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Abstract: Two approaches for reducing peak-to-average power ratio (PAPR) in orthogonal fre-
quency division multiplexing (OFDM) are proposed that are relied on a set of cyclically shifted
phase sequences (CSPS) and implemented using the time domain circular convolution. After mul-
tiplying CSPS with the frequency domain data, the signal candidates can be expressed as weighted
sum of the circularly shifted OFDM time domain data in the first method, which is called CSPS
method. In the second method, weighted coefficients for generating the signal candidates in
CSPS method are optimally selected to improve its performance; thus, the second method is
referred to as optimised CSPS (OCSPS) method. The performances of the CSPS and OCSPS
methods are evaluated using simulated data and compared with those of selective mapping
(SLM) and partial transmit sequences (PTS). The simulation results show that both the CSPS
and OCSPS methods can reduce the PAPR effectively, and that the OCSPS performs even
better than the CSPS. The OCSPS can achieve the same performance as compared to the PTS.
A distinct feature of the proposed methods is that only one inverse discrete Fourier transform is
needed, and thus, the candidates can be calculated in time domain directly.
1 Introduction

Orthogonal frequency division multiplexing (OFDM) has a
high tolerance to frequency selective channels and is spec-
trally efficient, making it a good candidate for future wire-
less communication systems [1–3]. In the wireless IP
Project [4], for example, an adaptive OFDM radio interface
was used in both downlink and uplink in a packet switching
wireless cellular system with wide area coverage and high
throughput.
However, OFDM has a significant drawback that the

transmitted signal has high peak-to-average power ratio
(PAPR), which requires very linear, large dynamic range
amplifiers that are inefficient and expensive to operate.
This is especially used in the power limited scenarios,
such as in satellite mobile communication and in the
uplink of wireless communication. To avoid the saturation
of amplifiers and the consequent in-band distortion and
out-of-band radiation, PAPR should be reduced before the
signal is fed to the amplifiers. Therefore the reduction of
PAPR has attracted great attention of researchers in the
wireless communications society and many solutions to
PAPR reduction have been proposed. Among many sol-
utions, the distortionless methods are very attractive, since
the information in transmitted signals is undistorted. The
partial transmit sequences (PTS) [5] and the selective
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mapping (SLM) [6] are two of the typical distortionless
methods. The key of PTS is the optimal combination of
phase-rotated signal sub-blocks to minimise the peak
power, while in the SLM, the frequency domain data is
multiplied by a set of statistically independent sequences
and the corresponding time domain signal with the smallest
PAPR is selected and transmitted. Both approaches pro-
vide improved PAPR statistics and need side information
(SI) to recover the original OFDM signal at the receiver.
Since PTS and SLM operate in the frequency domain, the

number of inverse discrete Fourier transform (IDFT) oper-
ations needed in the two methods is equal to the number
of sub-blocks and the phase sequences, respectively. This
leads to high computational costs. For the case of interleaved
sub-blocks partition [7], Cookey-Tukey FFT is employed to
reduce the computational complexity of PTS. However, the
performance of the interleaved sub-blocks partition scheme
is worse than other two partitioning schemes, such as adja-
cent and pseudo-random schemes, because of the depen-
dence of the candidates in interleaved sub-blocks partition
scheme [8]. To lower the computational costs in optimising
the weighting factors in PTS, binary weighting factors were
used in [9] to obtain the sub-optimal performance with
reduced computational complexity. In [10], a gradient
descent search was performed to find the phase factor with
reduced complexity compared to the original PTS and
better performance than the algorithm in [9]. Because the
performance gain of PTS method results from the large
number of candidates bearing the same information, one
uses certain transformations, such as conjugate, time rever-
sal, cyclical shift, and so on, on PTSs to obtain more candi-
dates and thus increase the performance of PTS [11, 12].
In this paper, two new PAPR reduction methods are

developed based on the time domain circular convolution
(TDCC) of the discrete Fourier transform (DFT). A set of
IET Commun., 2007, 1, (6), pp. 1146–1151



cyclically shifted phase sequences (CSPS) is designed first.
Then, employing the similar idea to that in the SLM, the
alternative frequency domain data can be obtained via the
elementwise multiplication of the original frequency data
with CSPS. Thanks to the CSPS, a set of signal candidates
can be obtained directly in the time domain, and the original
signal can be easily recovered in the frequency domain at
the receiver.

2 Review of SLM method and PTS method

Assume that the transmitted data in the frequency domain
for one OFDM symbol in an OFDM system is X ¼ [X0,
X1, . . . , XN21] and the number of the sub-carriers N is a
power of 2.

2.1 SLM method

Assume that M1 statistically independent random phase
sequences of length N are

Q(m)
¼ [Q

(m)
0 , Q

(m)
1 , . . . , Q

(m)
N�1], m ¼ 1, . . . , M1

where Q
(m)
k ¼ e jf

(m)

k (k ¼ 0, . . . , N � 1), with f
(m)
k uni-

formly distributed on [0, 2p). Multiplying X elementwise
with Q(m) produces M1 candidates X (m)

¼ Q(m)X
(m ¼ 1, . . . , M1), and using M1 N-point IDFTs yields the
time domain data.

x
(m)
n ¼ IDFT{X

(m)
k }, n ¼ 0, . . . , N � 1, m ¼ 1, . . . , M1

Finally, the sequence with the lowest PAPR among the
candidates x(m) is selected for transmission.
In SLM, the number of necessary IDFTs is equal to that

of the statistically independent random phase sequences.
Increasing M1 results in an increase in performance, and
unfortunately, in computational costs too.

2.2 PTS method

In PTS method, the frequency domain data X is first parti-
tioned into a set of, say M2, disjoint sub-blocks
{X (m), m ¼ 1, . . . , M2}, and each of them has N/M2

non-zero elements. Secondly, new data X 0 are generated
by weighting the M2 sub-blocks

X 0
¼
XM2

m¼1

bmX
(m) (1)

where bm ¼ e jfm (m ¼ 1, . . . , M2) with fm uniformly dis-
tributed on [0, 2p) are the weighting factors. Using N-point
IDFT, one may have the time domain expression of (1)

x0 ¼
XM2

m¼1

bmx
(m) (2)

where x(m) (m ¼ 1, . . . , M2) are the IDFT of X(m) and called
the PTSs. Finally, to minimise the PAPR of x0, the weighting
factors bm are optimally determined via

{b̂1, b̂2, . . . , b̂M2
} ¼ arg min

{b1, b2,..., bM2
}

{PAPR(x0)} (3)

where

PAPR(x0) ¼ 10 log10
max {jx0nj

2}

E{jx0nj
2}

is the PAPR in decibel (dB) of x0. The data with the smallest
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PAPR is x̂ ¼
PM2

m¼1 b̂mx
(m) and the optimal weighting factors

b̂m should be transmitted as SI.
Clearly, in PTS, the number of performing IDFTs

is equal to the number of sub-blocks M2. The main
computations of PTS method in the transmitter include
M2 N-point IDFTs and the optimisation of the weighting
factors. As in SLM, increasing the number of IDFTs’
operations, the performance of PTS will increase, but
so will the computational complexity. Therefore the trade-
off between the performance and the complexity needs to
be considered when using PTS or SLM for PAPR
reduction.

3 PAPR reduction based on circularly shifted
phase sequences

In this section, two methods for reducing PAPR are pro-
posed. The first one is called circularly shifted phase
sequences (CSPS) method, and the second one optimised
circularly shifted phase sequences(OCSPS) method, in
which a set of CSPS is first used, and the signal with
the smallest PAPR is then selected for transmission.
Only one IDFT operation is needed in the proposed
methods.

3.1 Circularly shifted phase sequences

Assume that a random phase sequence of length L is
P ¼ [P0, P1, . . . , PL21], where Pk ¼ e jwk with wk uniformly
distributed on [0, 2p) and N/L is an integer M, that is
M ¼ N/L. Then the periodic extension of P with period L
is expressed as

P((k))L ¼
X1
i¼�1

PkþiL

where ((k))L is k modulo L. Then, the zero-th to (N2 1)-th
elements of P((k))L are selected to form a phase sequence B
of length-N in the following manner

Bk ¼ P((k))LRk ¼
X1
i¼�1

PkþiLRk , k ¼ 0, . . . , N � 1 (4)

where

Rk ¼
1, 0 � k � N � 1

0, else

�

is rectangular sequence of length N. Obviously, Bk

(k ¼ 0, . . . , N2 1) consists of M periods of P((k))L
because of N ¼ ML.
By circularly shifting Bk by 1, . . . , L2 1 samples to the

left, respectively, one can obtain L different phase
sequences as follows

B
(l)
k ¼

X1
i¼�1

PkþlþiLRk , l ¼ 0, . . . , L� 1,

k ¼ 0, . . . , N � 1 (5)

which are called CSPS and will be used to establish the new
method for PAPR reduction.

3.2 CSPS method for PAPR reduction

As in SLM, L frequency domain sequences X(l ) (l ¼ 0, . . . ,
L2 1) can be obtained by multiplying elementwise
the L phase sequences B(l) ¼ {B

(l)
0 , . . . , B

(l)
N�1} with X,
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(c) compute the candidates

x(l)n ¼
XL�1

i¼0

Wil
L q

(i)
n , l ¼ 0, . . . , L� 1 (10b)

3. select and then transmit the one, say ~x, with the smallest
PAPR.

After xn is obtained by an N-point IDFT, the L candidate
sequences x(l) (l ¼ 0, . . . , L� 1) can be calculated directly
in time domain, and the phase sequence P of length L and
the index of B(l ) resulting in the smallest PAPR should be
transmitted as SI to the receiver. The block diagram of
the CSPS at the transmitter side is illustrated in Fig. 1 and
the computation procedure for one candidate using (9) is
shown in Fig. 2.

3.3 OCSPS method

The candidates in (9) can be viewed as the super-
position of the circular shifts of xn. Denoting
di ¼ Wil

Npi (i ¼ 0, . . . , L� 1), (9) can be rewritten as

�xn ¼
XL�1

i¼0

di{x((n� iM))NRn} (11)

It is obvious that, in the CSPS, the weights
di (i ¼ 0, . . . , L� 1) are fixed once the phase sequence
B(l ) is generated, and only L candidates can be obtained.
To improve the performance of CSPS method, more candi-
dates should be employed and the weights
di (i ¼ 0, . . . , L� 1) can be selected optimally. Hence, the
weights are optimally selected by minimising the PAPR
of �x as follows

dopt ¼ arg min
{d0, ���, dL�1}

PAPR{�x} (12)

The optimal phase sequence dopt, which is the SI of this
method, gives one candidate that has the smallest PAPR.
Once the dopt is received at the receiver, the phase sequence
Bopt can be easily reconstructed from periodically extending
the Dopt ¼ DFT{dopt} as in (4). Then the original OFDM

Fig. 1 Block diagram of CSPS method

Fig. 2 Computation of one candidate xn
(l)using (9)
respectively

X (l)
¼ X�B(l)

¼ [B
(l)
0 X0, B

(l)
1 X1, . . . , B

(l)
N�1XN�1],

l ¼ 0, . . . , L� 1 (6)

Then the time domain data can be expressed, using the
circular convolution property of the DFT, as

x(l)n ¼ IDFT{X
(l)
k } ¼ xn�N b(l)n , l ¼ 0, . . . , L� 1,

n ¼ 0, . . . , N � 1
(7)

where xn, bn
(l) are the N-point IDFTs of X and B(l ), respect-

ively, that is, xn ¼ IDFT{Xk}, b
(l)
n ¼ IDFT{B

(l)
k }, and �N

denotes the modulo-N circular convolution. Our aim is to
select the signal with the smallest PAPR from the candi-
dates x(l ) (l ¼ 0, . . . , L2 1), which is the same as is done
in the SLM.
Thanks to the special structure of B(l ) in (5), bn

(l) can be
explicitly written as [13]

b(l)n ¼
Wnl

N pn=M , n ¼ 0, M , 2M , . . . , (L� 1)M

0, else

8<
:

¼
XL�1

i¼0

WiMl
N pid(n� iM)

¼
XL�1

i¼0

Wil
L pid(n� iM); l ¼ 0, . . . , L� 1,

n ¼ 0, . . . , N � 1 (8)

where pn ¼ IDFT{Pk} is the L-point IDFT of P, and
Wk

N ¼ e�j(2p=N )k is the twiddle factor. Since bn
(l) have only

L non-zero elements, then (7) can be rewritten as

x(l)n ¼
XL�1

i¼0

Wil
L pi[xn�N d(n� iM)]

¼
XL�1

i¼0

Wil
L pi{x((n� iM))NRn},

l ¼ 0, . . . , L� 1, n ¼ 0, . . . , N � 1

(9)

in which {x((n� iM))NRn)} is the circular right shift of xn
by iM samples, and the L candidates
x
(l)
n (l ¼ 0, . . . , L� 1) can be calculated directly in
the time domain. Then from the L candidates, the one
with the smallest PAPR can be selected for transmission.
Since the CSPSs play the essential role in the proposed
method, thus, the method is named as CSPS method.
To summarise, let us go through the procedure of the

CSPS method:

1. obtain the time domain data xn with one N-point IDFT,
that is xn ¼ IDFT{Xk};
2. compute the candidates x(l) (l ¼ 0, . . . , L� 1) according
to (9) in three steps:

(a) circularly right shift xn to obtain
{x((n� iM)N )Rn}, i ¼ 0, . . . , L� 1
(b) compute new sequences defined as

q(i)n ¼ pi{x((n� iM))NRn}, i ¼ 0, . . . , L� 1 (10a)
IET Commun., Vol. 1, No. 6, December 2007



signal can be recovered in frequency domain by multiplying
the received signal with the conjugate of Bopt.
The di may be chosen with continuous-valued phase angle,

but one of more appropriate ways in practical system is a
restriction on a finite set of S (e.g. 4) allowed phase angles
to reduce the searching complexity. In our simulation, for
example, when S ¼ 4, the finite sets for each element are
d0 ¼ 1, d1 [ {e jp=6,e j4p=6,e j7p=6, e j10p=6}, d2 [ {1, j,� 1, j},
d3 [ {ej2p=6,ej5p=6,ej8p=6,ej11p=6}, respectively. Note that
one weight can be fixed without any performance loss.
In this method, the elements in the phase sequences are

optimised to create the optimal phase sequence, hence
named the optimised CSPS (OCSPS).

4 Comparisons of CSPS, OCSPS, SLM and PTS

In this section, the comparison of four methods, CSPS,
OCSPS, PTS and SLM is made in terms of their relation-
ship, the size of their respective SI and the computational
costs.

4.1 Relationship of the four methods

When the parameter L in CSPS is equal to M1 in SLM, that
is L ¼ M1, the two methods have same number of phase
sequences and the candidates. However, since in CSPS,
the L-phase sequences are generated by circularly shifting
B, the phase sequences are not statistically independent.
Therefore one can say that the CSPS is similar to the
SLM except that the L-phase sequences in the CSPS are
not statistically independent.
To see the relationship between CSPS and PTS, observe

that X(l ) in (6) can be rewritten as (see Section 9)

X
(l)
k ¼ Xk�B(l)

k ¼
XL�1

i¼0

P
(l)
i

XM�1

m¼0

XmLþid(k � mL� i) (13)

where

P
(l)
i ¼ P((iþ l))LRi, l ¼ 0, . . . , L� 1

are the circular left-shifted sequences of Pi,PM�1
m¼0 XmLþid(k � mL� i) (i ¼ 0, . . . , L� 1) are the sub-

blocks in PTS obtained from interleaved partition method
[7, 8]. Therefore the CSPS is similar to PTS with fixed
weights when the data is partitioned into L sub-blocks by
using the interleaved partition scheme.
Comparing (2) and (11), the candidates in OCSPS and

PTS are weighted sum of circular shifts of xn and PTSs,
respectively, and both of them need the searching pro-
cedures to obtain the optimal weights. M2 IDFTs are
required to obtain the PTSs in PTS, while only one IDFT
is needed to obtain {x((n� iM)N )Rn}, (i ¼ 0, . . . , L� 1).
Hence, when L ¼ M2 and exhaustive searching method is
used in both OCSPS and PTS, the computational costs for
determining weights are equal. However, in OCSPS, only
one IDFT is needed, that is, (L2 1) N-point IDFTs are
saved as compared to PTS.

Table 1: Side information of the four methods

Method SI SI size in bits

SLM Index of Q(m)
k log2M1

PTS bm (m ¼ 2, . . . , M2) (M22 1)log2S

CSPS Index of B(l ) log2L

OCSPS dopt,i (i ¼ 1, . . . , L2 1) (L2 1)log2S
IET Commun., Vol. 1, No. 6, December 2007
4.2 SI of the four methods

To recover the transmitted signal, SI must be known exactly
on the receiver side. The SI will cause redundancy of the
system, so it is desirable that the SI should be as little as poss-
ible. Table 1 gives the respective SI of the four methods. To
reduce the computational complexity, the phase factors bm in
the PTS [5] is also limited to finite set of S (e.g. 4) allowed
phase angles, for example, bm [ {+j, +1}.

4.3 Computation costs of the four methods

In Table 2, main computations of four methods are given
and, for simplicity, only the number of complex multipli-
cations at the transmitter to obtain the candidates is used
to indicate the computational costs. Here we assume that
exhaust searching method in PTS is employed to optimise
the phase factors. In CSPS, to obtain ~x, one N-point IFFT,
one L-point IFFT and computation of the L candidates x(l)n
according to (9) are required. To acquire x(l)n , N-complex
multiplications are needed in (10a), and, for a specific l,
(L� 1)N complex multiplications are required to achieve
the weighted sum in (10b) (for l ¼ 0, no multiplication is
required). In OCSPS, the computation for x̄(n) includes
one N-point IFFT to obtain x(n), and computation to
obtain the SL21 candidates.

5 Simulation results and discussions

To test the performance of CSPS and OCSPS, several simu-
lations are carried out based on more than 104 independent
OFDM symbols and comparison is made with SLM and
PTS. The complementary cumulative distribution function
(CCDF ¼ Pr(PAPR . PAPR0)) for the OFDM signal is cal-
culated using MATLAB and given to illustrate the perform-
ance of the algorithms.
In CSPS simulation, we use two ways to obtain the phase

sequences P. One way is to set Pk ¼ e jwk with wk uniformly
distributed on [0, 2p), and another way is to select
Pk ¼ exp{ j2pk=(2L)}, (k ¼ 0, 1, . . . , L� 1). Simulation
results show that the performance of the two ways is
similar. But in the second way, P need not be stored both

Table 2: Computational complexity of the four methods

Method Main computation

at the transmitter

Number of complex

multiplications

SLM M1 N-point IFFTs

and the

generating M1

candidates

CM ¼ M1 N
1

2
log2 N þ 1

� �

PTS M2 N-point IFFTs

and the

generating

SM2 2 1

candidates

CM ¼ M2 N
1

2
log2 N þ SM2�1

� �

CSPS One N-point IFFT,

one L-point IFFT

and generating L

candidates

CM ¼
N

2
log2 N þ LN þ

(L� 1)2 N þ
L

2
log2 L

OCSPS One N-point IFFT

and generating

SL21 candidates

CM ¼ N
1

2
log2 N þ SL�1

� �
1149



at the transmitter and the receiver only if they know the par-
ameter L. So we use the second way in our simulations. The
exhaustive searching is used both in PTS and OCSPS simu-
lation to optimise phase factors bm (m ¼ 2, . . . , M2) and
di (i ¼ 1, . . . , L� 1), respectively. The sets used for di are
given in Section 3.3. The sub-blocks used in PTS are
obtained by use of the adjacent partitioning method.

5.1 Performance of CSPS and OCSPS

Fig. 3 shows the performance of CSPS and OCSPS with
different Ls. The number of sub-carriers is 256. From
Fig. 3, it can be seen that for both CSPS and OCSPS, the
PAPR can be reduced effectively, the performance
increases as L increases and better PAPR reduction per-
formance can be gained in OCSPS. For example, for
L ¼ 4, comparing with CSPS, OCSPS shows about 1.5 dB
gain at 0.1% probability because there are 4L21 ¼ 64 candi-
dates in OCSPS.

5.2 Performance comparison of CSPS, OCSPS,
SLM and PTS

The results of CSPS with L ¼ 8 and OCSPS with L ¼ 4 for
N ¼ 1024 are illustrated in Fig. 4, in which the results for

Fig. 3 CCDF performance of CSPS (L ¼ 4,8,16) and OCSPS
(L ¼ 2, 4) for N ¼ 256

Fig. 4 CCDFperformances of SLM (M1 ¼ 4),PTS (M2 ¼ 2 and4),
CSPS (L ¼ 8) and OCSPS (L ¼ 4) for N ¼ 1024
1150
SLM with M1 ¼ 4 and PTS with M2 ¼ 2 and 4 are also
included for comparison. The results show that the perform-
ance of the OCSPS with L ¼ 4 is almost the same as that of
the PTS withM2 ¼ 4. However, the OCSPS has lower com-
putational costs. Also, the PTS performs better than the
SLM when the numbers of IDFT operations are the same
in both methods. As comparing the performance of CSPS
(L ¼ 8) and SLM (M1 ¼ 4), with more candidates, the
CSPS method outperforms the SLM, although the eight can-
didates in CSPS are generated by the use of non-statistically
independent phase sequences.

5.3 Approximate-analogue PAPR of the CSPS
and OCSPS

It is the large PAPR of an analogue signal that causes pro-
blems for amplifiers. To examine the approximate-analogue
PAPR reduction using the proposed methods, the over-
sampled versions of the digital signal can be used. A
QPSK-based OFDM signal (N ¼ 256) is oversampled by
a factor of 4 [9]. For comparison, the performance of the
proposed methods for the digital and approximate-analogue
signals is shown in Fig. 5. The legends in Fig. 5, for
example, ‘CSPS (L ¼ 8) OS’ and ‘CSPS (L ¼ 8)’, indicate
the performance of CSPS for L ¼ 8 with and without over-
sampling, respectively. There is a difference of about 0.7 dB
between the analogue and digital PAPR for N ¼ 256
systems. The PAPR of the approximate-analogue signal is
reduced for both the CSPS and OCSPS methods as com-
pared with the original OFDM signal.

6 Conclusion

In this paper, two distortionless methods, CSPS and
OCSPS, for PAPR reduction in OFDM are developed, in
which a set of CSPS are first designed and used for creating
the signal candidates. In the CSPS method, the signal candi-
dates are generated using the TDCC of OFDM data with the
IDFT of CSPS, and then the one with the smallest PAPR is
selected for transmission. In the OCSPS method, the
elements of the final phase sequence used for forming the
transmitted signal are optimally selected. The performance
of the CSPS and OCSPS methods are evaluated based on
simulated data and the comparison with SLM and PTS is

Fig. 5 Approximate-analogue PAPR performance of CSPS
(L ¼ 8) and OCSPS (L ¼ 4) with oversampling by a factor of 4
for N ¼ 256
IET Commun., Vol. 1, No. 6, December 2007
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9 Appendix

Derivation of (13):

Rewrite X
(l)
k in (6) as

X
(l)
k ¼

XN�1

i¼0

B
(l)
k Xid(k � i), l ¼ 0, . . . , L� 1 (14)

(14) can be expanded as

X
(l)
k ¼ B

(l)
0 X0d(k)þ B

(l)
1 X1d(k � 1)þ � � �

þ B
(l)
L�1XL�1d(k � Lþ 1)

þ B
(l)
L XLd(k � L)þ B

(l)
Lþ1XLþ1d(k � L� 1)þ � � �

þ B
(l)
2L�1X2L�1d(k � 2Lþ 1)þ � � �

þ B
(l)
(M�1)LX(M�1)Ld(k � (M � 1)L)þ � � �

þ B
(l)
ML�1XML�1d(k �MLþ 1)

(15)

Thanks to the cyclically shifting structure of B
(l)
k (see (5)),

one may have

B
(l)
i ¼ B

(l)
iþL ¼ B

(l)
iþ2L ¼ � � � ¼ B

(l)
iþ(M�1)L ¼ P

(l)
i , i

¼ 0, . . . , L� 1 (16)

whereP
(l)
k ¼ P((k þ l))LRk , l ¼ 0, � � � , L� 1 are the circu-

lar left-shifted sequences of P. Then, substituting (16) into
(15), one can obtain

X (l)
¼ P

(l)
0

XM�1

m¼0

XmLd(k � mL)þ � � � þ P
(l)
L�1

�
XM�1

m¼0

XmLþL�1d(k � (mþ 1)Lþ 1)

¼
XL�1

i¼0

P
(l)
i

XM�1

m¼0

XmLþid(k � mL� i)

 !
(17)

where
PM�1

m¼0 XmLþid(k � mL� i) (i ¼ 0, . . . , L� 1) are the
sub-blocks in PTS when interleaved partition method
[7, 8] is used.
conducted in terms of their relationship, SI size and compu-
tational costs. Simulation results have shown that

† The CSPS and OCSPS methods both are effective in
reducing PAPR of OFDM signals,
† The OCSPS performs even better than the CSPS, and
† The OCSPS, although computational costs are lower,
performs as well as PTS.

A distinct feature of the proposed methods is that only
one IDFT is needed, and thus, the candidates can be calcu-
lated in time domain directly.
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