus is on the number of entities in a population. Because of the complexity of such models,
simulation is usually needed to reproduce their complete dynamic and stochastic behaviour. Two main
types of simulation models are used for different purposes, namely micro-simulation models, where each
individual is described with its particular attributes and behaviour, and macro-simulation models based
on stochastic differential equations, where the population is described in aggregated terms by the number
of individuals in different states. Consistency between micro- and macro-models is a crucial but often
neglected aspect. This paper demonstrates how the Poisson Simulation technique can be used to produce
a population macro-model consistent with the corresponding micro-model. This is accomplished by defin-
ing Poisson Simulation in strictly mathematical terms as a series of Poisson processes that generate
sequences of Poisson distributions with dynamically varying parameters. The method can be applied to
any population model. It provides the unique stochastic and dynamic macro-model consistent with a cor-
rect micro-model. The paper also presents a general macro form for stochastic and dynamic population
models. In an appendix Poisson Simulation is compared with Markov Simulation showing a number of
advantages. Especially aggregation into state variables and aggregation of many events per time-step makes
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Poisson Simulation orders of magnitude faster than Markov Simulation. Furthermore, you can build and
execute much larger and more complicated models with Poisson Simulation than is possible with the Mar-
kov approach.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Population models [1–3] concern collections of discrete entities such as atoms, molecules, genes,
cells, humans, animals, plants, etc. and are frequently studied in physics, biology, ecology, demog-
raphy, epidemiology, production, queuing systems and many other fields where processes with
discrete entities develop over time. In population models, the integer number of individuals/enti-
ties in a population or sub-population is the main property of interest.

Since a studied system, being part of the real world, is immensely complex, it is crucial to
construct a conceptual model where the components, structure and logics are comprehensible.
This model represents our basic knowledge and assumptions as we understand the system.
Although we realise that the conceptual model is not the full truth of the system, the task
is to reformulate it into a form that can be examined without further distorting the model
in the reformulation.

For a few very simple models, mathematics and statistics can be used to calculate the
dynamics and/or stochastic variations. The most powerful tool for theoretical analysis of pop-
ulation models is probably Markov theory [4,5]. However, a number of more or less distorting
simplifications, modifications and additional assumptions are usually needed to perform a
mathematical or statistical analysis even on rather simple models. Simulation is then a pow-
erful tool to describe the dynamic and stochastic behaviour of the conceptual model. Discrete
Markov models are also frequently used for simulation of population models, but this ap-
proach has a number of disadvantages compared with Poisson Simulation. The huge set of
states already for moderate size Markov models is replaced by a small number of state vari-
ables in Poisson Simulation modelling. This aggregation into state variables and aggregation
of many events per time-step makes Poisson Simulation orders of magnitude faster than Mar-
kov Simulation. Furthermore, you can build and execute much larger and more complicated
models with Poisson Simulation than is possible with the Markov approach. This is discussed
in more detail in Appendix C.

When reformulating the conceptual population model into an operative simulation model, one
can choose between a micro-model approach describing every individual and a macro-model ap-
proach aggregating the individuals into classes/states of individuals where only the number of
individuals in each state is described. These types of models are needed for different perspectives.

Micro-models focus on the individual, with his/her/its unique attributes and behaviours and can
therefore handle both homogeneous and heterogeneous populations. The translation of the con-
ceptual model into a numerical setting is usually technically simple and straight-forward, and can
be performed in Discrete Event Simulation (DES) [6,7] or Individual Based Simulation [8]. This
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approach is based on computer programming where operations on individuals are stochastic.
Since this approach has to deal with each individual interacting alone or with other individuals,
the computational effort increases strongly with the size of the population. Although modern
computers can handle extremely large models, this is still a formidable task for large populations,
requiring many replications when model fitting, optimisation or parameter estimation is involved.
The micro-models play almost no role in the theoretical analysis.

Macro-models are used for the large perspective. These models can be based on determin-
istic or stochastic differential equations, where all individuals of a state are aggregated into
one variable. Therefore, the computational effort becomes independent of the size of the pop-
ulation studied. Here, the possible heterogeneity is limited by the state aggregation, where only
the numbers of entities in different states are modelled as in Continuous System Simulation
(CSS) [9,10]. Macro-models are also more or less approachable by mathematical and statistical
methods and are therefore also important for theoretical results. However, translation of the
population dynamics and stochastics into differential/difference equation form is not trivial. In
particular, omitting the stochasticity or the discrete nature of the individuals often leads to
absurd results.

The duality of the micro- and macro-model approaches is important because micro-models are
very flexible when the population under investigation is heterogeneous and different attributes
(e.g., age, sex, variety, location, etc.) of different individuals need to be taken into account, while
macro-models are excellent at treating the large-scale perspective and are more accessible for the-
oretical analysis. It is also important that results such as outcomes, statistical estimates, risks, esti-
mated parameter values, etc. are consistent (contradiction-free), regardless of whether the
approach used is micro or macro. Results from different studies can then be compared and results
such as estimated values of parameters can be transferred between consistent micro- and macro-
models. Such consistency between micro- and macro-models is thus a very important but often
neglected aspect of population analysis.

This paper demonstrates how the Poisson Simulation [11] technique (preserving the stochastics
and individual nature of the entities) can be used for macro-modelling to produce a population
model consistent with that when a micro approach is used. A strict mathematical description
of the Poisson Simulation method is presented for the first time. This enables us to formulate a
mathematically correct macro-simulation representation of a population model and provides a
tool to prove the consistency between micro and macro approaches of such a model. In the
end of this paper, a general form for stochastic and dynamic population models is also presented.

Poisson Simulation is a stochastic extension of Continuous System Simulation. It is based on a
form of differential/difference equation that models change as purely stochastic rather than as the
sum of a deterministic and a stochastic part. For example, radioactive decay is modelled by
dxðtÞ ¼ Po½dt � axðtÞ�;

(where Po[Æ] means a Poisson distributed deviate of the argument in the brackets) rather than by
dx(t)/dt = ax(t) + e(t). The latter equation implies a number of unfeasible phenomena, inconsis-
tent with our physical knowledge, such as non-integer numbers of atoms, stochastic variations
unrelated to the remaining number of atoms, sudden increases in the number of atoms, continued
variations around steady state (zero), which here means a negative number of atoms, etc. Such
artefacts are eliminated by the Poisson approach. Furthermore, no white noise (with its infinite
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energy content) is involved in the Poisson approach. Another advantage with the Poisson ap-
proach in its numerical form is that the step-size Dt is freely scalable without affecting parameter
values, just as deterministic models are in Continuous System Simulation.

The main objective of this paper is to present a method to realise a given, well-specified, concep-
tual population model as a correct micro- or a macro-simulation model preserving the consis-
tency, in terms of introducing no contradictions, between these models. A proof for the
consistency is also given. The scope is restricted to stochastic population models in continuous
time. (In Appendix B the corresponding discrete-time modelling is discussed.)

For a given conceptual model, the description of individuals and the implementation of the log-
ics and stochastics into a micro-model are usually straight-forward since every individual can be
fully controlled. The full agreement with the conceptual model then follows from the construction
of the micro-model. The main emphasis of this paper, therefore, is on how a correct macro-model
can be constructed from the conceptual model by using the differential equation description of
Continuous System Simulation extended by the Poisson Simulation approach.

A conceptual model together with its micro- and macro-realisations are shown in Fig. 1, which
also gives an overview of the analytical process carried out.

Thus, we first define a conceptual model. From this model we construct a micro-model where
each individual exactly follows the logic of the conceptual model. In addition, we construct an
aggregated macro-model where all individuals in each state are represented by a number. Then
we prove the consistency between the micro- and macro-models, which is the main result of the
analysis, since if both models are correct realisations of the conceptual model, they should also
produce consistent results. For reasons of clarity, we illustrate this by carrying out 10000 simu-
lations of the stochastic micro- and macro-models to compare their results. We also compare
Fig. 1. Overview of the analytical process. Starting from a conceptual model of a studied system, (1) a micro-simulation
model based on individuals is constructed and (2A) a deterministic macro-simulation model based on differential
equations of fractions of the population is developed. In a second step (2B), the macro-model is reconstructed to be
stochastic and based on integer numbers of individuals. In step (3), the mathematical consistency between the micro-
and macro-models is proved. Then (4) the micro- and macro-models are simulated and (5) the results are compared.
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our results with those of a deterministic model embedded in the stochastic macro-model, to show
what can happen when discreteness and stochasticity are absent.

1.1. Events and activities

Population models include a dynamic and stochastic description of a process. Examples of
this are models of radioactive decay of atoms, chemical reactions between molecules, demo-
graphic development, queuing systems of humans or parts in an assembly line, biological
growth in numbers, biological competition or predation, epidemic processes, cancer develop-
ment on cell level, Lanchester combats and many others where discrete entities act in contin-
uous time. The dynamic and stochastic processes are based on one or both of two
fundamental mechanisms which we denote event and activity (or duration) using concepts
from Discrete Event Simulation [12].

An event is something that is modelled as happening instantly, with no duration. For example
the decay of an atom, the arrival of a customer, the breakdown of a machine or the infection of an
individual.

An activity is a process with a duration such as the time in a queue, the travel time or the dura-
tion of a disease. It can be described by a start and an end event referring to the same individual.
The necessity to separate activity from events (instead of reducing it to two events) is clear in Dis-
crete Event Simulation, where activities with the same average duration can have different statis-
tical distributions such as uniform, exponential, Weibull, etc. In Continuous System Simulation
there is no way to refer to a specific individual in a state. In the simple case where the individuals
in a state have the same probability of departing (regardless of how long they have been in the
state) we have implicitly an exponential distribution for the residence time in that state. In this
type of simulation, other statistical distributions must be achieved or approximated by structures
of states in series and/or parallel [13].

1.2. Selection of a population model

The specific objective of the paper is to demonstrate how any well-defined model (realistic or
not) can be modelled in micro and in macro terms without losing consistency. For this purpose
we require a model with the following qualities:

• The model must include the two mechanisms: Event and Activity.
• We prefer a non-linear model.
• The model should otherwise be as simple as possible.
• For pedagogic reasons it is an advantage to use a well-known model.

To make the presentation more concrete, an epidemic SIR model (presented below) is chosen as
a representative example of stochastic population models. The choice of a simple SIR model is
thus, only to demonstrate the ideas that are general for population models and there is no inten-
tion whatsoever to deal with different aspects of SIR models. We could equally well have used,
e.g., a logistic model where reproduction is delayed or a Volterra model with an unfertile juvenile
stage or a Lanchester combat model with a delay for reloading weapons, etc.
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2. A conceptual model

An epidemic is a process that affects a population of individuals, where each individual is an
entity with attributes such as stage of disease, sex, age, occupation and behavioural patterns dic-
tating where individuals go, who they meet, how they act when ill, etc.

Models of infectious diseases are generally based on a sequence of stages from Susceptible
via Infectious to Recovered/Removed. Such a model is therefore denoted a SIR model. The
first SIR model was published by Kermack and McKendrick in 1927 [14] and since then
books on the epidemiology of infectious diseases are usually based on the SIR and related
models [1,15–17].

For the purposes of the present work, a conceptual model is defined, where the fundamental
structure and assumptions about the population and the disease are stated. The crucial point is
to obtain a well-defined standard when later constructing the micro- and macro-simulation mod-
els, while the realism for a specific disease is outside the scope of this work. Lack of perfect infor-
mation about who meets whom, whether the Susceptible individual becomes infected, sojourn
times in Infectious stages, etc. makes it necessary to use statistical concepts such as risk, statistical
distribution, independency, etc.

The conceptual model considered here has the following setting: A population consisting of
individuals is affected by an infectious disease. The population is homogeneous, i.e., there are
no differences between individuals due to age, sex, susceptibility, behaviour, etc.

The individuals are in one of three consecutive stages (S, I or R). Transfer from S to I can take
place because every individual can meet every other under equal conditions at each time unit with
the same probability, m, and when a Susceptible individual meets an Infectious individual there is
a small risk, r, to the former of being infected. To make the conceptual model as simple as possible
we use a single parameter, p = m Æ r, for the combined probability of a Susceptible individual
meeting an Infectious individual per time unit and thereby becoming infected. The transfer from
I to R takes place when an Infectious individual has been in stage I for a certain time. This ex-
pected time that an individual resides in stage I (an activity) has an exponential distribution with
the mean of T time units.

The change of stage for an individual is called an event and takes place instantaneously. Fur-
thermore we assume that an event is statistically independent of all other events at that point in
time.

In a condensed mathematical form, used by, e.g., Bartlett [1], the infinitesimal transition prob-
abilities can be expressed as:
P ½ðS; I;RÞ ! ðS� 1; Iþ 1;RÞ� ¼ p � I � S � dt and P ½ðS; I;RÞ ! ðS; I� 1;Rþ 1Þ� ¼ I � dt=T :
Comment. A numerical approximation of dS = �S Æ I Æ p Æ dt with DS = �S Æ I Æ p Æ Dt is often
used in macro modelling. This is a good numerical approximation for small time-steps, Dt, but
it is not logically exact for a finite Dt.

In the conceptual model, it is assumed that every Susceptible individual can meet every Infec-
tious individual during a time unit with the probability m and with the risk r of getting infected in
a meeting. Then, for example, a Susceptible meeting 11 Infectious individuals with a probability
r = 0.1 of being infected from each Infectious would generate an infection risk of 1.1, which is
impossible because an individual cannot be more than infected.
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To determine the cumulative risk, we instead have to calculate the probability of not being in-
fected, which is (1 � r) per contact. The probability of not being infected in N contacts is then
(1 � r)N. The probability of not being infected during a time-step (N = I Æ m Æ Dt) then becomes
(1 � r)I Æ m Æ Dt. The expected number of infections per time-step, therefore, is S Æ (1 � (1 � r)I Æ m Æ Dt)
which is approximately S Æ I Æ r Æ m Æ Dt = S Æ I Æ p Æ Dt when r and Dt are small. In the consistency
proof in Section 5, the exact formula will be used, but for numerical calculations the S Æ I Æ p Æ Dt
approximation is good, and can be used without problems. (End of comment)

The conceptual model created is thus a stochastic model of discrete individuals operating in con-
tinuous time.

Although time in the conceptual model is continuous, the use of a discrete time in the numer-
ical models does not create any problems provided that the step-size Dt can be made sufficiently
short.

The following notation is used here: S, I, R stands for stage, while the number of indi-
viduals in a stage is denoted S, I or R (possibly with a time argument such as S(t), etc.).
Individuals are denoted s, i or r in accordance with their stage. S! I! R denotes the struc-
ture with transitions between stages.
3. The micro-model

The main idea of a SIR micro-model is to handle the complex composition of a heterogeneous
population. However, here it is only used on a homogeneous population in order to investigate
consistency between micro- and macro-modelling.

Implementation of the conceptual model as a micro-model is straight-forward. The micro-model
is preferably implemented in a Discrete Event Simulation language or an object-orientated pro-
gramming language but any programming language will suffice. The important thing is to describe
the attributes of the individuals and their behaviours.

The only attributes are stage, which can take the values ‘S’, ‘I’, ‘R’, the infection probability p,
and the expected sojourn time T in stage I. The behaviour is described as transfers from stage S to
stage I and from stage I to stage R, respectively. For every possible meeting between individuals in
stages S and I, a uniform random number is drawn and compared to p to decide if it results in
transfer of the Susceptible individual. Furthermore, when an individual enters into stage I, a ran-
dom number for the sojourn time in the stage is drawn from an exponential distribution with the
parameter set to T.

The time mechanism can be that used in Discrete Event Simulation [18], but for technical rea-
sons (e.g., to avoid thinning [19,20] to handle varying intensities in the infection intensity) it is
more practical to use the classical updating procedure: Time = Time + Dt, where Dt is a small
time-step. A micro-model then has the following structure in a pseudo code:

Generate S entities in stage S
Generate I entities in stage I and randomise their TimeToLeaveI

Again:
For each s 2 S
For each i 2 I
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If UNIFORM[0,1] 6 p then Mark s
Next i

Next s
For each i 2 I

If Time P TimeToLeaveI then Mark i
Next i
For Marked s

Transfer s to stage I
TimeToLeaveI = time + EXP[T]

Next Marked s
For Marked i

Transfer i to stage R
Next Marked i
Time = Time + Dt
If Number of individuals in I > 0 then GoTo Again

Here UNIFORM[0,1] is a call to a generator of uniformly distributed random numbers between
zero and one and EXP[T] is a call to a generator of exponentially distributed random numbers
with the average T.

The micro-model agrees in every detail with the conceptual model. Note in particular that it
uses stochastics on discrete individuals operating in almost continuous time provided that the
time-step is sufficiently small.
4. The macro-model

A macro-model is an aggregation of the individuals in a stage into a single number hold by a
state variable. This reduction of complexity means that there is no longer possible to refer to a
specific individual in the macro-model.

The construction of the macro-model is performed in two steps. In the first step we build a
deterministic differential equation model that acts on continuous fractions of the population. In
step two we demonstrate how this model can be revised into a stochastic differential equation
model acting on integer numbers of individuals.

4.1. A deterministic macro-model

Disregarding the stochasticity and the integer property of the individuals, we start with the clas-
sical SIR model [14], which is based on deterministic fractions of the population. This gives us the
opportunity to demonstrate how stochastics and discreteness are implemented using the Poisson
Simulation approach in a following step.

Let S, I and R stand for numbers of individuals in the consecutive stages S, I, and R. Further-
more, let the probability p and the expected sojourn time T keep their values as deterministic
quantities instead of being parameters to stochastic distributions. We then get the classical, deter-
ministic SIR model [1,2,5] as:
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dS=dt ¼ �p � S � I; dI=dt ¼ p � S � I� I=T ; dR=dt ¼ I=T :
Using the Euler algorithm, we can rewrite the model as difference equations:
Sðtþ DtÞ ¼ SðtÞ � Dt � F 1ðtÞ

Iðtþ DtÞ ¼ IðtÞ þ Dt � F 1ðtÞ � Dt � F 2ðtÞ

Rðtþ DtÞ ¼ RðtÞ þ Dt � F 2ðtÞ

F 1ðtÞ ¼ SðtÞ � IðtÞ � p

F 2ðtÞ ¼ IðtÞ=T :

8>>>>>>>><
>>>>>>>>:
The macro-model differs from the conceptual model in that it is based on deterministic fractions of
individuals instead of stochastics on discrete individuals. Like the micro-model, it operates in al-
most continuous time.

To replace the deterministic mechanism transferring fractions of individuals between stages
during a time-step by a stochastic mechanism operating on integer numbers of individuals, we first
briefly present the mathematical construction of the Poisson Simulation approach.

4.2. Poisson Simulation

Poisson Simulation is a general method within the Continuous System Simulation concept for
modelling randomness in a dynamic context as opposed to just adding noise. It has some impor-
tant characteristics and features:

(1) A system of differential equations can be described in terms of states and flows. Then, a
change in a state value only occurs through inflows and outflows to that state. In Poisson
Simulation, the stochastics are located in the flow rates and not in states or parameters.

(2) The stochastics are implemented so that the integration step-size Dt can be adjusted to the
dynamic needs without distorting the model (just as it can in Continuous System
Simulation).

(3) When the states are initiated to integer values, the Poisson mechanism adds or removes inte-
ger numbers, so the states remain integers over time.

In this section the mathematical foundations of Poisson Simulation are presented. This formu-
lation both explains how the deterministic macro-model can be reformulated into a stochastic
model and subsequently forms the basis of proof for the full consistency between the stochastic
micro and macro approaches.

The Poisson process is the foundation of Poisson Simulation, but the latter is a much more flex-
ible device since it incorporates intensities that can vary dynamically within the concepts of CSS
modelling. The fundamental idea is that during a sufficiently short time-step, each intensity can be
considered constant and can therefore be modelled by a Poisson process. The simulation can then
be regarded as a sequence of Poisson processes. Furthermore, the number of events during the
time-step is realised in CSS by drawing a Poisson distributed random number of the form
Po[Dt Æ intensity]. The mathematical construction of Poisson Simulation is thus deduced from
the Poisson process as follows.
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A Poisson process is defined in the following way:
Let E(t), t P 0 be the number of times an event occurs in the time interval (0, t). If the stochastic

process {E(t), t P 0} has the properties:

(1) The process has independent increments,
(2) P[an event occurs exactly once in the interval (t, t + h)] = k Æ h + o(h),
(3) P[an event occurs more than once in the interval (t, t + h)] = o(h),

then the process is a Poisson process with intensity k.
A Poisson process requires a constant intensity, k. In a dynamic relationship of the form

dx/dt = k(x), k(x) is an intensity function that depends on x because of feedback. Therefore, a
stochastic differential equation cannot be based directly on a Poisson process. However, the Euler
difference equation x(t + Dt) = x(t) + Dt Æ k(x(t)) corresponding to dx/dt = k(x) can be calculated
step-wise with x(t) fixed in the time interval (t, t + Dt). Since the difference equation during this
time interval has a fixed intensity, we can include stochastics here as a Poisson process.

Using this idea, the number of events (e.g., the number of individuals changing their stage) dur-
ing a very short time interval (t, t + dt), where dt� Dt, follows the requirements:

(1) The process has independent increments,
(2) P[an event occurs exactly once in the interval (t, t + dt)] = k Æ dt + o(dt),
(3) P[an event occurs more than once in the interval (t, t + dt)] = o(dt),

and is therefore a Poisson process with intensity k (as long as k is constant; i.e., during (t, t + Dt)).
According to a fundamental theorem [21], the number of events E during the interval (t, t + Dt)

where k is given a constant value, is then Poisson distributed with the expected value Dt Æ k; i.e.,
E(t, t + Dt) 2 Po(Dt Æ k).

Poisson Simulation is based on this result and expresses a replication (a simulation run) of the
stochastic difference equation
X ðtþ DtÞ ¼ X ðtÞ þ Po½Dt � kðX ðtÞÞ�;

as a sequence of Poisson processes defined on [0, Dt), [Dt, 2Dt), [2Dt, 3Dt), . . ., [(N-1)Dt, N Æ Dt);
where N Æ Dt is the length of the simulation (where [t1, t2) means t1 6 time < t2). Thus, Poisson
Simulation of a stochastic variable is defined as:
XN

i¼1

Poisson processðiÞ ¼
XN

i¼1

Po½Dt � ki�; where the interval i is ½ði� 1Þ � Dt; i � DtÞ:
Thus, a stochastic system of difference equations corresponding to those in Section 4.1 can be
obtained using Poisson distributions in the flow equations to express the number of events during
each time-step. This reformulation of the deterministic macro-model is performed in the following
section.

4.3. Making the macro-model stochastic and discrete

The deterministic and fractional SIR macro-model in Section 4.1 can now be reformulated
into a stochastic approach using the Poisson Simulation technique mathematically defined
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above. This means that the fractional transitions during a time-step: Dt Æ F1 and Dt Æ F2 (where
F1 and F2 are intensities) are replaced by a stochastic mechanism based on the Poisson
distribution.

Since we have independency between the stage-changing events at a certain short interval in
time, the number of transferred cases during t to t+Dt must be Poisson distributed with the ex-
pected values Dt Æ F1 and Dt Æ F2, respectively, as arguments. The stochastic macro-model thus
takes the form:
Sðtþ DtÞ ¼ SðtÞ � Dt � F 1ðtÞ
Iðtþ DtÞ ¼ IðtÞ þ Dt � F 1ðtÞ � Dt � F 2ðtÞ
Rðtþ DtÞ ¼ RðtÞ þ Dt � F 2ðtÞ ð�Þ
F 1ðtÞ ¼ Po½Dt � SðtÞ � IðtÞ � p�=Dt

F 2ðtÞ ¼ Po½Dt � IðtÞ=T �=Dt:

8>>>>>><
>>>>>>:
(Or with F1(t) = Po[S(t) Æ (1 � (1 � r)I(t) Æ m Æ Dt)]/Dt to be exact (see Comment in Section 2). This
form will be used in the consistency proof in Section 5, below.)

Above, Po[Æ] means that a random number is drawn from a Poisson distribution at each time-
step.

Note that since Po[Æ] has integer outcomes, the states S, I and R stay integer (provided that they
are initiated to integer values). Poisson Simulation thus provides a stochastic macro-model oper-
ating on integer entities.

This is perhaps an appropriate place for a warning about two common mistakes. First, even
though two or more inflows (or outflows) may be merged in accordance with Po[Dt Æ k1] +
Po[Dt Æ k2] = Po[Dt Æ (k1 + k2)], it seriously distorts the model to use this on differences because:
Po[Dt Æ k1] � Po[Dt Æ k2] 5 Po[Dt Æ (k1 � k2)]. Second, what comes out of stage S is identical to
what goes into stage I. These quantities cannot be made independent by writing:
S(t + Dt) = S(t) � Po[Dt Æ F1] and I(t + Dt) = I(t) + Po[Dt Æ F1] � Po[Dt Æ F2], because then two
independent F1 flows would be obtained from two separate Poisson processes with the same inten-
sity Dt Æ F1.

Poisson Simulation is a theoretically sound, easy handled and computer efficient way of
realising a stochastic population model in a macro setting. The calculation effort is also almost
independent of the size of the population. It is easily applied in any Continuous System Sim-
ulation language where a random number generator for the Poisson distribution is included. It
is also easy to write the model directly in a general purpose programming language. A good
Poisson random number generator can be found in, e.g., Numerical Recipes [22]. Poisson Sim-
ulation is presented in [11,23,24]. It is also convenient to have a supervisory programme that
can order a number of simulations, collect the outcomes, analyse them and present the results
in statistical terms. Such programmes [25,26] are available for Powersim [27] and for MAT-
LAB [28].

Finally, note that the deterministic model is embedded within the stochastic macro-model. Just
remove the Po[DtÆ ]/Dt part of the flow rate equations F1 and F2, above. The concept ‘embedded
model’ is important because when an embedded deterministic model behaves similarly to the sto-
chastic model, it is meaningful to perform theoretical analysis on the simpler, deterministic model
[5].
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5. Consistency between micro- and macro-models

For both the micro-model and the stochastic macro-model, the following is valid:

• The structures: S! I! R are the same.
• The initial values S(0), I(0) and R(0) are integers and have the same values in both models.
• The parameters, p and T have the same values and the time-step Dt is also the same.
• Changes of stage only occur through events; as individual transfers or as aggregated number of

events in the flow rates F1 and F2. Furthermore, these events during the short time intervals
(t, t + Dt) are independent.

Therefore, it is sufficient to show that the transfer mechanisms, S! I and I! R, are equiva-
lent, i.e., do the same job, despite their different realisations. In particular, the sojourn time (activ-
ity) should have the same statistical distribution.

• For S! I, the conceptual model states that for each time unit there is a probability p of the
event of a meeting between a given Susceptible and a given Infectious individual where the
infection is transmitted. With S Susceptible individuals and I Infectious individuals there are
S Æ I possible meetings.
In the micro-model, the probability of every Susceptible becoming infected by an Infectious
individual is implemented in a straight-forward way as shown in Section 3.
Since a Susceptible individual can only be infected once, this implies that his/her risk per time
unit of infection from N meetings with Infectious individuals is (1 � (1 � r)N). During the short
time-step Dt the risk of each Susceptible individual being infected is then 1 � (1 � r)I Æ m Æ Dt.
Since the risks of infection of the S Susceptible individuals are independent, the number of
infections during Dt becomes Po[S Æ (1 � (1 � r)I Æ m Æ Dt)] distributed, which was used for the
macro-model.
The micro- and macro- mechanisms for S! I are therefore consistent with the conceptual
model and numerically equivalent when using the same step-size, Dt.
• The transfer I! R constitutes the end event of the sojourn time activity of the Infectious stage.
For the duration in stage I the conceptual model assumes an exponential distribution. This is
directly implemented at individual level in the micro-model. At time t1, defining the arrival of an
individual to stage I, the time t2 for departure is drawn from an exponential distribution:
t2 = t1 + Exp[T].
To show that this is equivalent to the I! R Poisson mechanism in the macro-model, we utilise
the fact that the departure time for an individual is independent of the arrival time. The former is
a consequence of the exponential distribution being memoryless. This means that if the individ-
ual at time t is in stage I, the expected time until departure is T, independent of when the indi-
vidual arrived in stage I and independent of time t, as long as departure has not yet occurred.
(To illustrate this, consider a radioactive atom with the expected time until decay, T. Indepen-
dent of how long this atom has existed, the expected time from now to its decay is still T.)
Since the probability of the individual departing during (t, t + Dt) is independent of its arrival
time (under the condition that the individual has not already departed), the probability of
departing is proportional to Dt and to 1/T; i.e., to Dt/T. For I individuals aggregated in the
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stage, the departure intensity is I/T. Because of the independence of the departures, the condi-
tions for a Poisson process with intensity I/T are fulfilled, so the number of departures from
stage I to stage R during (t, t + Dt) is Po[Dt Æ I/T], which is used in the macro-model.
An alternative proof is obtained by starting from the aggregated macro-model and disaggregat-
ing it to end up in the I! R construction of the individually based micro-model. Then we con-
sider the Dt Æ F2 = Po[Dt Æ I/T] departures during (t, t + Dt) (from the last equation in (*) in
Section 4.3). First, Po[Dt Æ I/T] can be disaggregated into I terms, because
Po½Dt � I=T � ¼ Po½Dt � 1=T � þ Po½Dt � 1=T � þ . . .þ Po½Dt � 1=T �;

reflectingthe I individuals. Second, the Poisson distribution of the number of departures during
a time interval in the macro-model implies an exponential distribution for the expected time to
departure in the micro-model.
To show this, we consider one Infectious individual so Po[Dt Æ 1/T] is the probability of its depar-
ture during the interval Dt. The Poisson distribution for zero or one departure is then:
p(k) = e�m Æ mk/k! where k = 0, 1 (and m = Dt Æ 1/T).
To show that this implies an exp[T] distribution for the sojourn time of an Infectious individual,
we ask when the departure from now = t will occur? Setting t = 0 for simplicity and defining the
first departure point in time s, this departure event, D, occurs if and only if the departure has
not occurred during the interval (0,s), i.e., if the number of departures at s is zero; where this
number 2 Po(k Æ s), and k = 1/T. Since the Poisson distribution is defined by
pðkÞ ¼ e�m � mk=k!;
the probability of k = 0 events before s is e�m = e�kÆs, i.e., P(D > s) = e�kÆs. The complement to
the probability of no departure is P(D 6 s) = 1 � e�kÆs. However, P(D 6 s) is the distribution
function FD(s) = 1 � e�kÆs, so D must have exponential density distribution e�kÆs = e�s/T. Thus,
the sojourn time has an exp[T] distribution, just as is used in the micro-model.

Thus, the conceptual SIR model and its micro and macro realisations are mutually consistent.
We can so easily prove the consistency because we assumed the sojourn time distribution in stage I
to be exponential. For other time distributions, we could not directly relate the sojourn time to a
departure event independent of the arrival time.

However, for sojourn time distributions in the conceptual model and micro-models other than
exponential types, the consistency with the macro-model can also be preserved. This is because the
sojourn time distribution of the macro-model can be extended to any time distribution that can be
constructed by dividing the stage into a series of n sub-stages, e.g., C(n,T/n) [13]. Furthermore,
any distribution, that can be approximated using sub-stages in series and/or parallel and with
the same or different time parameter values of the sub-stages, can be used while keeping the equiv-
alence between the micro and macro approaches.
6. Testing the micro- and macro-models

For a uniquely defined conceptual model, the outcomes of different, correctly formulated
simulation models should be consistent, irrespective of their technical formulations. Since the
results from a stochastic model are probability distribution functions (pdf), this means that the
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micro- and macro-models should produce identical probability distribution functions for the out-
come. To test this, the stochastic, individual micro-model and the stochastic, aggregated macro-
model were simulated using the following parameter values:
Table
Resul

Mode

Micro
Stoch
Deter
Sð0Þ ¼ 1000; Ið0Þ ¼ 1; Rð0Þ ¼ 0 individuals;
p = 0.0003 per individual and time unit, T = 4 time units and Dt = 0.1 time units.
(This implies a basic reproduction number R0 = p Æ S Æ T = 1.2.)
To demonstrate what can happen for a non-consistent model, we also include the embedded

deterministic macro-model with the same parameter values. The models shown in Sections 3,
4.1 and 4.3 were programmed in Turbo Pascal [29] and the random number generator used
was ‘ran3’ as presented in [22].

Table 1 shows the results of 10000 replications using the micro-model and the stochastic macro-
model and one simulation of the embedded deterministic macro-model. The outputs studied are
the number of Susceptible individuals becoming infected during the epidemic, S(0) � S(End), and
the length of the epidemic (until I became zero).

6.1. The stochastic models

The average number of Susceptible individuals becoming infected during the epidemic for the
micro-model falls within the 95% confidence interval of that for the macro-model and vice versa.
The same applies for the average length of the epidemics.

Poisson Simulation not only gives consistent estimates of the average number of infected indi-
viduals and the average length of the epidemic, but also gives the full statistical outcome in terms
of pdfs, from which one can derive all kinds of statistics such as average, variations, skewness and
confidence intervals. The pdfs from the micro- and macro-models are compared in Fig. 2.

As seen from Fig. 2, the overall shapes of the probability density functions are very similar.
When comparing pairs of micro/macro bars some variations can be seen, especially for the smaller
bars with values around 0.005–0.01 (representing 50–100 replications). For each bar we expect a
Bin(n,pr) distribution for the n = 10000 replications. The actual outcome behind each bar then
suggests n Æ pr � 50–100 replications, giving pr � 0.005–0.01. The expected standard deviation
then becomes

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n � prð1� prÞ

p
, which is about 7–10 replications, implying a 95% confidence inter-

val of about ±14 to ±20. Taking into account that the outcomes of the two bars in a pair are
independent, we expect that the difference between them should be within 20–28 replications or
20/50 = 40% and 28/100 = 28% of the outcome in 95% of the pairs of size 0.005–0.01. This agrees
well with what we see in Fig. 3.
1
ts obtained using the micro-model, the stochastic macro-model and the embedded deterministic macro-model

l Average S(0)–S(End)
(95% C.I.)

Min & Max Average length of
epidemic (95% C.I.)

Min & Max

54.6 (52.2–57.0) 0 & 579 22.5 (21.7–23.2) 0.1 & 247.6
astic macro 54.5 (52.1–56.9) 0 & 560 21.9 (21.1–22.6) 0.1 & 223.4
ministic macro 318.5 318.5 1 (207.4 for 1 case left) 1



Fig. 2. Comparison of the pdfs of the number of Susceptible individuals becoming infected during the epidemic [S(0)–
S(End)] as calculated from 10 000 replications of the micro-model and of the stochastic macro-model with the
parameter values S(0) = 1000, I(0) = 1, R(0) = 0, p = 0.0003 and T = 4. The bar intervals are 0–9, 10–19, . . . , 560–579.
(The first pair of bars (0–9) has the values 0.7388 and 0.7422 for the micro- and macro-models, respectively.)

Fig. 3. p–p plot of the cdfs of the number of Susceptible individuals becoming infected during the epidemic from the
micro- and stochastic macro-simulations. (The cdfs for 60, 61, 62, . . ., 69, 619, 629, . . ., 6579 Susceptible individuals
becoming infected are plotted.)
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In order to better compare the outcomes, we focus on the cumulative distribution functions
(cdf). We thereby eliminate the variations because of small numbers without losing any informa-
tion. Instead of doing this in a straight-forward way, obtaining two curves, we use a probability–
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probability plot (p–p plot) [19]. The p–p plot is a graph of the micro cdf against the macro cdf. For
example, the micro cdf of zero infected cases is 0.4555 and the corresponding macro cdf is 0.4563,
giving the point (0.4555,0.4563). The second point representing 61 case gets the coordinates
(0.5692,0.5663), etc.

A perfect match between the models would result in a straight diagonal line between (0,0) and
(1,1). Any deviation from that line is easily detected by the eye. As one can see, the p–p plot in
Fig. 3 shows an almost perfect alignment to the diagonal.

6.2. The deterministic model

To demonstrate the drastic effects of a similar (and often used!) not fully consistent model, we
also compare with the embedded deterministic macro-model.

The results in Table 1 show that most of the replications with the stochastic models give no epi-
demic. The average numbers contracting the disease are 54.6 and 54.5, compared with the cate-
gorical result of 318.5 for the deterministic model, i.e., an approximately six-fold difference.
The average lengths of the epidemics display even less consistent results.

The remarkable fact is that there is no similarity between the results from the deterministic and
those from the stochastic models on any point. The results are not even close.

Although dynamic models of epidemics have a long tradition going back to Kermack and
McKendrick in 1927 [14] and Greenwood in 1931 [30], a number of methods for handling the
stochastics have been proposed since then [1,15]. These models are usually classified as con-
tinuous time or discrete-time models rather than macro- or micro-models and usually focus
on analysis rather than simulation. A discussion of discrete-time models is found in Appendix
B.

Macro-models based on differential or difference equations and stochastics are often introduced
in some additive way. With the introduction of computers and Discrete Event Simulation pro-
grammes, it became possible to directly formulate the conditions for the individual in micro-mod-
els and obtain a technically correct micro-model of a conceptual model.

Although comprehensive text books with thorough discussions of deterministic and stochastic
models such as [15] are available, many modern textbooks on epidemics still present only deter-
ministic models and many contemporary papers base their studies on deterministic SIR/SEIR
macro-models – probably because of lack of knowledge on how to include the stochastics. The
results from such studies therefore lack consistency with the results from micro studies and from
the intensions of the underlying conceptual model.
7. Summary and discussion

In this section the content and findings of the paper are first summarised, with the focus on how
the Poisson Simulation technique can be defined and used for population models to construct cor-
rect macro-models consistent with micro-models. Thereafter, the nature of stochastics and
dynamics in a population model is discussed and a general form for macro population models
is presented. Possible extensions beyond the class of population models are then presented. In
three appendices we broaden the scope. In Appendix A, some other population models are given
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in the Poisson Simulation form. In Appendix B we investigate what would happen if discrete-time
modelling were used instead of continuous. Finally, in Appendix C the Markov approach, which
also is a consistent way to describe population models, is discussed and compared with Poisson
Simulation.

7.1. Summary

The main objective of this work is to demonstrate a method to achieve consistency (in terms of
containing no contradictions) between micro- and macro-models of populations evolving in con-
tinuous time.

With Poisson Simulation, a new method for aggregated modelling of population models was
introduced [11]. By defining Poisson Simulation in strictly mathematical terms as a series of Pois-
son processes that can be summed up into sequences of Poisson distributions with dynamically
varying parameters, we were able to prove the logical consistency between a micro- and a
macro-model realisation of the same conceptual population model. This was demonstrated on
a SIR epidemic model containing both the event and activity aspects described earlier.

Two logically consistent models should produce consistent results, and we illustrated this by
making 10000 replications each of the micro- and macro-models.

Simulation of the models also gave the opportunity to demonstrate the drastic consequences
when consistency is lost. An example of this is obtained when the conceptual SIR model is realised
as the deterministic fractional model embedded in the stochastic macro-model. The result was that
the epidemic never ceased and that the number of infected individuals became six times larger
than the average from a correct model.

Any extension of the SIR model in terms of more states/stages can easily be realised in micro-
or macro-modelling. If the conceptual model assumes statistical distributions other than the
memoryless exponential distribution for the time duration of an activity, this poses no problem
for the micro-modelling. For the macro-model, good approximations of such activities can be
achieved by structures of states in series and/or parallel. Special constructions within the
macro-modelling approach, discussed in [24], can also be used for this purpose.

The SIR model was only chosen as a demonstrative example. Any population model such as
models of radioactive decay [11,31], biological competition [23,31,32], predation (e.g., Lotka–Vol-
terra) [11,31–33], demographical development [11,31], Gompertz’ growth models [23,31,32,34],
epidemic processes [1,15], case-control studies [23,35], ion channels in a neurone [23,36], models
of warfare (like Lanchester’s model of warfare) [23,31,37,38], etc. can utilise the Poisson Simula-
tion approach to develop a consistent macro-realisation, see Appendix A. In [11] there is an exam-
ple of logistic and Volterra models and in [24] it is shown how this approach can be used to
include queuing problems in a macro-setting. In [24], a section discusses in general terms the close
relationship between Poisson Simulation and Discrete Event Simulation (or micro-simulation),
despite large differences in the technical realisations.

A number of phenomena distinguish the behaviour of stochastic dynamic population models
from that of deterministic models. For example, very different behaviours, results and statistical
estimates can be obtained. New phenomena such as extinction may also occur in a stochastic
model, while a deterministic model can recover from a small fraction of an individual. Further-
more, new qualities such as oscillations may be excited by the stochastic variations. Correct
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modelling of dynamics and stochastics is therefore crucial, and Poisson Simulation is a powerful
technique to handle this for population models.

7.2. A general form for population models

It is a more or less implicit opinion that stochastics should be avoided in Continuous System
Simulation. This is based on the idea that stochastics add additional noise that only obscures the
results and forces the analyst to run many replications to get precision in the estimates. There-
fore, textbooks on CSS usually avoid the subject or mention it very briefly and CSS languages
usually provide only a few fundamental distributions for random deviates.

Old traditions that dynamics are handled by differential equations and stochastics by a form
of random variation nurture the misconception that a stochastic and dynamic model is com-
posed of differentials and probabilities as unrelated components. However, stochastics is not a
phenomenon to be simply added (or multiplied) to the dynamic behaviour (except for very
special cases such as signal + noise in a radio receiver). For a population model, stochastics
and dynamics are only different aspect of changes within a system or model. This is visible
in micro-model simulation where a change/event is the only mechanism and it brings a certain
impact on the following development over time, irrespective of whether the event is described
as deterministic or stochastic in its size or its time of appearance. While the general micro-
description of a population only refers to events (and activities), the macro-description refers
to numbers of events in short intervals of time.

All the population models mentioned in Section 7.1, as well as all population models found in
the literature, turn out to have the same general macro form given by:
dxk ¼ Po½dt � kinðx; tÞ� � Po½dt � koutðx; tÞ�; k ¼ 1; 2 . . . n;
where xk denotes state k and x is an n-dimensional vector, see Appendix A. (It is x in the k-
argument that gives the feedback generating the dynamics. Removing this feedback results in a
stochastic process which can be time-variable, k(t), or time-constant, k.)

From the macro process, statistics can then be obtained by cumulating (integrating) over a time
interval. Further, ‘pure’ dynamics is a special case when the population is very large. The law of
large numbers then ensures that the variations are negligible compared with the number of indi-
viduals, so the equation above collapses into the embedded equation:
dxk ¼ dt � kinðx; tÞ � dt � koutðx; tÞ;

or dxk/dt = k(x, t). Note, however, that it is not sufficient that the total population is large. Sub-
populations may also have to be. For example an influenza starts with a single infected individual
and may spread within a very large population, but the development of the epidemic cannot be
modelled deterministically although the total population is very large.

7.3. Possible extensions

This paper focuses on population models but the technique demonstrated goes beyond this
class of models. For example the population part may be included in a larger, otherwise determin-
istic, model. This still works because the integer numbers of entities can affect continuous
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quantities (such as cost, weight, etc.) and continuous entities can affect the number of new or re-
moved entities via the continuous argument of the Po[Dt Æ arg] construction. For example, in an
extended SIR model the number of individuals hit by the disease can be assigned a cost and the
number of individuals considering a vaccination may be a random function of the price of a vac-
cination such that Po[Dt Æ f(vaccination_price)].

Furthermore, the Poisson mechanism does not exclude other types of randomness. For exam-
ple, an insurance company is interested in the number of accidents and their costs. The seasonal
variations may be modelled by Po[Dt Æ k(t)], while the cost of an accident is, e.g., exponentially
distributed. Another example is digital telephone systems handling packages of information where
the arrivals may be Poisson distributed (e.g., Po[Dt Æ k(x, t)]; where x takes care of some correla-
tion from another part of the system) and the length of a package varies in accordance to another
distribution. However, this goes beyond the focus of this paper.
Appendix A. A general form for Poisson Simulation of population models

All the population models mentioned in Section 7.1, as well as all population models found in
the literature, turn out to have the same general macro form given by:
dxk ¼ Po½dt � kinðx; tÞ� � Po½dt � koutðx; tÞ�; k ¼ 1; 2 . . . n;
where xk denotes state k and x is an n-dimensional vector. In numerical form we then have:
xkðtþ DtÞ ¼ xkðtÞ þ Dt � ðF k in � F k outÞ; where k ¼ 1 . . . n:

F k in ¼ Po½Dt � kinðx; tÞ�=Dt

F k out ¼ Po½Dt � koutðx; tÞ�=Dt:

8><
>:
Some examples:
dx = �Po[dt Æ a Æ x]
 Radioactive decay model [11,23].
2
dx = Po[dt Æ a Æ x] � Po[dt Æ b Æ x ]
 Logistic model [23].
dx1 = Po[dt Æ a Æ x1] � Po[dt Æ b Æ x1 Æ x2]
 Lotka–Volterra model [11,23].

dx2 = Po[dt Æ c Æ x1 Æ x2] � Po[dt Æ d Æ x2]
dx1 = �Po[dt Æ a Æ x2]
 Lanchester’s model of warfare [23].

dx2 = �Po[dt Æ b Æ x1]
dx1 = �Po[dt Æ p Æ x1 Æ x2]
 The SIR model in this paper.

dx2 = Po[dt Æ p Æ x1 Æ x2] � Po[dt Æ b Æ x2]

dx3 = Po[dt Æ b Æ x2]

dx = Po[dt Æ k] �MIN(Po[dt Æ l Æ x], x)
 M/M/1 queue model (where x is the actual number of

queuing and served individuals, k is the arrival intensity
and 1/l is the mean service time). (MIN(arg1,arg2) takes
the smallest of its two arguments to prevent more
departures than the population in the queue.) [23,24].
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See papers [11,23,24] for a presentation of these and other population models treated by Pois-

son Simulation. The modeller should consult paper [11] for the underlying rules of Poisson Sim-
ulation. Note in particular that for models where what leaves one state xi enters another xj, it is
important that the numerical realisation uses a single flow rate equation as described in the warn-
ing note in Section 4.3.

Note also that the embedded models are easily obtained from the Poisson Simulation models.
Appendix B. Discrete-time modelling

This study is limited to continuous-time modelling. This seems reasonable since a population at
study develops in continuous time. However discrete-time models such as Markov chain models
[4,5], chain-binomial models [15], ARMA models [39], time series models [40], etc. are often used.
Consistency with continuous-time models can then of course not be exactly achieved since contin-
uous-time stochastics are based on the Poisson distribution while discrete-time stochastics, imply-
ing a sequence of random trials, are based on the binomial distribution.

Accepting the inconsistency of modelling continuous time by a sequence of discrete points, can
macro- and micro-simulation models that are mutually consistent be constructed? Yes, in princi-
ple, but at the price of inflexible modelling, results that are functions of the time-interval between
index points and a slower execution of the random parts.

In the very concept of discrete-time models there is no explicit time-step Dt to be adjusted until
it is small enough not to distort the dynamics. (Mathematically, the limes Dt! 0 mechanism is
lacking.) This cannot be introduced in a mathematically correct way without rebuilding the model
and again fitting parameters and transition probabilities to system data. For continuous-time, the
stochastic flow equations Dt Æ F = Po[Dt Æ k] can be freely adjusted with respect to Dt without
affecting the stochastics because of the Poisson property:
Po½Dt � k� ¼ Po½Dt � k=2� þ Po½Dt � k=2�:

However Bin[n, Dt Æ p] 5 Bin[n, Dt Æ p/2] + Bin[n, Dt Æ p/2], so such a time-scaling mechanism

cannot even be introduced correctly in the discrete-time case.
Furthermore, discrete time implies that the macro- and micro-models must operate with the

same index-time intervals to be consistent. (For continuous time models we only require the
time-steps of the macro- and micro-models to be sufficiently small from a dynamic point of view
without any need for them to be the same.) Even with this condition fulfilled results from discrete-
time models are arbitrary since parameters in the models, results and estimates are all coupled to
the chosen time-interval between index points. Comparisons with models using other intervals
cannot be made and results cannot be transferred freely between models since models using dif-
ferent intervals are inconsistent and thus produce inconsistent results and estimates.

Assuming that we were lucky enough to initially choose an interval between index points that
was small enough from a dynamic point of view, we would then end up with a macro-model that
produced almost correct result since Bin[n, Dt Æ p]! Po[n Æ Dt Æ p] when Dt Æ p! 0. However what
we have then accomplished is just a model that executes considerably more slowly because each
random sample from a Bin(n, Dt Æ p) generator (using the direct method) requires n calls to a
uniform U[0,1]-generator which is much more than a direct Poisson generator requires
[6,19,20,22,41]. (With the binomial approach each atom in a radioactive sample is tested for a pos-
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sible decay, each car for a possible accident or each person for a possible infection during every
short time-interval Dt, while a Poisson approach only counts the number of decays, accidents or
new infections during Dt.) Using a more sophisticated binomial algorithm would in best case de-
tect that Dt Æ p is small enough to use a Poisson algorithm.

From a simulation point of view there seems to be no theoretical or practical advantage with
describing continuous time as discrete using the two-parametric Bin[n,p]-distribution instead of
the one-parametric Po[k]-distribution. A discrete-time approach is also technically inferior to con-
structing a stochastic Poisson Simulation model in a Continuous System Simulation language
where practical tools such as time-step adjustment, random numbers of different distributions,
a function library with various functions or even tailor-made table look-up functions, output
facilities, etc. are at hand for the model building.
Appendix C. Markov models and Poisson Simulation

What makes Markov theory [4,5] important in this context is that it is probably the most powerful
method to theoretically analyse population models. For a given conceptual population model, real-
isations as a Markov model, micro-model and Poisson Simulation model are all consistent. This is of
great importance because it provides consistent tools for theoretical analysis, as well as for numerical
experiments on the same conceptual model. Markov modelling is also widely used for numerical
studies. However, it has a number of disadvantages and limitations compared with Poisson
Simulation.

C.1. Discrete Markov process in continuous or discrete time

A population model can be described as a discrete Markov process, also called Markov jump
process, in discrete or continuous time [4,5]. However for sufficiently small time-steps in the dis-
crete-time case, the result will be the same as for the continuous time case.

The first step in Markov modelling is to define the set of states in which the process can exist.
For a population model this means all combinations of sub-population sizes in the model.

For a simple SIR model we have the k = 3 sub-populations S, I and R. Since S + I + R = m, we
have two degrees of freedom because R contains the remaining m–S–I individuals.

For example, if we have only m=3 individuals in a simple SIR model, these 3 individuals can be
in stages S, I or R according to the 10 states {(3,0,0), (2,1,0), (2,0,1), (1,2,0), (1,1,1), (1,0,2),
(0,3,0), (0,2,1), (0,1,2), (0,0,3)}. The general formula for the number of states in the state-space

is:
mþ k� 1

k� 1

� �
, where m is the number of individuals in the population and k is the number of

sub-populations [5]. Already for m = 100 individuals, a simple SIR model has a state-space of
5151 states, and the SIR model of a small village with m = 1001 inhabitants (the model in this
paper) gives a huge Markov model of about half a million states (instead of three state variables
in a Poisson Simulation model).

For a SIR model where the duration of the infectious stage has a C(3,b) distribution (i.e., three
exponential sub-stages in a series), the model will have the stages S, I1, I2, I3 and R. We then have
k = 5 and m = 10001, so the number of elements in the state-space becomes about 40000000000
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for the Markov model. (Still this makes a small Poisson Simulation model of only five state vari-
ables which we build in a few minutes and make 10000 replications from in less than ten minutes
on an 2.4 GHz PC.)

In the second step the transition probabilities between the states are described. (These have the
form: P[Ei! Ej in t,t + h] = aijh + o(h) which constitute the same starting-point as for the Pois-
son process from where Poisson Simulation is deduced. This is the reason why Markov models
and Poisson Simulation models are consistent.)

The transition probabilities (which obey the Markov property that the new state of the process
depends only on the present and all previous history is forgotten) are placed in a transition matrix
(in the time discrete case) by which the new state of the process is updated time-step by time-step,
or in an intensity matrix and calculated by the Kolmogorov differential equation in the continuous
time case.

C.2. Comparison of Markov and Poisson Simulation

When it comes to simulation (numerical solving by many replications of a stochastic model) the
Markov approach is more problematic. Here the Poisson Simulation approach has a number of
advantages over Markov Simulation. From a numerical point of view a Markov model is a mi-
cro-model since there is no aggregation over state-space or time and every single transfer is modelled
and calculated (but it differs from other micro-models in that the individuals are not distinguishable).

The main difference is that in Markov theory all possible states of a system are modelled while
the Poisson Simulation approach aggregates over state-space and time. The aggregation over
state-space means that the individuals are accumulated into a few state variables, where one state
variable can represent any number of individuals.

The aggregation over time means that we can accept many transitions during a time-step Dt
instead of one or zero during a very small time-step h.

The advantages of Poisson Simulation compared to Markov Simulation are:

(1) Aggregation over state-space. For a Markov model the number of elements in the state-space
grows combinatoricaly with the population size and the number of sub-populations, while
the number of state variables in Poisson Simulation is small and independent of population
size. What is a huge Markov model becomes a very small one in Poisson Simulation. There-
fore, the Poisson Simulation model is much easier to build and gives a more lucid and com-
prehensive model.
Furthermore, the SIR model used here as an example referred to a limited population. For
population models in general including growth of a population the number of states is
unknown, which is a problem. If the model is to be run, e.g., 10000 times, the largest (a priori
unknown) population has to be allocated for in the Markov matrix – or some dynamic
expansions of the model have to be included when needed. In Poisson Simulation the state
variables can take any number, so this is never a problem.
(2) The aggregation over time means that we can accept many transitions during a time-step Dt
(only limited by the time constants of the dynamics) instead of a very small time-step h in the
Markov model that is small enough to ‘guarantee’ that not more than one transition may
occur in (t, t + h). This aggregation reduces computation time to a small fraction.
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(3) The use of random number generators. In a Markov Simulation an event might happen during
the next time-step. However, to conform with the P[Ei! Ej in t, t + h] = aijh + o(h) concept,
the time-step h must be short enough not to risk more than one event. If, for example, h is
short enough to only erroneously give two events at one time in a hundred (not good!) then it
will (because of independence) create one event only in about one case out of ten and zero
events in about nine cases out of ten! This means that the number of calls to the random
number generator (RNG) is ten times larger (in practice much more) than the number of
events in this example. Thus, in Markov Simulation the RNG calls are to check whether
an event might occur in the next time-step.
In Poisson Simulation, on the other hand, the aggregated flow equation is used where, typ-
ically, n events will happen during (t, t + Dt). A primitive Poisson Random Number Gener-
ator then makes n+1 calls to a uniform RNG. (For larger n, say n > 12, we can be still more
effective.) We thus have about one call to a uniform RNG for each event that really happens.
It is these three points combined (aggregation over state-space, aggregation over time and a
reduced number of RNG calls for events rather than for possible events) that makes execu-
tion of a Poisson Simulation orders of magnitude faster than execution of a Markov model.
(4) Since Poisson Simulation is an extension of Continuous System Simulation (CSS), an impor-
tant aspect is to preserve the time-scaling property in Poisson Simulation. This is achieved by
the Po[Dt Æ �]/Dt construction used in the flow rate equations. The time scaling is used to find
a time-step small enough to handle the dynamics of the model. This means that Dt = e and
Dt = e/2 should produce sufficiently similar results (from the perspective of the actual purpose).
The way to test this is to try different step-sizes on the embedded deterministic model to find out
whether Dt is small enough. This also works well as a first try for stochastic models, although
different values of Dt should be tested for the stochastic case comparing resulting pdfs.
For a Markov model a time-scaling mechanism is lacking. It is then problematic to decide what
time-step h should be used to comply with the underlying construction: P[Ei! Ej in
t, t + h] = aijh + o(h).
(5) The Continuous System Simulation concept on which Poisson Simulation is based gives a
rich function library, even including table look-up functions for one or several variables.
Thus any empirically found relationship can simply be plugged into the model without
any mathematical treatment or complication. It is also a great advantage that it can be
directly written and executed in any CSS language with its function library, random number
generators, output facilities, etc.

To summarise, the use of state variables in Poisson Simulation instead of a state set in
the Markov approach makes the model very much smaller. This aggregation into state vari-
ables, the aggregation of events over time and the execution of events that actually happen
instead of single events that might happen makes Poisson Simulation orders of magnitude
faster than Markov Simulation. Furthermore, much larger and more complicated models
can be built and executed with Poisson Simulation than is possible with the Markov
approach.

We do not know of any non-trivial case where the simulation of a Markovian population
model is smaller, easier, faster or has any other merits than Poisson Simulation in the numerical
context.
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