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An Iterative Synthetic Aperture Imaging
Algorithm with Correction of Diffraction

Effects
Erik Wennerström, Tadeusz Stepinski, Senior Member, IEEE, and Tomas Olofsson

Abstract—In this paper we present an iterative version
of the synthetic aperture imaging algorithm extended syn-
thetic aperture technique (ESAFT) proposed recently. The
algorithm is based on a linear model that accounts for the
distortions effects of an imaging system used for acquisition
of ultrasonic data. Improved resolution (both lateral and
temporal) in the reconstructed image is obtained as a re-
sult of minimizing the reconstruction mean square error. In
this work, the minimization is extended to parameters that
characterize expected amplitudes of each image element in
the area of interest. An iterative optimization scheme is
proposed, which in each step performs minimization of the
reconstruction error based on the parameter matrix found
in the previous step. Comparing to ESAFT, the proposed
approach yields a significant improvement in resolution and
a high degree of robustness with regard to initial choice of
the parameter matrix. Performance of the proposed algo-
rithm is evaluated using both real and simulated ultrasonic
data.

I. Introduction

Synthetic aperture imaging (SAI) includes a number
of techniques aimed at improving the lateral resolution

of ultrasound images by extending aperture of a physical
source achieved by processing several successive measure-
ments. The primary SAI technique, known as synthetic
aperture focusing technique (SAFT) [1] has been inspired
by synthetic aperture sonar (SAS) [2] and synthetic aper-
ture radar (SAR) [3]. SAFT has been applied both in med-
ical and nondestructive material evaluation (NDE) appli-
cations. All SAI algorithms include various postprocessing
techniques used for obtaining all-point dynamic focusing
with a uniform resolution based on multiple consecutive
illuminations from different points located on a line.

Classical algorithms used for SAI are based on the im-
plicit assumption, which yields both in SAR and SAS that
the diffraction effects of the transducers can be neglected.
However, in practical applications, the lateral resolution of
many SAI algorithms is often limited by the non-negligible
size of the transducer used for data acquisition [4] [5].
The minimum transducer size in ultrasound can be limited
by, for instance, the minimum area needed for obtaining
the desired electric characteristics, or the minimum trans-
mitted acoustical power required for obtaining a sufficient
signal-to-noise ratio (SNR).
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An attempt to overcome the problems resulting from
a finite-active area of the transducer, proposed in [6] was
using a relatively large focused aperture (virtual source).
In this method, a virtual source that emits a spherical wave
is assumed to be located in the focal point of the aperture.
The virtual source technique has been investigated by a
number of researchers [7]–[9]; however, in in some cases it
has not yielded the initially anticipated improvements [8].

A more straightforward approach consists in taking
into account the spatial characteristics of the transducer
when developing the SAI algorithm. A time-domain so-
lution to this problem was presented recently under the
name ESAFT [10] [11]. ESAFT is capable of compensat-
ing the diffraction effects of a finite-sized transducer, both
in transmission and reception. It has been shown that this
technique is superior to many other common SAI algo-
rithms, such as conventional SAFT and phased-array tech-
niques concerning lateral resolution [12], [13].

In ESAFT, which is inspired by the estimation theory
of linear systems, the imaging problem is formulated as
the estimation of a set of reflectivity amplitudes defining a
so-called object function, see Section II. ESAFT is the lin-
ear solution to this problem, optimal in the mean-squared
error (MSE) sense. This model is especially useful in NDE
that in most cases only a limited number of strong scat-
terers is encountered in a homogenous medium. ESAFT,
which can be interpreted as a spatiotemporal filter, is de-
fined in terms of the spatial impulse responses (SIRs) of
the transducers used for imaging. It further requires knowl-
edge about the covariance matrix of the measurement er-
rors as well as the covariance matrix describing the prior
uncertainty about the elements in the object function.

The choice of covariance matrix for the measurement
errors seldom causes any serious problem as the measure-
ment noise typically can be well modeled as zero mean, in-
dependent, and identically distributed Gaussian sequence.
Thus, the noise components share a single scalar variance
that usually can be estimated from data.

However, choosing the covariance matrix for the ele-
ments in the object function in the region of interest (ROI)
presents a challenge. Moreover, this choice may have a
large influence on quality of the resulting image. A conser-
vative choice consists in setting this matrix equal to the
identity matrix multiplied by a scalar variance. This model
represents an equal uncertainty about all amplitudes in
the object function. In practice, the scalar variance usu-
ally is seen as a tuning parameter used by an operator to
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trade between image resolution and noise level. Setting the
variance to a small value has the drawback that large am-
plitudes in the image are underestimated, and the energy
is smeared over a neighboring area around such a point.
Setting it to large values improves the resolution, but at
the cost of an increased noise level.

In many NDE applications, the inspected object con-
tains only a finite number of strong reflectors whereas most
of the points in the inspected image plane reflect little
energy back. A typical example is NDE of welded metal
structures in which cavities and cracks are to be detected.
In medical ultrasonic applications, the images usually are
less sparse and have less contrast, as the medium is less
homogenous.

If the above mentioned conservative choice of covari-
ance matrix is to be made in such varying conditions, the
operator using ESAFT may need to spend much time to
find the parameter resulting in an optimal trade-off be-
tween resolution and noise level. It is important to note
that this trade-off is mainly a result of the choice of the
overly simple structure of the covariance matrix. Associat-
ing individual variances with all amplitudes in the object
function provides means for controlling the resolution and
noise amplification properties in the reconstruction.

In this paper, a further refinement of the ESAFT tech-
nique aimed at enhancing lateral resolution and reducing
background noise in the processed image is proposed. This
is achieved by a simple adaptation scheme of the elements
in the covariance matrix describing the reflectivity ampli-
tudes. The proposed algorithm is a two-dimensional (2-D)
extension of a 1-D method proposed in [14]. The method
takes the form of an iterative scheme and is shown to offer
an improvement over the standard ESAFT algorithm both
in terms of resolution and background noise level. The pa-
rameter setting also is simplified compared to ESAFT in
the sense that the results are less sensitive to the small
variations in the user parameters.

The reminder of this paper is organized as follows. In
Section II, the discrete model of the imaging system is pre-
sented. The solution to the inverse problem is presented in
Section III in which also the algorithm is derived. To il-
lustrate the resolution of the proposed iterative scheme,
Section IV presents numerical results obtained from sim-
ulations and measurements. Conclusions are presented in
Section V.

II. Discrete Linear Model of the Imaging System

ESAFT presented in [10] and the iterative ESAFT,
presented in this paper, are both model-based statistical
approaches to ultrasonic synthetic-aperture imaging. The
model of the imaging system is linear and discrete and
includes diffraction effects introduced by the ultrasonic
transducer. The presence of additive noise is assumed in
the model, and a reconstruction filter is designed to yield
the best estimate of the original image. In this section, the

Fig. 1. Monostatic synthetic aperture geometry. In each position
T1, T2, . . . , TL the transducer emits a pulse and receives an echo
from a scatterer located in point (x, z).

linear model of the imaging system is shortly outlined. A
more detailed presentation can be found in [10].

Consider the measurement setup shown in Fig. 1 in
which the ROI that is imaged is denoted by O. The ROI
that is divided into M ×N image elements is located in the
xz-plane with y = 0. Every element o(x, z) in the image
O is a scalar representing the scattering strength of a tar-
get in the position (x, z). Measurements from L positions
of a transducer moving parallel to the x-axis are available
in discrete-time form. The measurement set consists of L
A-scans, each containing K samples.

Such a setup in which both transmission and recep-
tion is performed with a single transducer is denoted as a
monostatic synthetic aperture. This is the setup considered
throughout this paper. Note, however, that it is possible to
transmit with a single transducer and to receive with sepa-
rate transducers in all other measurement points Tl. In this
multistatic acquisition scheme, the use of several transduc-
ers provides more information about the ROI. The extra
data could be incorporated into this model and, with the
added information, there might be an improvement in the
results, at a cost of increased computation effort.

Let the K × 1 vector yl denote the noise-free A-scan
response at position Tl, which can be expressed as a sum
of echoes from all scatterers in the ROI. Each echo can be
modeled as a convolution between an electro-mechanical
impulse response and a double-path SIR [13]. The dou-
ble path SIR defines the relation between the particle
velocity at the transducer surface at transmission, and
the instantaneous pressure at the transducer surface in
reception. The electromechanical impulse response mod-
els the combined electrical-to-acoustical and acoustical-to-
electrical properties of the transducer both in transmission
and reception. Let pl(x, z) denote the K × 1 vector that
consist of the combined time discreet electrical and spa-
tial impulse response of a scatterer at position (x, z) and a
transducer at position l. Calculating the SIRs of a trans-
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ducer naturally requires information about its geometry
and focusing, but even for complicated geometries the SIRs
can be calculated using numerical methods.

By neglecting multiple scattering effects, an A-scan can
be modeled as a superposition of the contributions from all
scatterers in the ROI. Using the notation developed above,
the A-scan can be written as:

yl =
N−1∑
n=0

M−1∑
m=0

pl(xn, zm)o(xn, zm). (1)

The L vectors y0, . . . ,yL−1 now can be stacked on each
other to form a KL × 1 vector, y. In a similar way, a
MN × 1 vector, o is formed by stacking all elements in O.
Form the size K × M matrices:

Pl(n) = (pl(n, 1) . . .pl(n,M)) , (2)

for all combinations of transducer positions l and columns
in O. Now the SIR matrix P can be constructed as:

P =

⎛
⎜⎜⎜⎝

P0(0) P0(1) . . . P0(N − 1)
P1(0) P1(1) . . . P1(N − 1)

...
...

PL−1(0) PL−1(1) . . . PL−1(N − 1)

⎞
⎟⎟⎟⎠ . (3)

The matrix P contains all the combined electrical and
spatial impulse responses for all combinations of points
(x, z) in the image and all transducer positions l. Using
this matrix, it is possible to write the model in the compact
notation:

y = Po + e, (4)

where e is additive measurement noise. See [13] and [15]
for details concerning the impulse responses, the structure
of P, and other details of this model.

III. The Inverse Filter, Minimization Problem

The ESAFT algorithm is based on the linear convo-
lution model of the imaging system defined in (4). The
approach proposed in [10] consists in finding ô from y us-
ing the reconstruction filter K that minimizes the mean
square error JMMSE = E

{
‖o − Ky‖2

}
.

This is equivalent to finding the maximum a postiori
(MAP) estimate of o, assuming that o and e are Gaussian
[13]. The MAP loss function can be written as:

arg max
o

p(o|y) =

arg max
o

{
1
2
(y − Po)TCee

−1(y − Po) +
1
2
oTCoo

−1o
}

=

arg max
o

J.
(5)

The MAP estimate that minimizes J can be expressed
in a closed form:

ô =
(
Coo

−1 + PT Cee
−1P

)−1
PT Cee

−1y, (6)

where Coo is the MN × MN covariance matrix of the
image vector o and Cee is the KL×KL covariance matrix
of the noise e. Under the assumption that the noise e is
Gaussian and white with variance σ2

e , the expression (6)
can be simplified to:

ô =
(
C + PT P

)−1
PTy, (7)

where:

C = σ2
eCoo

−1. (8)

If no assumptions that intensities of different elements
in the image are correlated to each other are made, Coo
becomes diagonal and its inverse also is diagonal. C can
now be written as:

C = σ2
eCoo

−1 =

⎛
⎜⎜⎜⎜⎝

δ2
1 0 . . . 0

0
. . .

...
0 δ2

MN

⎞
⎟⎟⎟⎟⎠ , (9)

where:

δ2
i =

σ2
e

σ2
oi

, (10)

and σ2
oi

is the i:th diagonal element of Coo. The inverse of
an element δ2

i on the diagonal of C describes how great an
amplitude of oi can be expected. In the standard ESAFT
algorithm, all δi are set to the same value. If they are set to
large values, high amplitudes are punished, thus suppress-
ing noise. If they are set close to zero, higher amplitudes
are allowed, but at the price of increased noise. Should it
be possible to have low values on the δi in which scatterers
are located in the image and high values everywhere else,
low noise and good amplitude resolution could be com-
bined.

The main idea of the extension to ESAFT proposed
here is to achieve such effect by making C adaptive and
updating the values on the diagonal in several steps. Some
constraints are needed to keep the various δi from grow-
ing too large or coming too close to zero. More on the
formulation of the constraints later [see (15) and (16)].

Now, consider the minimization of J with respect to
both o and C. It can be done in alternating steps, first
find:

ô1 = argmin
o

J |C=λ0I, (11)

using the result in (7). C is in this step set to the iden-
tity matrix multiplied by a constant, λ0. Note that λ0 has
a physical meaning as the quotient between the variance
of the measurement noise in the data y and the average
variance of the elements in o.

Then minimize J again with respect to C:

C1 = arg min
C

J |o=ô1 , (12)
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Fig. 2. Impulse response of the transducer (left) and its Fourier transform (right).

that is, when o = ô, find the C that minimizes J . The
resulting update of C then is used to find a new estimate of
o, and so forth. This process is repeated until convergence.

The algorithm can be summarized in five steps:
• Initialize k:=1 and C0 = λ0I.
• Find the k :th estimate of the image, using the k−1 :st

update of the matrix C:

ôk = arg min
o

J |C=Ck−1 . (13)

• Find the k :th update of C, using the estimate of the
image from the last step:

Ck = arg min
C

J |o=ôk
. (14)

• Set k:=k + 1.
• Repeat step 2, 3, and 4 until J converges.

To eliminate trivial solutions when minimizing J in (13)
and (14), constraints have to be imposed on C. Without
such constraints, various diagonal elements δi in C could
quickly grow out of proportion or quickly diminish. Please
recall that MN is the number of elements in the image
and consider the constraints:

1
MN

∑
i

σ2
oi

σ2
e

=
1

MN

∑
i

1
δ2
i

= λ0, (15)

1
MN

∑
i

σ2
e

σ2
oi

=
1

MN

∑
i

δ2
i = A. (16)

The first constraint (15) roughly expresses the condition
that the average energy in the image should not change.
Initial assessments of the measurement noise and the im-
age energy are made when minimizing J in (13), and those
should hold in each step of the iterated minimization.

The second constraint takes the form of a lower limit for
σoi > 0; indeed, if σoi tended to 0 it would be equivalent to
assuming that there is nothing in the corresponding area
in the image. This would not be a sensible assumption as
the method should be open to the possibility of a target
anywhere in the image.

A is a constant, that can be seen as a user parameter.
If A is chosen large, all δi are allowed to vary with less
restrictions.

A. Minimization Under Constraints

To minimize J under the constraints (15) and (16), find
the stationary points of the Lagrangian (see [16] for de-
tails):

JL = J + µ1

(
1

MN

∑
i

1
δ2
i

− λ0

)

+ µ2

(
1

MN

∑
i

δ2
i − A

)
,

(17)

where µ1 and µ2 are Lagrange multipliers. Because JL is
dependent on both o and C, the stationary point is sought
after by alternatively keeping one of these fixed, while find-
ing the stationary point of the other. Differentiation of (17)
with respect to o yields the same expression for ô as in (7).

In the second optimization step, the ô that was found
in the previous step is fixed. Finding the stationary point
of JL with respect to C is more complicated. We wish to
equate the following derivatives to zero:

dJL

dδ2
i

|o=ô =
dJL

dδ2
i

[
1
2

∑
i

ô2
i

δ2
i

+ µ1

(
1

MN

∑
i

1
δ2
i

− λ0

)

+ µ2

(
1

MN

∑
i

δ2
i − A

) ]

=
1
2

(
− ô2

i

δ4
i

)
+ µ1

(
− 1

δ4
i

)
+ µ2(1), (18)

for all δ2
i , i = 1 . . .MN . This yields:

δ2
i =

√√√√µ1 +
MN

2
ô2

i

µ2
, (19)

and inserting this into the constraints (15) and (16) re-
sults in:
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Fig. 3. Simulation results for 4 mm transducer. Original B-scan (top left), standard SAFT (top right), standard ESAFT (bottom left),
iterative ESAFT (bottom right).

λ0 =
∑

i

√√√√µ1 +
MN

2
ô2

i

µ2
, (20)

A =
∑

i

√√√√ µ2

µ1 +
MN

2
ô2

i

. (21)

This is a system of nonlinear equations with two un-
knowns that cannot be solved analytically; it must be
solved numerically. When µ1,2 has been found, all δi can
be calculated readily from (19). These steps now can be
iterated until JL in (17) converges.

Note that if µ1 is close to zero, which may occur when
A is large, then the expression in (19) reduces to δ2

i ≈ αôi;
the estimated variances for the next step will simply be
the estimated image from the recent step, scaled by some
constant α.

IV. Results

Experiments were performed to evaluate the perfor-
mance of the proposed method. A linear rectangular array,
geometrically focused in elevation, was used in the exper-
iments as a variable sized transducer. The transducer size
was changed by bridging a varying number of elements,
for example 4 or 16. The measurements were performed
in immersion with targets located in the array’s geomet-
rical focus in the setup shown in Fig. 7. Simulations of

Fig. 4. Simulation results for 4 mm transducer. Profile plot.

the experimental setup were performed first, and the sim-
ulation results were used to compare the iterated ESAFT
algorithms with an ordinary time-domain delay and sum
SAFT. A fixed size synthetic aperture consisting of 35 ele-
ments without apodization was used in the delay-and-sum
SAFT. Linear interpolation between discrete samples was
also used. Below simulated results are presented, followed
by results from measurements.

A. Simulations

Simulations of the imaging setup used in the measure-
ments presented in the next section were performed using
the Discrete REpresentation Array Modelling (DREAM)
toolbox [17]. Referring to the geometry described in Fig. 1,
the transducer was modeled as a strip, infinitely thin in
the y-direction and with a variable, finite length in the x-
direction. The ROI was located entirely in the xz-plane,



wennerström et al.: synthetic aperture imaging algorithm 1013

Fig. 5. Simulation results for 16 mm transducer. Original B-scan (top left), standard SAFT (top right), standard ESAFT (bottom left),
iterative ESAFT (bottom right).

Fig. 6. Simulation results for 16 mm transducer. Profile plot.

and neither transducer nor targets extended beyond this
plane.

In the real measurements, described in more detail in
Section IV, the transducer was focused geometrically in
the y-direction, so that the targets were in the focal zone
at the symmetry plane. The spatial impulse responses for
observation points close to the targets then should be iden-
tical for the (simulated) line source and the (real) focused
transducer.

The simulations are made for a broadband transducer
with a center frequency of 3 MHz with a double path im-
pulse response shown in Fig. 2. The electrical impulse re-
sponse used in the simulations was measured from the real
array used in the measurements presented in Section IV. A
short, rectangular pulse was used as excitation pulse. The
impulse response also includes the effects of the excitation
pulse.

Fig. 7. Measurement setup. Two closely spaced wires in water.

Two closely spaced point targets, located in water at a
distance of 190 mm from the transducer, corresponding to
the real array’s focal distance, and separated by 3 mm were
simulated. The transducer aperture size was set to either
4 or 16 mm, and the spatial sampling distance was 1 mm,
which is equal to 2λ for the transducer’s center frequency
3 MHz in water. White Gaussian noise was added to the
data after the convolution with electrical impulse response,
to obtain the SNR of 10 dB. The simulated radio frequency
(RF) signals were sampled at 40 MHz. The choice of point
targets was motivated by two purposes: providing a good
measurement setup for evaluating spatial resolution, and
creating a reasonably realistic situation for NDE purposes
in which scatterers often are few and small.
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Fig. 8. Measured results for 4 mm transducer. Original B-scan (top left), standard SAFT (top right), standard ESAFT (bottom left),
iterative ESAFT (bottom right).

In Figs. 3 to 6, the results of the simulations are shown.
The intensity plots show B-scans consisting of aggregated
RF-signals acquired at all transducer positions. Note that
the term B-scan, which is used in medical applications
for aggregated signal envelopes, refers in NDE to aggre-
gated RF-signals. To simplify comparisons between dif-
ferent algorithms, data have been normalized to have its
respective maximum amplitude set to unity. The profile
plots were generated by taking the maximum from each
column of the image. All reconstructed images are made
with 45 × 121 image elements (pixels) corresponding to a
ROI of 45 × 4.5 mm.

From the results presented in Figs. 3 to 6 can be seen
that both ESAFT and iterative ESAFT can distinctly sep-
arate the two targets, but the iterative approach is clearly
superior in suppressing the noise. Interestingly, no side
lobes appear in the iterative ESAFT profiles, the back-
ground noise level is rather constant outside the peaks.

As mentioned before, in order to obtain the spatial reso-
lution sufficient to separate the targets, a small λ0 must be
chosen in (11) for the single-step ESAFT algorithm. This
choice yields small or no damping of the noise present in
the image. The iterative algorithm starts with larger value
of λ0, and updates it in subsequent steps.

B. Measurements

Ultrasonic data was collected using an array system
with a 3 MHz focused array from Imasonic. The array
consists of 64 rectangular elements spaced with 1 mm. The

Fig. 9. Measured results for 4 mm transducer. Profile plot.

elements that are 0.95 mm wide strips can be bridged eas-
ily to form larger apertures. If all elements in an aperture
are fired simultaneously, it acts like a rectangular source
of a size determined by the number of active elements.
Two 0.3 mm thick steel wires, separated by 3 mm and
submersed in water, were used as targets. The number of
single-array elements used in the experiments, and thus the
approximate transducer width in mm, were, respectively,
1, 2, 4, 8, 12, and 16. The distance between the targets
and the aperture was constant and equal z = 190 mm as
shown in Fig. 7. The array was geometrically focused at
this distance in the y (elevation) direction. B-scans were
gathered along the x-axis, perpendicular to the wires us-
ing a spatial sampling distance of 1 mm. The RF signals
were acquired with a sampling rate of 40 MHz and an 8 bit
analog-to-digital converter. Results obtained for the 4 mm
and 16 mm aperture are presented in Figs. 8 to 11.
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Fig. 10. Measured results for 16 mm transducer. Original B-scan (top left), standard SAFT (top right), standard ESAFT (bottom left),
iterative ESAFT (bottom right).

For a narrow, rectangular transducer of length L, the
far field approximation is valid for distances beyond r >
L2/4λ [18]. Although the ESAFT algorithm does not use
the far field approximation in any step, due to practical
reasons (an available array), for all aperture sizes used in
the measurements, the targets were located in the trans-
ducer’s far field. However, ESAFT is capable of compen-
sating transducer diffraction effects in the near field if the
respective SIRs are known.

The results from measured data are similar to the sim-
ulated ones. Some reduction of performance can be ob-
served, but it was expected, as the model of the transducer
is not perfect. The iterative ESAFT algorithm performs as
well as, or better than, the original EASFT method with
regard to the resolution, and additionally it is capable of
suppressing noise to a greater extent.

The evolution steps of the iterative approach is illus-
trated in Figs. 12 and 13 showing evolution of B-scan pro-
files in successive iterations for the 8 mm aperture. Note
that the larger the aperture, the more its SIR deviates from
the ideal SIR of a point like transducer. In consequence,
when the ultrasonic measurement performed using a large
aperture is processed using an ordinary SAFT, a satisfac-
tory spatial resolution is difficult to achieve [13]. In this
context, 8 mm aperture of a 3 MHz transducer in water is
fairly large for targets at a distance 190 mm.

From the plots in Fig. 12 can be seen that, after the
first iteration of the proposed algorithm, the two wires
have not been separated, but after further steps they can
be distinguished clearly.

Fig. 11. Measured results for 16 mm transducer. Profile plot.

In the example presented above, the initial matrix C0

in the step 1 of our algorithm was set to a relative high
value λ0 = 1e−4. For lower start values (for example, λ0 =
1e−6), the wires could be distinguished after processing
using the original single-step ESAFT approach, see Fig. 13.
Note, however, that this is achieved at the price of a higher
noise floor and less distinct peaks corresponding to the
wires comparing to the iterative SAFT result in Fig. 12(i).
This is clear evidence that the iterative approach is more
successful in suppressing the background noise than the
single-step ESAFT.

C. Impact of Aperture Size

Performance of SAI algorithms generally decreases with
increasing apertures; see [5] for more details on impact
of transducer size on imaging. This is especially true for
SAFT but also for ESAFT. Indeed, the spatial impulse
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Fig. 12. Profile plots obtained for 8 mm transducer, λ0 = 1e−4. Note gradual resolution enhancement, after the first iteration the two wires
cannot be distinguished.

Fig. 13. The result obtained for 8 mm transducer, without the iter-
ative approach for λ0 = 1e−6. Fig. 14. 3 dB resolution as a function of aperture size.
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response of the finite-sized transducer acts as a low-pass
filter for the received signal and because the SIR length in-
creases with the size of the aperture, the higher frequencies
present in the target response are more and more atten-
uated. This effect is especially well pronounced for larger
angles of the incident beams. Below, a comparison of the
3 dB lateral resolution for SAFT, ESAFT, and the itera-
tive ESAFT is presented. The data was acquired using the
same setup as described in Section IV, but only a single
wire was used as target.

It can be seen from Fig. 14 that the iterative ESAFT ap-
proach offers clear improvement over the standard ESAFT
algorithm, and that both are superior to SAFT. The reso-
lution of the ESAFT methods decreases much slower with
increasing aperture size, as they maintain reasonable ac-
curacy for apertures as large as 16 mm.

V. Conclusions

An iterative version of ESAFT algorithm was proposed
in this paper and tested using both simulated and real
ultrasonic data. The algorithm uses a sequential optimiza-
tion scheme in which the parameters found in the previous
step is used for minimizing the reconstruction error in the
present step. It has been shown that the algorithm yields
an improved lateral resolution comparing with the ordi-
nary ESAFT.

It also has been shown that the iterative approach is rel-
atively insensitive to the initial choice of the user param-
eters, which is an important practical advantage. Perfor-
mance of the original ESAFT method, which is essentially
a single iteration of the iterative version presented here, de-
pends heavily on the initial estimates of σ2

o and σ2
e in (10).

The iterative approach presented in this work minimizes
the error criterion (17) until it converges, which makes it
less dependent on the initial choice of parameters. Thus, it
is more robust and is more suited for practical NDE appli-
cations, such as automated defect detection/classification
than the original ESAFT.
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